
Virtual Machines for Dynamic Languages
Ausgewählte Kapitel der Systemsoftwaretechnik, WS2021

February 9, 2021

Mark Deutel

Friedrich-Alexander-University Erlangen-Nürnberg (FAU)

Lehrstuhl für Verteilte Systeme 
und Betriebssysteme



Motivation



Motivation

Dynamic languages are becoming more and more
important

Python: Machine learning, simulations and
statistics
JavaScript: De-factor standard for modern
dynamic website programming

1



Motivation

VMs for dynamic languages are still mostly written by hand in a low level
system language like C - this has some disadvantages
- complex, monolithic software constructs
- require large efforts to create and maintain
- not easily portable to other target platforms
- some language properties can only be inferred at runtime (instead of
compiletime)

2



Motivation

Is it possible to …
…reduce the workload required to write a dynamic language VM?
…increase the performance of dynamic language program execution
despite having to evaluate properties at runtime?

3



Table of Contents

1. Motivation

2. Workload Efficient VM Implementation

Hierarchical Layering of Virtual Machines

Applying Metaprogramming Techniques

3. Performance Efficient VM Implementation

Interpret Dynamic Language Code

Execute Interpreted Code

4. Conclusion

4



Workload Efficient VM
Implementation



Hierarchical Layering of Virtual Machines Compare [12, 10]

Layer VMs on top of each other
introduces modularization and
layer abstraction
general purpose VMs can be
used as hosting VMs
the dynamic language VM runs
inside the host VM as a guest

Guest Language Applica�on

Guest VM (dynamic language interpreter)

Host VM (general purpose VM)

Opera�ng System orHypervisor

Dynamic guest
language

Managed host
language

Managed host
language or
unmanaged language

Unmanaged
language (typicaly
C or C++)

Wri�en in

5



Hierarchical Layering of Virtual Machines Compare [12, 10]

Advantages
+ abstraction of target architecture specific details
+ guest VM can be written in the managed language of the host VM
+ advanced services of the host VM can be used by the guest (memory
management, JIT, ...)

Disadvantages
- additional overhead due to layered approach
- performance is usually significantly worse compared to manually
written VMs [4]

- host code generated by the dynamic guest language may perform
worse compared to host code generated by the host language’s own
compiler/interpreter [7, 9]

6



Applying Metaprogramming Techniques Compare [3]

Create a low level VM from an interpreter description using a translation
toolchain

interpreter can be written with a high level (even dynamic) language
translation toolchain transforms the description into a VM using
metaprogramming techniques

Metaprogramming
Toolchain

Interpreter
Implementa�on

Standalone
VM

VM Components

High Level/Dynamic 
Language

Low-Level Language 
(C/C++/Assembler)

7



Applying Metaprogramming Techniques Compare [3]

Advantages
+ approach is not dependent on any host VM
+ no actual bytecode has to be generated by the interpreter; all the
heavy lifting is done by the translation toolchain

+ the translation toolchain allows for more target platform specific
optimizations

Disadvantages
- translation toolchain has to be written at least once (for every target
platform)

- resulting VMs usually perform worse than manually written ones [8]

8



Performance Efficient VM
Implementation



Dynamic Language Program Execution

Two main tasks
interpret dynamic language code
execute interpreted code on guest hardware

Some features of dynamic languages can only be inferred at runtime
dynamic data types
dynamic call sites

9



Interpret Dynamic Language Code Intermediate Representations

Abstract Syntax Trees
each node represents an
operation
the operands of the operation
are the node’s children

every inner node is an
operation and an operand at
the same time
leave nodes are only
operands (e.g. constants,
variables, ...)

10



Interpret Dynamic Language Code Type Specialization [11]

Provide several type specialized
”versions” of a node

interpreter rewrites nodes
based on inferred operand
types

type checking of operands
can be omitted
type specific optimizations
can be used

nodes may have to change
their specialization in case of
type instability

Unini�alized

Generic

String Double

Integer

Transi�on Model: Add-Node

11



Execute Interpreted Code Trace Based JIT Compilers [2, 1]

Find traces through loops during
JIT execution and optimize them

assumption: programs spend
most of their time in loops
blocks belonging to a trace are
linked together and then
optimized
the trace becomes invalid in
case any execution ”side exits”
the trace

12



Execute Interpreted Code Trace Based JIT Compilers [2, 1]

Example:
For loop with two nested
conditional blocks
Up to three different traces
through the loop

Two worse case scenarios:
The JIT traces nothing because
the threshold is never reached
The JIT constantly creates
traces and throws them away
immediately

A

F

B

E

G

DC

13



Execute Interpreted Code Trace Trees [6]

A more elaborate way of recording
traces

Instead of discarding a trace in
case of a side exit the
divergent execution is
recorded
The new record is then added
to the trace tree as a new
branch

A

F B

E

G DC

G

E

G

14



Execute Interpreted Code Trace Trees and Dynamic Languages [5]

Trace trees and dynamic languages
Trace trees can be utilized for
type divergence
Allow several trees with
different data types for a loop
Allow side exits in case of a
changing data type
Trace stitching: Link together
several trace trees

15



Conclusion



Conclusion

Writing good VMs for dynamic languages is a difficult to solve problem
techniques to reduce the workload help but usually at the cost of
performance
optimizations can be applied to intermediate representations and to
the JIT compiler but due to their speculative nature do not always
work

There is no ”goto technique”
it very often depends on the required properties of a language’s
runtime environment which techniques are useful

16



Type Specialization Example from [11]



Just-In-Time (JIT) Compilers

instead of interpreting code several times (e.g loops, methods) just
interpret it once and cache the emitted code
since managing and finding single compiled instructions is expensive
whole blocks of instructions are compiled together

+ interpreting and compiling
code has to be done only once

+ certain properties can be
evaluated lazily

+ instruction pointer only has to
be updated at the end of a
block

- compiled code may have to be
invalidated

- code cache has a limited size
- finding compiled code must be
a quick operation



References (1)

V. Bala, E. Duesterwald, and S. Banerjia.
Transparent dynamic optimization: the design and implementation of
dynamo.
Technical report, Hewlett Packard, 1999.
V. Bala, E. Duesterwald, and S. Banerjia.
Dynamo: a transparent dynamic optimization system.
In Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, PLDI ’00, pages 1–12, New York,
NY, USA, May 2000. Association for Computing Machinery.



References (2)

C. F. Bolz and A. Rigo.
How to not write Virtual Machines for Dynamic Languages.
(3rd Workshop on Dynamic Languages and Applications):11, 2007.
S. Gaikwad, A. Nisbet, and M. Luján.
Performance analysis for languages hosted on the truffle framework.
In Proceedings of the 15th International Conference on Managed
Languages & Runtimes, ManLang ’18, pages 1–12, New York, NY, USA,
Sept. 2018. Association for Computing Machinery.



References (3)

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for dynamic languages.
ACM SIGPLAN Notices, 44(6):465–478, June 2009.
A. Gal, C. W. Probst, and M. Franz.
HotpathVM: an effective JIT compiler for resource-constrained
devices.
In Proceedings of the 2nd international conference on Virtual
execution environments, VEE ’06, pages 144–153, New York, NY, USA,
June 2006. Association for Computing Machinery.



References (4)

W. H. Li, D. R. White, and J. Singer.
JVM-hosted languages: they talk the talk, but do they walk the walk?
In Proceedings of the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, PPPJ ’13, pages 101–112, New York, NY, USA,
Sept. 2013. Association for Computing Machinery.
A. Rigo and S. Pedroni.
PyPy’s approach to virtual machine construction.
In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, OOPSLA ’06,
pages 944–953, New York, NY, USA, Oct. 2006. Association for
Computing Machinery.



References (5)

A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W. Binder.
Characteristics of dynamic JVM languages.
In Proceedings of the 7th ACM workshop on Virtual machines and
intermediate languages, VMIL ’13, pages 11–20, New York, NY, USA,
Oct. 2013. Association for Computing Machinery.
T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko.
One VM to rule them all.
In Proceedings of the 2013 ACM international symposium on New
ideas, new paradigms, and reflections on programming & software,
Onward! 2013, pages 187–204, New York, NY, USA, Oct. 2013.
Association for Computing Machinery.



References (6)

T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer.
Self-optimizing AST interpreters.
In Proceedings of the 8th symposium on Dynamic languages, DLS ’12,
pages 73–82, New York, NY, USA, Oct. 2012. Association for Computing
Machinery.
A. Yermolovich, C. Wimmer, and M. Franz.
Optimization of dynamic languages using hierarchical layering of
virtual machines.
In Proceedings of the 5th symposium on Dynamic languages, DLS ’09,
pages 79–88, New York, NY, USA, Oct. 2009. Association for Computing
Machinery.


	Motivation
	Workload Efficient VM Implementation
	Hierarchical Layering of Virtual Machines
	Applying Metaprogramming Techniques

	Performance Efficient VM Implementation
	Interpret Dynamic Language Code
	Execute Interpreted Code

	Conclusion
	Appendix

