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ABSTRACT
The benefits of power-aware applications are generally recognized.
By adapting to the current power consumption, apps are able to
optimize their runtime behavior. Today, operating systems provide
interfaces for apps to query such information, however, those ap-
proaches suffer mostly from two drawbacks: Firstly, the accounted
power consumption for one process or process group might be
distorted due to power entanglement. Secondly, those approaches
do not offer any isolation between different processes in terms of
power as a resource. To address those problems, this work proposes
the combination of power sandboxing [5], a counter mechanism for
power entanglement, and tabs/reserves [11], an OS-level abstrac-
tion of power consumption.

1 INTRODUCTION
The increasing demand of power-aware applications, especially
on mobile devices, requires operating system developers to add or
adapt interfaces in order to provide accurate measurements in a
secure manner. In the course of this, two fundamentally different
approaches of power metering have emerged: Firstly, operating
systems can use power models to approximate their power con-
sumption. Hereby, a power model can be viewed as a function of
the estimated power consumption for a given period of time [3].
The second approach uses hardware sensors directly and reports
the actual measured data [4].

While both power-metering mechanism will produce valid data,
which indeed can be already used by the power-aware applications,
the actual reasoning of those may often be rather difficult. This is
mainly due to the fact that the data is computed or measured for a
whole subsystem or even for the whole system and then accounted
to the running threads according to chosen heuristics [2]. Therefore,
it is not possible to directly provide fine-grained observation for
a process or process group. Furthermore, those approaches might
lead to a serious security vulnerabilities known as power side-
channel attacks. A malicious application is able to constantly poll
the system power meter and the reported data will give a hint about
the power consumption of a simultaneously running application. It
is demonstrated that a malicious background application can infer
the current location information on mobile devices by exploiting
the collected power meter data [8]. To address those problems,
power observations can be sandboxed as proposed in [5].

The vertical environment, as shown in Figure 1, provides an
abstraction of the measured power consumption by virtualizing
the underlying subsystem. Based on memory balloons of virtual
machines, resource balloons are introduced as a mechanism to
provide exclusive access to a subsystem and therefore to offer power
metering without any entanglement.

However, power sandboxing does not prevent malicious apps
from draining excessive amounts of the battery capacity. To increase
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Figure 1: Vertical environment. (a) The power consumption
is measured for a whole subsystem and accounted to differ-
ent apps. (b) The sandbox allowsmeasurements of a specific
application by providing an exclusive vertical environment.

the battery runtime, especially for mobile devices, another regu-
lation mechanism must be added. One possible approach towards
power consumption regulation would be the usage of reserves and
taps which were first introduced in [11]. A reserve can be compared
to a water reservoir but instead of storing water it will keep track
of the available energy. Whereas, a tap will provide an abstrac-
tion of the actual provided power. Based on these two mechanism,
isolation, delegation and subdivision can be achieved.
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Figure 2: Taps and Reserves. Each application was granted a
specific amount of usable energy in form of a reserve. These
reserves can be refilled using taps.

As shown in Figure 2, each process or process group will utilize
their own reserve and drain power from it. Therefore, their power
consumption only depends on their own reserve and isolation is
achieved. To fill a reserve, the available energy of another reserve
can be subdivided and delegated.

This paper contributes the combination of two already existing
operating system abstractions, namely power sandboxing [5] and
taps/reserves [11], to provide fine-grained isolation in terms of
power metering and power consumption for independent processes
and process groups.
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2 A CASE FOR OS ABSTRACTIONS
This section examines the typical setup of power-aware applica-
tions and specifies requirements for the proposed operating system
abstractions.

2.1 Power-Aware Applications
Especially on mobile devices, power-aware applications benefit
from fine-grained power metering as it provides key insights of
possible optimizations [7]. The typical setup of such optimized apps
can be illustrated as shown in Figure 3.
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Figure 3: Closed Control Loop

While the applications is running, power is consumed. Depend-
ing on the load of the task at a given moment, the relative power
consumption might increase or decrease. To adapt to the situation,
the application will query the current power consumption from
the vertical environment, which in turn gets those information
from the system power meter. As a result, the applications might
change content fidelity [9], algorithms accuracy [6], application
preferences [1] or network scheduling strategy [10]. Due to the
changed behavior of the application, the power consumption will
change and the control loop is closing.

2.2 Power Entanglement
As motivated in Section 1, the reported power consumption might
be distorted due to power entanglement. The main source of entan-
glement is the concurrent usage of a metered subsystem by several
independent threads. Hereby, power entanglement can be classified
in two groups:

The first kind of power entanglement concerns spatial concur-
rency in the hardware. The most familiarly example of this category
aremulticore CPUswith a shared power supply as multiple indepen-
dent threads can run concurrently but the overall power can only
be metered as a whole [15]. This might not only make reasoning
more difficult but also introduces potential threats of side-channel
attacks.

The second source of power entanglement corresponds to blurry
request boundaries. Commonly, IO devices offer queues in order
to receive requests from the CPU. Those requests are handled by
the device asynchronously later on. Therefore, it is not possible to
pinpoint the exact start and end of a request. If several independent

threads submit requests concurrently, the accounting of the spent
execution time and the associated fine-grained power consumption
is rather imprecise.

2.3 Global Power Management
With this background knowledge, this section discusses to actual
setup of power management in a global scope. The goal of the
operating system in this work is about providing a secure and fair
environment for each process or process group in terms of power
consumption.

Following this requirement, an isolated view of the current avail-
able energy is needed. The operating system will assign at least
one reserve to each process or process group independently and
guarantees that it is not possible to drain energy from a different
reserve without sufficient permissions. Due to its fine-grained na-
ture, the design of reserves differs from previous approaches [14].
This leads to the second requirement as energy, or rather power,
should be allowed to be delegated between two reserve while main-
taining all necessary security policies. Taps will be the base for this
power transfer if all permission checks are passed. The setup has
one last implicit requirement: Currently, energy is stored in one’s
own isolated reserve and power can be delegated from a reserve to
another but a process must be able to subdivide their own resource
before delegating to another process or process group.

3 DESIGN
To provide an accurate and secure environment for power-aware
applications, the following key characteristics will form the basis
for the design in this work:

(1) Isolated Power Metering: The vertical environment should
provide accurate and reasonable measurements without the
exposure of any power-related security flaws.

(2) Dynamic Power Sandboxing: The application itself should
be allow to choose its environment. This means in particular
to enter or leave power sandbox freely.

(3) Tracking of available Energy and Costs: The operating sys-
tem should keep track of available energy resources for the
managed processes or process groups.

(4) Ensuring Boundaries: The operating systems should take ac-
tion if applications exceed their delegated resource amount.

3.1 Power Sandboxing
The design of the power sandbox is based on resource balloons.
Hereby, the operating system will allocate a portion of resource
which will be granted one process or process group exclusively.
Therefore, the concurrent usage of a subsystem by independent
threads can be confined. As the final result, power entanglement is
restricted and accurate/reasonable measurements are made possible.
Based on Section 2.2, the power sandbox must distinguish between
two fundamental types of resource balloons:

(1) Spatial balloons: Those will handle concurrency in subsys-
tem which can be used by several threads simultaneously
and are schedulable by the operating system. For instance,
spatial balloons are able to confine usage of several CPU
cores at the same time.
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(2) Temporal balloons: This kind of resource balloonwill confine
asynchronous request of IO device by several independent
entities. The device may only process one request at the
moment but there are almost no constraints on the order of
submitted requests by different threads. Therefore, the oper-
ating system must ensure that there are no in-flight requests
by another process while the resource granted exclusively
to an entity.

Both kind of resource balloons confine concurrency within a
subsystem, which was identified as the main source of power en-
tanglement. As a result, isolated power metering (per process or
process group) was made possible while reducing the attack surface.
The first key characteristic of the overall design (see Section 3), is
met.

Concerning the second property, the power sandbox is designed
as an on-demand service. All apps are allow to enter or leave their
power sandbox freely:

1 / / Crea t e a power sandbox
2 box = p sbox_ c r e a t e (HW_CPU ) ; / / o p t i o n a l argument
3 box_en t e r ( box ) ;
4 / / C o l l e c t i o n o f power samples
5 psbox_sample ( box , &buf , NUM_SAMPLES ) ;
6 p sbox_ l e ave ( box ) ;

Listing 1: Usage of the power sandbox. This example code
was taken from [5].

If the application wants to observe its own power consumption, it
will enter the power sandbox and have exclusive access to the me-
tered devices (line 3 of Listing 1). Hereby, the application can select
the demanded subsystem optionally. After reading the collected
data (line 5), the app will leave the power sandbox for full execution
speed (line 6). To keep fairness among the applications, the lost
sharing opportunities due to the exclusive access will be fined to the
sandboxed applications in future scheduling decisions. Therefore,
the overhead of the power sandbox should not be noticeable for
the remaining applications.

3.2 Reserves and Taps
Reserves form the basis for isolation in terms of controlled power
consumption. By storing the current amount of usable resources (in
this case energy), it serves as one important parameter for schedul-
ing decisions. In particular, an operating system, which supports
the reserves/taps mechanism, will only schedule a thread of a pro-
cess or process group if the reserve yields enough resource for this
operation. This implies that the scheduler won’t select a thread with
an empty reserve as the next running thread. While rescheduling,
the used resources will be accounted and the associated value of
reserve will be decreased.

To refill the balance of a process or process group, the reserve
(most often the battery of the mobile device) can be subdivided and
the newly created reserve can be delegated to the corresponding
process or process group. For example, if the mobile device has
a 15kJ battery, it may split a 100mJ reserve from it and delegate
it to the process. However, this fixed-quantity approach is rather
unhandy and unnatural. Instead, a rate of energy (i.e. power) makes
more sense. For instance, if the same mobile device should be usable

for at least 5 hours, the reserve should be recharged with an rate of
0.75J/s. For this occasion, a tap can be used. A tap can be described
as triple consisting of a source, destination and a given rate. Com-
bining reserves and taps, energy can be stored, used and restored.
Noteworthy, reserves and taps exist in the kernel space and are
treated like every other control structure. Therefore, changes of
those by the user space require sufficient permissions.

Reserves and tabs provide basic isolation between processes in
terms of power/energy consumption as every process or process
group has only access to their own reserves and taps. However,
those two alone will not prevent applications from hoarding energy.
An application might idle most of the time and its reserve will be
almost always completely filled. As a result, the saved energy is no
longer available to the rest of the system and therefore wasted. One
possible counter measurement includes the usage of proportional
backward tabs. Instead of transferring energy described by a fixed
rate, a fraction from the source reserve can be reallocated.

Root Reserve

App0 Reserve

App1 Reserve

Tap (350mW)
Prop. Tap (×0.1)

Prop. Tap (×0.1)
Tap (350mW)

Idle App0

Busy App1

Figure 4: Taps and Backward Taps. The taps will refill the
reserve of App 0 andApp 1with a fixed rate of 350mWwhile
the proportional backward tap will tax 10% of each reserve.

As shown in Figure 4, a tenth of the current reserve resource
count will be taxed and reclaimed for the overall system. Therefore,
an energy-hoarding application will be penalized with a larger tax
in quantitative terms. Alternatively, a more aggressive approach
can be used. Hereby, the reserve resource amount can be halved
and reallocated after a predefined period of idle time. This approach
is similar to the “idle memory tax“ of virtual machines [12].

Finally, as each process or process group utilize their own re-
serves and energy hoarding is confined, isolation in terms of power
consumption can be achieved. Also, the operating system ensures
that the amount of delegated resources is not exceeded. Therefore,
the third and fourth requirement of Section 3 is fulfilled.

3.3 Combined approach
The overall design goal is about providing an accurate and rea-
sonable environment for power-aware applications while ensuring
process isolation in terms of energy as a system resource. In addi-
tion, user space applications must be protected from power-related
security threats. We build our design starting with the described
reserves/taps mechanism as the foundation. Most of the previously
done work remains unchanged. The used reserve(s) and their as-
sociated amount of delegated energy are still the final step of the
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scheduling decision and prevent threads with an insufficient energy
balance from running. Hereby, two adaptions must be made:

(1) Adapted Power Accounting: Depending on the context, an
application may be sandboxed or not. Therefore, the account-
ing mechanism of the reserve must be modified in order to
handle both input methods correctly.

(2) Penalties due to Lost Sharing Opportunities: As the origi-
nal scheduling mechanism of reserves are not aware of the
sandboxes environment and their overhead due to exclusive
device access, the penalties for the sake of fairness must be
accounted as well.

While adding the power sandboxing mechanism upon the re-
serves/taps abstraction, the kernel interface must be slightly ex-
tended. Now, not only the user space will utilize the metered data
but also the kernel will use them. Otherwise, the basic idea of power
sandbox and the user-space interface remains the same. Depend-
ing on the usage state of the sandbox by the executed thread, the
reserve accounting mechanism must be able to deal with either the
sandboxed data or the plain measurements with potential power
entanglement. Hereby, this work advocates that the plain mea-
surements are also a sufficient resource for the reserve accounting
mechanism in the kernel. This statement is based on the follow-
ing two observations: Firstly, the power sandbox mechanism still
guarantees the protection of user space application as those have
only access to the metered data if they are currently running with
the sandboxed environment. Due to the exclusive nature of the
underlying resource balloons, power entanglement is still confined
and therefore no power side-channel attacks are possible. Secondly,
if a malicious application tries to manipulate the cost accounting of
a simultaneously running application (which is not sandboxed) by
consuming excessive amounts of energy, the malicious application
will receive penalties due to the extreme power consumption. The
observed impact on the other applications should be negligible for
accounting. Therefore, we believe that this is a reasonable design
choice as otherwise all kind of concurrency in metered subsystems
must be confined all the time. That being said, the first adaption of
the reserve/tap mechanism should be done.

Concerning the second aspect, the overhead of a power sand-
boxed application must be accounted for future scheduling deci-
sions. Therefore, the combined approach will also have to take
care of the penalty and modify the scheduling credit of the thread
accordingly.

4 IMPLEMENTATION
This section covers a possible implementation for the previously
described design. Hereby, the focus lies on the different isolation
mechanisms in terms of power as a system resource.

4.1 Power Sandboxing
Resource balloons form the foundation for power sandboxing by
confining concurrency in a metered subsystem. As a common ex-
ample, spatial balloons handle concurrency within multicore CPUs.
The following summary will serve as a high-level description of
the multicore scheduler which confines power entanglement of
different CPUs. However, the basic idea can be applied analogously
to any other device covered by spatial/temporal balloon.

(1) Schedule-In: The scheduler on core n (𝑆𝑐ℎ𝑒𝑑𝑛) will pick the
process group with the best scheduling credit from its queue.
From this group, one thread is selected and prepared for
execution.

(2) Task Shootdown: Afterwards, the scheduler 𝑆𝑐ℎ𝑒𝑑𝑛 will no-
tify all other schedulers instances on the remaining cores to
coschedule threads of the same process group. This notifi-
cation can be realized as an inter-processor interrupt (IPI).
After receiving that notification, the remaining schedulers
𝑆𝑐ℎ𝑒𝑑𝑛 will pick another thread from the group or schedule
an idle thread if the group is empty. Each scheduler will com-
pute the difference in scheduling credit between the selected
thread and their most favorable thread in the local schedul-
ing queue which would have ran otherwise. This difference
is denoted as Δ 𝑗 for the scheduling instance of core j.

(3) Running and loan update: The scheduled threads are exe-
cuting and the running costs are accounted and added to
scheduling credit change Δ 𝑗 .

(4) Schedule out: If one scheduling instance is about to resched-
ule another thread (of a different process group), all other
schedulers are notified to perform a task shootdown as well.

(5) Loan redistribution & repayment: The accounted cost are
split evenly among the coscheduled threads to ensure fair-
ness among them.

4.2 Reserves and Taps
Reserves and taps are used to provide isolation between different
processes by storing the amount of available resource (in this case
energy). The adapted scheduling mechanism can be simplified and
described as following:

(1) Reserve Check: The scheduler will check the current amount
of usable resource within the available reserves for the se-
lected thread. If the associated reserves do not yield enough
resources, the scheduler will block the thread from running
and postpone it in favor of the next entry within the sched-
uling queue.

(2) Running andAccounting: Following, the scheduler can restart
the selected thread while accounting the consumed power.
The caused costs will be subtracted from the associated re-
serves.

(3) Evaluation of Taps: To refill the reserves, all corresponding
taps are evaluated. Therefore, the elapsed time is tracked
and will be multiplied by the tap rate. The resulting amount
of energy will be added to the reserves.

5 EVALUATION
We evaluate the effectiveness of the combination of power sand-
boxing and reserves/taps by looking at following questions:

(1) Does power sandboxing allow accurate and reasonable mea-
surements without power entanglement?

(2) Is process isolation in terms of energy as a system resource
achievable?

Below, the setups of the experiments and their measurement
results are taken from [5] and [11].
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5.1 Reasonable & Accurate power-consumption
Power entanglement was identified as the main source of measure-
ment distortions due to the concurrent usage of one metered subsys-
tem. To prove the functionality of the power sandboxingmechanism
or rather the exclusive nature of the underlying resource balloons
abstraction, the following experiment is performed: Several dif-
ferent applications are started concurrently on a dual-core CPU
while their activity and power consumption is tracked. Hereby,
the operating system will start multiplexing the applications and
schedule them on the two CPU cores. The used applications include
the calib3d and bodytrack benchmark. Both benchmarks will create
a noticeable CPU load. Now, the experiment will be performed
twice: During the first run, no applications will be sandboxed and a
normal multiplexing behavior should be observable. For the second
run, the calib3d applications will be power sandboxed.

(a) Multiplexing without Power Sandbox

(b) Multiplexing with Power Sandbox

Figure 5: Resource Multiplexing while tracking Application
Activity and Power Consumption, x-axis: Time/ms, y-axis:
Power/W

Figure 5 shows the measured and tracked data of both runs. The
first plot illustrates the multiplexing behavior of the non-sandboxed
run. Hereby, almost no idle time can be observed and most of the
time two applications are scheduled and make use of both CPU
cores. Also, the power-consumption graph indicates a more or less
stable value without any outstanding break-in. However, the sec-
ond subfigure points out the sandboxing effects clearly. Around
50ms, 100ms and 140ms on the plot time line, the sandboxed calib3d
application is scheduled in. Due to the exclusive nature of the power
sandbox, all concurrent threads will be shot down and an idle thread
will be scheduled instead. Noteworthy, the measured power con-
sumption also drops heavily during the sandboxed execution as the

idle thread will hardly consume power. This proofs the effectiveness
of the underlying resource balloon mechanism.

Furthermore, it is necessary to test whether the reported values
of the power sandbox match the actual power consumption behav-
ior of the application without any power entanglement. Therefore,
a second experiment must be started. Hereby, the calib3d bench-
mark will be repeated three times. During the first run, the calib3d
application is measured isolated without any other application. This
measurement serves as the baseline for comparison. Concerning the
second run, the calib3d application will be started simultaneously
with the bodytrack and dedup benchmark once. For measuring, a
fine-grained kernel-level accounting mechanism is chosen [13]. For
the third run, the calib3d application will be sandboxed and started
with the bodytrack and dedup benchmark once but this time, the
measurements are produced by the virtualized power meter of the
sandbox.

(a) calib3d Alone

(b) calib3d Co-Running

(c) Sandboxed calib3d Co-Running

alone: 936mJ

w/ body: 853mJ (-8.9%) w/ dedup: 804mJ (-14.1%)

w/ body: 922mJ (-1.5%) w/ dedup: 925mJ (-1.2%)

E0
E1 E2

Figure 6: Sandboxed calib3d benchmark, x-axis: Time/s,
y-axis: Power/W

Figure 6 demonstrates the difference between the kernel-level ac-
counting mechanism and the metering of the vertical environment.
As seen in the second subfigure, the measurement of the power
consumption of calib3d while co-running with the body benchmark
includes some unmatching spikes in comparison to the baseline
measurement (marked by E0 and E1). An even worse effect can
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be noticed while co-running with the dedup benchmark as a non-
matching valley (marked by E2). In contrast, the sandboxed data
equals pretty much the base measurement. Also, the accumulated
energy consumption of the sandboxed measurement (922mJ and
925mJ) shows less deviation in comparison to kernel-level approach
(853mJ and 804mJ).

5.2 Resource Isolation
The second goal of the overall design is about providing resource
isolation in terms of energy for processes or process groups. Hereby,
the operating system ensures that delegated amount of energy is
available and not exceeded. To confirm, the following experiment
is performed: Two processes A and B are started simultaneously.
After about 5 seconds B spawns a third process B1 and then, after
10 seconds in total, B spawns the fourth process B2.

Figure 7: StackedGraph of isolated Processes, x-axis: Time/s,
y-axis: Power/mW

Figure 7 shows the power consumption of all four processes as a
stacked graph. Normally, the spawned processes B1 and B2 would
receive the same CPU share as the processes A and B. Therefore, a
drop should be noticeable for process A in the power-consumption
graph. However, due to the fact that the reserves (and the associated
CPU share) of process A is isolated from the remaining processes,
A is still allowed to run at the same level. Furthermore, the process
B is also able to isolate itself from its children B1 and B2 by creating
two separate reserves respectively. This should proof the ability of
a process to isolate itself from other processes in terms of energy
as a system resource.

6 CONCLUSION
Power-aware applications benefit from their ability to optimize
their runtime behavior according to the current power consump-
tion. By combining two already existing approaches, namely power
sandboxing and reserves/taps, the quality of power metering and
energy resource management can be improved. As a result, not
only the accuracy is increasing but potential power-related secu-
rity threats can be confined. Furthermore, abstractions regarding
energy as another important system resource have found their way
into operating system design and will impact future scheduling
decisions.
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