
Mostly Concurrent Garbage Collection
Ausgewählte Kapitel der Systemsoftware

2021-02-02

Marco Ammon

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Verteilte Systeme 
und Betriebssysteme



A Simple Server Program…

int socket = ...;

// Accept and handle connection after connection
while (true) {

int connection = accept(socket, NULL, NULL);
// do stuff
struct task *currentTask

= malloc(sizeof(struct task));
// do more stuff
if (someError)

continue;
// do even more stuff
// we have done ALL the stuff and can clean up
free(currentTask);
close(connection);

}
1



…May Not Be So Simple after All

Time

Memory Usage

Figure 1: Memory Usage over Time

Problem: Out of Memory
forgotten free() call→ memory leak

2



…May Not Be So Simple after All

Time

Memory Usage

Figure 1: Memory Usage over Time

Problem: Out of Memory
forgotten free() call→ memory leak

2



More Memory Management, More Problems

struct list *list = ... // [1, 2, -3, 0, 1]
struct list *min = list;
for (struct list *curr = list; curr->next != NULL;

curr = curr->next) {↪→

if (curr->value < min->value) min = curr;
free(curr); // We only traverse the list once,

so let's get rid of unused objects↪→

}
// Add an element to another list
struct list *list2 = malloc(sizeof(struct list));
list2->value = 3;
// Everything is still alright. Right? Right?!
assert(min->value == -3);

Problem: Maybe Corrupted Data
free() call on in-use object→ subsequent allocation may re-use
heap space

3



More Memory Management, More Problems

struct list *list = ... // [1, 2, -3, 0, 1]
struct list *min = list;
for (struct list *curr = list; curr->next != NULL;

curr = curr->next) {↪→

if (curr->value < min->value) min = curr;
free(curr); // We only traverse the list once,

so let's get rid of unused objects↪→

}
// Add an element to another list
struct list *list2 = malloc(sizeof(struct list));
list2->value = 3;
// Everything is still alright. Right? Right?!
assert(min->value == -3);

Problem: Maybe Corrupted Data
free() call on in-use object→ subsequent allocation may re-use
heap space

3



Manual memory
management is hard!

Better automatic, but needs to be
correct and fast



Manual memory
management is hard!

Better automatic, but needs to be
correct and fast



Table of Contents

1. Automatic Memory Management with Tracing Garbage Collectors

2. “Mostly-Parallel Garbage Collection” by Boehm et al.

3. Conclusion

5



Automatic Memory Management
with Tracing Garbage Collectors



Tracing Garbage Collection

Idea

known set of in-use objects and references (root set)
recursively follow pointers and remember visited objects
only unreachable objects remain unvisited

Requirements
determination of root set
pointer identification
integration with memory allocator

6



Tracing Garbage Collection

Idea

known set of in-use objects and references (root set)
recursively follow pointers and remember visited objects
only unreachable objects remain unvisited

Requirements
determination of root set
pointer identification
integration with memory allocator

6



Simple Idea: Mark-and-Sweep Garbage Collection

1. Stop the application (“stop the world” [STW])
2. Trace from root set (mark phase)
3. Collect unmarked objects (sweep phase)
4. Reset all marks
5. Resume the application

7



Mark-and-Sweep GC by Example: Heap State at GC Invocation

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Mark Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Sweep Phase

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Mark-and-Sweep GC by Example: Reset Mark Bits

Heap

G

Root
Set

R 1

R 2

A

B C

E

F G

D

A
B
C
D
E
F
G

Object
List

8



Generational Garbage Collection

Insight: Young objects are more likely to die!
Treat young and old objects differently:

collect young generation often
collect old generation less frequently

Important
Pointers from old generation into young generation must be
tracked!

9



Generational Garbage Collection

Insight: Young objects are more likely to die!
Treat young and old objects differently:

collect young generation often
collect old generation less frequently

Important
Pointers from old generation into young generation must be
tracked!

9



There Is No Free Lunch!

Problems
- both schemes require to stop the world
→ long pauses

- intolerable for GUI applications and web services



There Is No Free Lunch!

Problems
- both schemes require to stop the world
→ long pauses

- intolerable for GUI applications and web services



“Mostly-Parallel Garbage
Collection” by Boehm et al.



Mostly Concurrent Garbage Collection

Grand Idea
Run GC concurrently with application (mutator) for shorter pauses

Problem
Mutator changes objects while GC traverses heap!

Solution: Synchronisation
→ mark in parallel with mutator and record all writes to objects
→ short stop-the-world correction phase

Mutator

GC

Concurrent
Marking

Stop-the-World
Correction

11



Mostly Concurrent Garbage Collection

Grand Idea
Run GC concurrently with application (mutator) for shorter pauses

Problem
Mutator changes objects while GC traverses heap!

Solution: Synchronisation
→ mark in parallel with mutator and record all writes to objects
→ short stop-the-world correction phase

Mutator

GC

Concurrent
Marking

Stop-the-World
Correction

11



Problem of the Lost Objects: GC Invocation

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Program Allocates New Object

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Marking Complete

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Program Allocates New Object

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: Sweep of Unmarked Objects

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: GC Cycle Complete

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Problem of the Lost Objects: GC Cycle Complete

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

Problems
two still-needed objects removed, unneeded object retained

12



Mostly Concurrent Garbage Collection

Grand Idea
Run GC concurrently with application (mutator) for shorter pauses

Problem
Mutator changes objects while GC traverses heap!

Solution: Synchronisation
→ mark in parallel with mutator and record all writes to objects
→ short stop-the-world correction phase

Mutator

GC

Concurrent
Marking

Stop-the-World
Correction

13



Proposed Algorithm

Use MMU for recording writes:
Dirty page bits indicate writes with page-size granularity
if clean, traversed graph is correct: no references from marked to
unmarked objects could have been added
if dirty, rescan the page: marking from marked objects suffices

generational collection: marked objects are old
conservative: works even without explicit compiler assistance

14



Full Collection

1. Clear all mark and dirty bits
2. Mark all objects in the root set and recursively trace from them
3. Stop the world
4. Trace from registers and all marked objects on dirty pages
5. Clear dirty bits and restart the world

15



Full Collection: GC Invocation

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Program Allocates New Object

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Concurrent Marking Complete

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Program Allocates New Object

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Registers

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Registers

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



STW Correction Marking From Registers

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Full Collection Cycle Complete

Heap

G

Root
Set

R 1

R 2

A

B C

E F

G

D

H

I

16



Partial (Young) Collection

1. Atomically retrieve and clear dirty bits of all pages
2. Trace from the marked objects on the retrieved dirty pages
3. Stop the world
4. Trace from registers and all marked objects on dirty pages
5. Clear dirty bits and restart the world

17



Partial Collection by Example

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Clear Dirty Bits and Remember Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Concurrent Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Concurrent Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Program Allocates New Objects

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Concurrent Marking Continues

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Concurrent Marking Continues

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Marked Objects on Dirty Pages

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Registers

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Registers

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Registers

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Registers

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



STW Marking from Registers

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



GC Cycle Complete

Heap

G

Root
Set

R 1

R 2

A

B C

H J

L

D

I

M K

N

O

18



Discussion

Problems
- many objects are scanned unnecessarily
- some garbage remains until next full collection
- heap is potentially heavily fragmented

Advantages
+ usually registers are only a small part of the root set
+ STW correction phase still shorter than with full STW approach
+ some of the drawbacks are due to their specific use case

Main Contribution
General scheme for transforming many STW GCs to mostly
concurrent versions

19



Discussion

Problems
- many objects are scanned unnecessarily
- some garbage remains until next full collection
- heap is potentially heavily fragmented

Advantages
+ usually registers are only a small part of the root set
+ STW correction phase still shorter than with full STW approach
+ some of the drawbacks are due to their specific use case

Main Contribution
General scheme for transforming many STW GCs to mostly
concurrent versions

19



Discussion

Problems
- many objects are scanned unnecessarily
- some garbage remains until next full collection
- heap is potentially heavily fragmented

Advantages
+ usually registers are only a small part of the root set
+ STW correction phase still shorter than with full STW approach
+ some of the drawbacks are due to their specific use case

Main Contribution
General scheme for transforming many STW GCs to mostly
concurrent versions

19



Modern GC Algorithms on the JVM

compiler can assist in cooperation between mutator and GC
large heap sizes (multiple 100 GB)
almost all GC algorithms are generational

Concurrent Mark-Sweep
→ closely related to Boehm et al.’s for old generation
→ copying STW collector for young generation
→ often long pauses→ deprecated and now removed

Garbage-First Garbage Collector (G1GC)
→ splits heap in same-sized individually collectible regions
→ compacting, STW young-generation collection
→ synchronisation during old collection: compiler-inserted write

barrier records all pointer changes

20



Modern GC Algorithms on the JVM

compiler can assist in cooperation between mutator and GC
large heap sizes (multiple 100 GB)
almost all GC algorithms are generational

Concurrent Mark-Sweep
→ closely related to Boehm et al.’s for old generation
→ copying STW collector for young generation
→ often long pauses→ deprecated and now removed

Garbage-First Garbage Collector (G1GC)
→ splits heap in same-sized individually collectible regions
→ compacting, STW young-generation collection
→ synchronisation during old collection: compiler-inserted write

barrier records all pointer changes

20



Modern GC Algorithms on the JVM

compiler can assist in cooperation between mutator and GC
large heap sizes (multiple 100 GB)
almost all GC algorithms are generational

Concurrent Mark-Sweep
→ closely related to Boehm et al.’s for old generation
→ copying STW collector for young generation
→ often long pauses→ deprecated and now removed

Garbage-First Garbage Collector (G1GC)
→ splits heap in same-sized individually collectible regions
→ compacting, STW young-generation collection
→ synchronisation during old collection: compiler-inserted write

barrier records all pointer changes

20



Conclusion



Conclusion

Tracing Garbage Collection
various different algorithms and approaches in practice and
academia
STW GC causes long pauses on large heaps

“Mostly-Parallel Garbage Collection”
concurrent collection can reduce pause times at the cost of
more collection work
general scheme: mark concurrently and then fix in short
stop-the-world pauses

State on the JVM
high degree of mutator cooperation
mostly concurrent, but very different implementations

21



Conclusion

Tracing Garbage Collection
various different algorithms and approaches in practice and
academia
STW GC causes long pauses on large heaps

“Mostly-Parallel Garbage Collection”
concurrent collection can reduce pause times at the cost of
more collection work
general scheme: mark concurrently and then fix in short
stop-the-world pauses

State on the JVM
high degree of mutator cooperation
mostly concurrent, but very different implementations

21



Conclusion

Tracing Garbage Collection
various different algorithms and approaches in practice and
academia
STW GC causes long pauses on large heaps

“Mostly-Parallel Garbage Collection”
concurrent collection can reduce pause times at the cost of
more collection work
general scheme: mark concurrently and then fix in short
stop-the-world pauses

State on the JVM
high degree of mutator cooperation
mostly concurrent, but very different implementations

21



Thank you!

Questions?



Thank you!
Questions?



Bibliography (1)

[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott Shenker.
“Mostly parallel garbage collection”. In: ACM SIGPLAN
Notices 26.6 (1991), pp. 157–164.

[Det+04] David Detlefs et al. “Garbage-First Garbage Collection”. In:
Proceedings of the 4th International Symposium on
Memory Management. ISMM ’04. Vancouver, BC, Canada,
2004, pp. 37–48. ISBN: 1581139454. DOI:
10.1145/1029873.1029879.

[PD00] Tony Printezis and David Detlefs. “A Generational
Mostly-Concurrent Garbage Collector”. In: Proceedings of
the 2nd International Symposium on Memory
Management. ISMM ’00. Minneapolis, Minnesota, USA,
2000, pp. 143–154. ISBN: 1581132638. DOI:
10.1145/362422.362480.

23

https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/362422.362480

	Automatic Memory Management with Tracing Garbage Collectors
	"Mostly-Parallel Garbage Collection" by Boehm et al.
	Conclusion

