Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

February 11, 2021

Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education

Content of Teaching and Cross-References

guarded sections
PFP
elementary operations
critical sections
simultaneous (concurrent/interacting) processes
deadly embrace
non-blocking synchronisation
concurrent data structures
transactional memory

lock
semaphore
monitor
deadly embrace
non-blocking synchronisation
concurrent data structures
guarded sections
transactional memory
Main Research at the Chair

- **composability** and **configurability**
 - application-oriented (varying, type-safe) system software

- **specialisation**
 - dedicated operating systems: integrated, adaptive, parallel

- **reliability**
 - gentle fault and intrusion tolerance

- **thriftiness**
 - resource-aware operation of computing systems

- **timeliness**
 - migration paths between time- and event-triggered real-time systems

- **concurrency**
 - coordination of cooperation and competition between processes

→ “concurrent systems” is more or less **cross-cutting** thereto...

Latency Awareness in Operating Systems

- **latency prevention**
 - lock- and wait-free synchronisation
 - integrated generator-based approach

- **latency avoidance**
 - interference protection
 - race-conflict containment

- **latency hiding**
 - operating-system server cores
 - asynchronous remote system operation
 - experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth

- DFG: 2 doctoral researchers, 2 student assistants

Coherency Kernel

- **event-based minimal kernel**
 - cache-aware main-memory footprint
 - hyper-threading of latent actions

- featherweight **agreement protocols**
 - overall kernel-level synchronisation
 - families of consistency kernels

- **problem-oriented consistency**
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures

- implementation as to different processor architectures
 - partial or total, resp. {in,}coherent shared memory

- DFG: 2 doctoral researchers (1 FAU, 1 BTU)

1http://univis.uni-erlangen.de → Research projects → LAOS

2http://univis.uni-erlangen.de → Research projects → COKE
Power-Aware Critical Sections

- Scalable synchronisation on the basis of agile critical sections infrastructure
- Load-dependent and self-organised change of protection against race conditions
- Linguistic support: preparation, characterisation, and capturing of declared critical sections
- Automated extraction of critical sections
 - Notation language for critical sections
 - Program analysis and LLVM integration/adaptation
- Power-aware system programming
 - Mutual exclusion, guarded sections, transactions
 - Dynamic dispatch of synchronisation protocols or critical sections, resp.
- Tamper-proof power-consumption measuring
 - Instruction survey and statistics based on real and virtual machines
 - Energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers, 2 student assistants

Latency- and Resilience-Aware Networking

- Real-time capable network communication
- Transport channel for cyber-physical systems
- Predictable transmission latency
- In a certain extent guaranteed quality criteria
- Deterministic run-time support

 Auffassung von der kausalen [Vor]bestimmtheit aller Geschehens bzw. Handelns (Duden)

- Latency-aware communication endpoints, optimised protocol stack
- Specialised resource management, predictable run-time behaviour
 - In time (phase 1) and energy (phase 2) respect
- DFG: Doctoral researchers, 2 student assistants (1 FAU, 1 Uni SB)

Run-Time Support System for Invasive Computing

Octo

- Borrowed from the designation of a creature that:
 - Is highly parallel in its actions and
 - Excellently can adapt oneself to its environment
- The kraken (species Octopoda)
 - Can operate in parallel by virtue of its eight tentacle
 - Is able to do customisation through camouflage and deimatic displays and
 - Comes with a highly developed nervous system
 - In order to attune to dynamic ambient conditions and effects

POS

- Abbrev. for parallel operating system
- An operating system that not only supports parallel processes
 - But that also functions inherently parallel thereby
- DFG: 2.5 doctoral researchers, 1 research/3 student assistants

Multi/Many-Core Processor Pool

<table>
<thead>
<tr>
<th>Name</th>
<th>Clock</th>
<th>Cores per Domain</th>
<th>Domain</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>faui4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9GHz</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.2GHz</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.1GHz</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.0GHz (A)</td>
<td>64</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.0GHz</td>
<td>16</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.2GHz</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1GHz</td>
<td>57</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>sphi01</td>
<td>1.5GHz</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>scc</td>
<td>1.5GHz</td>
<td>57</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>fastbox</td>
<td>3.5GHz</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>InvasIC</td>
<td>5.0GHz</td>
<td>5</td>
<td>16</td>
<td>80</td>
</tr>
</tbody>
</table>

DFG: 2 doctoral researchers, 1 research/3 student assistants