
Author’s version. Please cite as: Reinhard Tartler, Daniel Lohmann, Wolfgang Schröder-Preikschat, Olaf
Spinczyk: Dynamic AspectC++: Generic Advice at Any Time. Frontiers in Artificial Intelligence and Applica-
tions, Volume 199, 2009: New Trends in Software Methodologies, Tools and Techniques - Proceedings of the
Eighth SoMeT_09, Pages 165-186.

http://dx.doi.org/10.3233/978-1-60750-049-0-165 © 2009 IOS Press

Dynamic AspectC++:
Generic Advice at Any Time1

Reinhard TARTLER, a,2, Daniel LOHMANN a,
Wolfgang SCHRÖDER-PREIKSCHAT a, Olaf SPINCZYK b,

a Friedrich-Alexander University Erlangen-Nuremberg
b Technical University Dortmund

AbstractIn theory, the expressive power of an aspect language should be indepen-
dent of the aspect deployment approach, whether it is static or dynamic weaving.
However, in the area of strictly statically typed and compiled languages, such as C or
C++, there seems to be a feedback from the weaver implementation to the language
level: dynamic aspect languages offer noticeable fewer features than their static
counterparts. Especially means for generic aspect implementations are missing, as
they are very difficult to implement in dynamic weavers. This hinders reusability of
aspects and the application of AOP to scenarios where both, runtime and compile-
time adaptation is required. Our solution to overcome these limitations is based on
a novel combination of static and dynamic weaving techniques, which facilitates
the support of typical static language features, such as generic advice, in dynamic
weavers for compiled languages. In our implementation, the same AspectC++ as-
pect code can now be woven statically or dynamically into the Squid web proxy,
providing flexibility and best of bread for many AOP-based adaptation scenarios.
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1. Introduction

To address the problem of crosscutting concerns, a multitude of languages for aspect-
oriented programming (AOP) have been proposed over the last decade, with AspectJ
being the most prominent example [12]. These languages provide mechanisms to support
what is (arguably) considered as the fundamental principles of AOP: obliviousness and
quantification [8]. Obliviousness means that the application of aspects should be com-
pletely oblivious to the component code, in the sense that neither components nor their
developers have to be aware of the aspects. Quantification stands for the property that the
same advice code can easily affect (large) sets of join points.

Quantification is mostly perceived as an issue of the pointcut language, which has to
provide means for join-point set specification. However, in all nontrivial cases, quantifica-
tion requires also that the aspect implementation is generic in the sense that the aspect
behavior adapts automatically to each of the actually affected join points. For instance,
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a simple tracing aspect that prints the signature and actual parameters of the invoked
functions requires a uniform mechanism to access join-point–specific context information.

In AspectC++ [24], our aspect-oriented extension to C++, aspect genericity is sup-
ported by the concept of generic advice [14]. This type of advice uses a join-point API to
access join-point–specific context from within the advice implementation. As opposed to
most other AOP languages, the AspectC++ join-point API provides not only access to
the (join-point–specific) runtime context of an advice invocation (e.g., the values of the
parameters passed to the affected function), but also to the corresponding compile-time
context (e.g., the static C++ types of its parameters). Thereby, aspect genericity is achieved
at compile time.

Most existing aspect weavers can be categorized as either dynamic or static, referring
to the point in time when the actual weaving process is performed. If the weaver performs
static weaving, the aspects are woven in at compile time, link time, or load time. With
dynamic weaving, the aspects are woven into an already running program. Both, dynamic
and static weaving, have their clear merits with respect to target domain, resource require-
ments and adaptation scenario. Hence, the preference of static or dynamic weaving should
be a question of the point in time an actual problem solution has to be deployed.

1.1. Problem Statement

Ideally, an AOP user would be able to select the aspect language and the weaving approach
independently, solely based on the problem to solve, that is, the requirements regarding

“what” and “when”. However, most existing aspect languages provide weaver support
for either static or dynamic weaving only. What should be independent in theory, is
tightly coupled in practice: the decision for a particular aspect language involves the
decision for either dynamic or static weaving as well. From a user’s viewpoint, we have
de facto “static” and “dynamic” aspect languages. This is especially true with languages
that are directly compiled into binary machine code. In the C/C++ domain there are
observable differences in the provided AOP features: The available “dynamic” aspect
languages for C/C++ (such as Arachne [7], TinyC² [28], TOSKANA [9], or KLASY [27])
offer significantly fewer features than their “static” counterparts (such as AspectC [4],
AspectC++ [24], or Mirjam/WeaveC [18]). Especially language features for generic aspect
implementations and static crosscutting are hardly supported. This is unsatisfying; the
expressive power of an aspect language (to address the “what” part of the problem) should
not depend on the intended deployment time (the “when” ) and vice versa. From the
viewpoint of weaver implementation, it is, however, understandable: Languages that are
strongly based on static typing and compile-time genericity offer hardly any support for
run-time reflection, not to speak of means for extension, adaptation, or introduction of new
types at runtime. In a sense, Ada, C and C++ are “just not designed” to support many AOP
features with runtime weaving. Nevertheless, a uniform, feature-rich, and deployment-
time independent aspect language would provide numerous benefits; Section 2 lists some
motivating application scenarios.

1.2. Our Contribution

We present results from our efforts to add dynamic weaving support to a statically typed
and compiled aspect language, for which only static weaving support had existed before.



Our approach is based on a novel combination of static and dynamic weaving, which
makes it possible to use AspectC++ features such as generic advice (statically typed) and
introductions even for dynamically woven aspects.

Our targeted application domain are applications that run in a ressource-constrained
environment. For this reason, we cannot afford invasive modifications of base application,
nor a heavy weighted runtime system. Instead we extend our static aspect weaver to collect
type information about the adapted software while preparing it for dynamic weaving. This
extra information is then used with the C++ template instatiation mechanisms to generate
advice code that is executed at runtime.

We analyze and discuss the combination of static and dynamic weaving with respect
to both dimensions: language and tools. On the language level, we provide an in-depth
analysis of challenging AOP features from the focus of a statically typed base language.
On the tool level, we show how we implemented them in a dynamic weaver for AspectC++.
Insights about the relationship between static and dynamic weaving on the tool level and
an evaluation of our implementation in the context of the Squid web proxy [25] rounds up
our contribution.

The paper extends on previous work, as it provides an actual solution for the problems
that have been identified and briefly discussed in [23]. The focus on the implementation
challenges of dynamic weaving of static cross-cutting sets it furthermore significantly
apart from our previous work on application-tailorable dynamic weaver run-time systems
in [10].

1.3. Outline of the Paper

We begin with the presentation of some motivating application scenarios in Section 2,
followed by an analysis of the implications with respect to dynamic weaving support in
Section 3. Section 3.3.2 provides an overview of related work. The concepts and some
details of our implementation for AspectC++ are described in Sections 4 and 5, followed
by a case study with the Squid web proxy in Section 6. Section 7 discusses the pros and
cons of our approach. Finally, the paper is summarized and some conclusions are given in
Section 8.

2. Adaptation Scenarios

Both, static and dynamic weaving offer their own specific advantages. Supporting both
for the same aspect language would increase usefulness and reusability of aspect code, as
the same aspect can be used in very different scenarios. As a major advantage, dynamic
weaving facilitates in-vivo adaptation, that is, the modification of a running program
without having to stop it first. Typical application scenarios include (1) hot patching
of, (2) policy optimization in, and (3) “on-demand” feature extension for long-running
enterprise services [17,7]. Other suggested use cases are introspection and debugging of
system software [27]. For “development aspects” significantly shorter compilation times
are another major advantage of dynamic weaving. This facilitates short turn-around times
for the step-wise refinement of tracing and debugging aspects.

Besides the fact that currently most “static” aspect languages offer significantly more
language features than their dynamic counterparts, a major advantage of static weaving is



efficiency. In a comparative study on Java-based dynamic weavers, HAUPT and MEZINI
observed an advice invocation cost factor of up to 10,000 compared to a plain method call
[11]. Even though the runtime overhead of C/C++-based approaches is lower [9,7,10,27]
there probably always will be some overhead—as well as additional memory costs for
the dynamic weaver runtime system. A static weaver, in contrast, can apply most AOP
constructs absolutely cost-neutral and overhead-free [15].
Interestingly, many of the aforementioned use cases for dynamic aspects are actually for
temporary solutions. Typically they have to be applied as dynamic aspects only until the
system can be shut down. In such cases, a combination of static and dynamic weaving
would offer some noticeable advantages:

• A hot patch (1) can be applied as a dynamic aspect to all running instances of a
service. Meanwhile, the very same patch can be applied as a (more efficient) static
aspect to the service program, resulting in a new software binary that can be used if
a new instance of the service is started.

• After the policy aspect (2) that performs best in a real-world load situation has
been found, it can become the new default and be woven-in statically for the next
software release.

• If the software itself uses a concept of runtime-loadable modules, a new feature (3)
can be applied as a dynamic aspect to all currently loaded modules of the service
while being woven statically into those modules that are currently not loaded.

As these examples show, a combination of static and dynamic weaving offers the best
of both worlds: while the extra flexibility of dynamic weaving is available at any time,
its principle overhead would only apply as long as its principle advantages (runtime
adaptation) are actually needed.

3. Analysis

In the following sections, we analyze some of the prerequisites and implications for the
development of dynamic weavers that arise from a combination of static and dynamic
weaving in the domain of statically typed and compiled languages. Our application
perspective is the scenario of an adaptable software system which, once deployed, is
incrementally extended by aspects.

3.1. AOP and Adaptable Software Systems

We understand an adaptable (software) system as a base program that can be modified or
extended after its deployment time with previously unknown functionality by adaptation
modules. Base program and adaptation modules are binary modules, compiled from a set
of classes or aspects. Technically, this can be understood as a process running the base
program, in whose address space adaptation modules are loaded at runtime. “Previously
unknown” means that neither nature nor structure of an actual adaptation module needed
to be known when the base program was developed and compiled.

Knows-Relationship without AOP. With traditional modularization concepts, the above
is, however, not completely true. To provide the intended functional change, the adaptation
module has to be explicitly called from the base program’s control flows. Furthermore, it
may have to perform callbacks into the base program. For this purpose, the base typically



Figure 1. Nature of module relations in adaptable systems: a) traditional extensible systems b) AOP-based
systems c) knowledge hierarchy d) up- and downward weaving

defines an adaptation contract by a set of interfaces that can be used by adaptation
modules. As a matter of fact, these interfaces, as well as all points in the control flow
where adaptation may occur, had to be known at the compile time of the base program.
Conceptually, there is some bi-directional knows-relationship between the base program
and its adaptation modules (Figure 1.a).

Knows-Relationship with AOP. A frequently made observation (first published by
COLYER, RASHID and BLAIR [5]) is that by aspects such bi-directional relationships can
become uni-directional. By the AOP concept of advice, adaptation modules can integrate
“themselves” into the base program’s control flow, freeing the base program from the
burdon to specify an adaptation interface and to explicitly ensure that potential adaptation
modules are invoked from it’s control flow. This is often referred to as the obliviousness
principle of AOP [8] and considered as highly advantageous, as the (potential) adaptation
points do not have to be known in advance. The result is an uni-directional knows-
relationship from adaptation modules to the base system (Figure 1.b).

Knowledge hierarchy of Modules. The uni-directional knows-relationship facilitates
incremental adaptation. By understanding an already extended base system as the new
base system, knows becomes transitive. Further adaptation can be applied recursively,
resulting in a knowledge hierarchy of adaptation modules with the base system as root
and the latest adaptation module as leaf (Figure 1.c) .

Inter-Module Crosscutting It is the nature of a crosscutting concern that it does not stop
to cut across a system at module boundaries. Therefore, an aspect should affect all match-
ing join points, regardless of the base or adaptation modules that contain corresponding
join-point shadows. For instance, a logging aspect in the base system that logs names and
parameters of all performed file operation should not only affect the functions of the base
system. It should also affect adaptation modules loaded later at runtime. Otherwise the
aspect’s output would be incomplete.

It is remarkable that, although they were unknown when the base program was
developed and are loaded into the base system at run time, the logging aspect can be
woven statically into the adaptation modules. The reason is that the adaptation modules
are further down in the knowledge hierarchy and the logging aspect is known when the



adaptation modules are being compiled. The only need for dynamic weaving arises when
an adaptation module contains an aspect that affects join-point shadows within an already
deployed part of the system, that is, join-point shadows within a module further up in
the knowledge hierarchy. Consider the situation that the logging aspect is not part of
the base system, but itself applied as an adaptation module. In this case it has to be
woven dynamically into the base system, but can still be woven statically into all further
adaptation modules. This is an example of a general rule: upward weaving within the
knowledge hierarchy of modules has to be done dynamically, while downward weaving
can be done statically (Figure 1.d).

3.2. Dynamic Weaving in Compiled Code

In this paper we focus on aspect weaving in statically typed and compiled code, written in
languages such as C, C++, or Ada. Compared to byte-code–based languages (such as Java),
which are just-in-time compiled and executed by a virtual machine, these languages and
their execution containers offer very poor support for run-time inspection and adaptation.
This makes the imlementation of dynamic weavers more challenging. Nevertheless, quite
some work has already been conducted in this area (see Section 3.3.2), we therefore give
here just a brief overview on the basic concepts of dynamic weaving in compiled code.

Weaver Binding. Weaver binding denotes how the advice code is actually bound to join
points at run time and how the join-point shadows are retrieved [10]. The two general
approaches used in the domain of compiled languages are binary code patching and code
instrumentation.

Dynamic weavers that are based on binary code patching modify the machine code
at run time to bind advice to specific join-point shadows. Join-point shadows and the
actual weaving positions (e.g., of function calls) in the binary code are retrieved from
linker symbol tables or debug information generated by the compiler. Literature shows
that binary code patching can be very efficient with respect to runtime overhead of advice
invocation. Arachne [7], for instance, binds around-advice to call join points by patching
the matching function calls in the machine code, which results in very low overhead. The
downside of binary code patching is that it requires structural information of the high-level
language to be still present in the machine code. Therefore, compiler optimizations such
as inlining have to be disabled, as an inlined function call is no longer available as a
call join point in the machine code. While this is less of a problem with existing C code,
modern C++ libraries (such as the C++ STL) heavily rely on function inlining to achieve
a good performance and a small code size. Naturally, binary code patching is a highly
platform-specific approach.

A platform-independent alternative is code instrumentation. In order to retain oblivi-
ousness this is done transparently, either on the source-code level by a pre-processor, or by
the compiler itself. After the instrumentation, each potential join-point shadow provides a
hook that can be used by dynamic aspects to register advice. These extra hooks, of course,
induce some overhead. On the other side, all join-point shadows from the high-level
language are available and all compiler optimizations can be used. This is the approach
that is used in our prototype implementation.



Run-time System In both approaches a run-time system is needed to load andunload
dynamic aspects at run time and to connect the advice code with the component code.
Loading andunloading of aspects is typically realized by means of dynamic link libraries
offered by the underlying operating system.

3.3. Challenges

From the viewpoint of dynamic weaving in a statically typed and compiled language,
AOP features that either depend on join-point–specific static type information or that
change the static structure of the base program are rather challenging. The generic advice
feature, which is crucial for quantification, falls into the first category, while support for
static crosscutting, namely introductions, falls into the second.

3.3.1. Generic Advice To induce similar, but not identical effects on a set of related
join points, the aspect language has to provide means to transparently adapt the advice
behavior with respect to the actual join point it is invoked for. In AspectC++ generic
advice [14] is used for this purpose. This type of advice uses static context information
provided by the join-point API to instantiate the advice code at compile time with respect
to the current join point:

aspect TraceResults {
advice execution("% %(...)" && !"void %(...)") : after() {
cout << tjp->signature() << "returns: " << *tjp->result() << endl;

} };

This simple aspect prints the values returned by all nonvoid functions from the global
namespace. Even though simple, it already depends on generic advice. The join-point–API
function tjp->result() retrieves a typed pointer to the return value with the actual static
type T of the affected function. The compiler implicitly uses this information to find the
best matching version of the stream operator << for type T during overload resolution.
Developers can provide additional stream operators to support streaming of user-defined
data types. Thereby, the advice is generic; it can print result values of any type for which
a stream operator has been defined. If the compiler cannot find a suitable overload of the
stream operator, a compile-time error is thrown.
Advice genericity is an important property of generic aspect languages [13]. It has further-
more to be considered as a fundamental prerequisite for quantification [8], as otherwise
only primitive advice definitions could be applied to sets of join points. Compared to
run-time genericity based on reflection, which is commonly used in Java-based AOP
approaches for similar purposes, generic advice has advantages with respect to type safety
[16]. While this is nice, the point is that in a statically typed language, such as C++,
there is no alternative to compile-time genericity. Reasonable support for run-time–type
reflection or a uniform interface (such as Object in Java) that offers common functionality,
such as toString(), is just not available.3

Hence, generic advice based on static type information is a crucial feature for dynamic
aspect weavers in this domain. As this means that advice code has to be instantiated

3Note that this even holds with the C++ RTTI (run-time type information), which provides only very limited
information and no polymorphic behavior. Even worse: RTTI is available only for class types that define virtual
functions, but not for plain class types nor for the (still very common) C-style PODs (structs, arrays) and built-in
types (int, char, float).



Figure 2. Introductions with language-level side effects.

for each join point at compile-time, a dynamic weaver that implements generic advice
requires access to all relevant type information.4

3.3.2. Introductions. By the concept of introduction, an aspect can extend existing
types of the base program with additional elements, such as member functions, attributes,
inner types, and base classes. A static weaver usually merges the introduced code into
all matching classes and thereby ensures that introduced elements become visible before
the referencing code fragments are compiled. It is, however, impossible to modify a type
ex-post in the binary code or at runtime5. The assumptions made by the compiler about
internal layout and relationships of types are too deeply reflected in the generated machine
code. Therefore, for a dynamic weaver, the goal cannot be to manipulate the target types
at run time, but to achieve similar semantics. This means that clients of the affected class,
which are aware of the dynamic introduction, shall be able to use the introduced element
as if it was introduced statically. At the same time clients, which are not aware of the
introduction, must not be broken, which means that the semantics of other members
must not change6. In the following, we analyze the semantic effects of introductions in
AspectC++ and their consequences with respect to dynamic weaving:

Simple introductions. Many introductions have no semantic impact on existing clients of
the affected class. On the language level newly introduced nested classes, enums, typedefs,
attributes, or member functions are normally just ignored by existing clients. Only new
clients that are aware of aspect and the new elements can use them explicitly. Hence, in
the vast majority of cases it should be possible to dynamically introduce elements into
classes that are defined further up the knowledge hierarchy without breaking their clients
on the level of language semantics.

Introductions with language-level side-effects. In C++, a method that has once been
declared as virtual in the inheritance tree, remains virtual if overridden by derived classes,
whether they declare it as virtual or not. By this mechanism, a virtual method introduced
in some base class can implicitly “virtualize” existing methods of derived classes (Figure

4For our domain, we consider adding RTTI to all classes containing join-point shadows too expensive. We
therefore focus on using type information at dynamic aspect compilation time rather than deployment time.

5at least not in a feasibly way for statically compiled languages like C/C++
6As described for generic advice, we do not consider invasive modifications to the base program like adding a

vtable into all classes acceptable for our target domain.



2 case 1, aspect Virtualize). Other side effects are induced by the complex C++ name
look-up rules. If an introduced element’s identifier is not new, but covers, overrides or
overloads an already existing and accessible identifier, the compiler might implicitly
prefer the introduced version over the previous one. In Figure 2, the aspect Overload

introduces a method process() for arguments of type char into class D, which overloads
the already existing version for arguments of type int. As a side effect, this new version
has now to be preferred whenever process() is called with a char argument (Figure 2 case
2), while previously the int version was used. Similar effects can happen, if an introduced
element overrides identifiers imported from a base class (Figure 2 case 3, aspect Override).

All these scenarios are highly critical, as not only the object layout might be affected
but also the behavior of the target class and its clients. In the case of a dynamic intro-
duction, a running program could even be rendered incorrect. In order to support such
an adaptation scenario, the weaving infrastructure needs to replace previously running
code and transform the internal program state to the new executable code. For our target
domain, we have identified this as not feasible and, in fact, practically impossible. It is,
however, important to understand that such effects are in principle perfectly legal as they
are part of the C++ language semantics. Hence, they cause problems only with dynamic
weaving in modules that are further up in the knowledge hierarchy.

The practical consequence for the development of dynamic aspects would be to avoid
introductions that cause side effects on modules which have already been deployed. As
these modules are known when the aspect itself is compiled and developed, it is possible
to detect this reliably.

Introductions with machine-code-level side-effects. Even if they do not cause seman-
tic side effects on the language level, some simple introductions cause side effects on
the machine code level. This is the case for all introductions that change the binary
representation of objects and classes in memory. Examples are introductions of nonstatic
attributes or base classes. The introduction of a virtual member function can also change
the object layout, but only if the class does not already contain a virtual function. An
additional virtual function may furthermore impact the internal representation of the class
itself, specifically the layout of its vtable.

A dynamic weaver can hardly modify the internal binary representations of objects in
the address space running modules further up in the knowledge hierarchy. Because of that,
the binary representation must also not be modified for new modules further down the
knowledge hierarchy, as we allow object instances to be passed between different modules
and the binary representation must be identical everywhere. However the introduced
element can only be referenced from modules further down the knowledge hierarchy; so
it is possible to replace access operations transparently.Related Work

Many different approaches have been proposed by the AOSD community for dynamic
weaving. Most of them target the domain of byte-code interpreted languages, namely Java.
Much fewer have been suggested for compiled languages such as C or C++.

3.4. Dynamic Weaving Approaches for Java

Dynamic weaving approaches for Java can be roughly categorized in based on virtual
machine extensions (PROSE [21], Steamloom [2], Axon [1]) and based on load-time
or run-time bytecode manipulation, usually by exploiting Java Hotswap or some sim-



ilar mechanism (JAC [20], Wool [22], JAsCo [26], AspectWerkz [3]). All Java-based
approaches provide means to access the current join-point context via the Java reflection
mechanism. This facilitates, from a pragmatic point of view, generic aspect implemen-
tations.7 AspectWerkz and Wool furthermore support introductions, which are applied
as mixins to the classes of the base program. After weaving, the introduced elements
can be accessed by explicitly casting an object reference to the mixin interface. By the
required explicit cast, AspectWerkz and Wool basically restrict introductions to what we
called simple introductions in Section 3.3.2 and prevent the problems of side effects on
the language level. Mixins have furthermore to conform with the constraints imposed by
Java interfaces, which means that only new methods can be introduced. This additionally
avoids the discussed side effects regarding the binary representation of object instances.
As mentioned in the introduction, only AspectWerkz provides support for dynamic as
well as static weaving.

3.5. Dynamic Weaving Approaches for C/C++

All approaches to support dynamic weaving in C are based on runtime binary code
manipulation. TinyC² [28], TOSKANA [9], KLASY [27], and Arachne [7] are built on
existing or home-grown code-instrumentation frameworks to rewrite the binary code at
run time. The actual weaving positions in the binary code are examined with the help
of symbol or debug information, generated by the C compiler during compilation of the
targets. Hence, the general restrictions of binary code weaving discussed in Section 3.2
apply, even though KLASY overcomes parts of the information loss by using an extended
C compiler. Their gcc generates additional symbol information and instruments the code to
provide features that are unique in this domain, such as pointcuts on data member access
and join-point context that includes values of local variables. Arachne specifically provides
sophisticated means for control flow matching. Means for generic aspect implementations,
support for dynamic introductions, as well as support for static and dynamic weaving
are not provided by any of the existing weavers. Neither is support for inter-module
crosscutting with yet to know modules.

4. Dynamic AspectC++

This section introduces the underlying concepts of the dynamic AspectC++ weaving
infrastructure dac++. While earlier work on dac++ focused on saving resources by tai-
loring the weaver’s runtime system and exploiting a-priori knowledge about dynamic
aspects [10], we here concentrate on the design implications of the analysis presented in
Section 3.

4.1. Compilation of Adaptation Modules

During compilation of any adaptation module, two kinds of aspects have to be considered:
known and unknown aspects. Known aspects are either defined by the module itself or by
a module that was developed earlier. In the first case, aspects can be woven completely

7According to the definition by KNIESEL and RHO [13], reflection-based approaches do not qualify for a
generic aspect language.



Figure 3. The structure of the dynamic weaving infrastructure

statically as in nonadaptable systems. The second case is more tricky, as an aspect that
is known does not necessarily have to be loaded already into the system. Hence, these
aspects are woven statically, but can be dynamically turned on and off by the run-time
system when the module that defines the aspect is dynamically loaded or unloaded.

Unknown aspects, that is, aspects that will be developed in the future, could affect
any join point in the currently compiled module. Hence each module needs to be prepared
for dynamic binding of advice by our infrastructure.

The main building block of the dynamic weaving infrastructure is a static weaver.
Figure 3 shows the structure of dac++ as well as its inputs and outputs while compiling
an adaptation module on level i in the knowledge hierarchy. The static weaver is mainly
needed to weave all known aspects statically. Besides this, it creates a join-point repository
that describes the shadows of all potential join points that are located in modules, as
well as the known aspects, pointcut definitions, and pieces of advice. The idea behind
this repository is to provide sufficient information about join points in order to evaluate
pointcut expressions without having to collect all necessary information by parsing the
source code (again).

The join-point repository of the current level i as well as the repository of level i−1
are needed by the second dac++ building block, which is the dynamic advice generator. It
uses the repositories to find out, which piece of advice of the current module affects join
points further up in the knowledge hierarchy. For these join points, advice has to be bound
dynamically. As generic advice has to be instantiated for each target join point, it is the
responsibility of the dynamic advice generator to provide the necessary type information
about join points located further up in the hierarchy. (Section 4.3 describes the advice
instantiation in more detail). It also generates the code that registers the dynamic advice
instances with the runtime system at load-time of the module.

All transformed or generated files are then, once again, transformed by a marker
post processor. Its purpose is to fix the code in cases where language features with
side-effects on the binary representation of classes were used. As described earlier in
Section 3.3.2, critical code has to be replaced transparently. In order to avoid time-
consuming reparsing, the static weaver is extended and now marks all critical operations.
Based on this information and the join-point repository of the next upper level, the marker
post processor can deal with binary code side-effects.



4.2. Dynamic Weaving Approach

The two most important approaches for weaving in compiled code were already discussed
in section 3.2. For dac++ the code instrumentation approach is used. The source code is
instrumented with an aspect, woven by our static AspectC++ weaver into every module
in the knowledge hierarchy. We are aware that this decision induces some overhead in
terms of code size. However, here we are exploring the expressiveness of aspect languages
for dynamically woven code. Using code instrumentation guarantees that the dynamic
weaver can offer the same pointcut expressiveness as the static weaver. Technically, the
instrumentation aspect adds a hook by introducing a function pointer for each potential join
point. The actual weaving and unweaving of dynamic aspects is implemented by a module
loading and unloading mechanism combined with a run-time system that manipulations
the function pointers.

4.3. Generic Advice

Advice Instantiation in the Static Case An example for generic advice has already been
presented in Section 3.3.1. In order to instantiate the advice for each join-point shadow,
the static weaver for AspectC++ transforms generic advice into a C++ template member
function of the aspect, which itself is transformed into an ordinary C++ class [24]. The
instantiation is triggered by wrapper code that is inserted at a specific join-point shadow.
To provide the necessary type information for the advice, a join-point–specific class is
generated that contains the necessary type information as C++ typedefs. This JoinPoint

class is used as a template parameter in the advice function call [14]. When the C++
compiler translates a template function call, it instantiates the function (the advice in our
case) if it has not been instantiated already.

Advice Instantiation in the Dynamic Case. For join points that are located further up
in the knowledge hierarchy there is no such wrapper function that could instantiate the
advice. Instead of this, the run-time system allows to register a function to be called
when a specific dynamic join point is reached. Of course, the runtime system can neither
provide static type information nor can it instantiate the template function at runtime.
Hence, the adaptation module instantiates the advice for these join points itself. This task
is performed by the dynamic advice generator (Figure 3). It generates structures with
typedefs similar to the JoinPoint classes in the static case. The necessary type names are
found in the join-point repository of the next upper level. Furthermore, the repository
provides the names of all source files that actually define the needed types. If the types
are defined in header files, the generator simply includes the definitions in the generated
advice instantiation module.

Dynamic JoinPoint classes alone do not instantiate advice code. Some additional
wrapper function is needed that calls the advice template functions and uses the corre-
sponding dynamic JoinPoint class as a template parameter. These wrapper functions are
registered with the run-time system when the module is loaded.

By this mechanism, dynamic and static advice code is transformed in an identical
manner. Thus, the same static aspect weaver can be employed. In both cases the advice
function template is parametrized with a JoinPoint type for static type information and
compile-time constants (such as the number of arguments). Runtime context information



is passed similarly. In AspectC++, each advice expects a parameter JoinPoint *tjp that is
used to access the run-time context. In the case of dynamic weaving, the generated wrapper
functions not only provide the typedefs in the JoinPoint type, but also the requested
run-time context via the same interface as in the static case.

4.4. Introductions

Many dynamic introductions can be woven almost “out of the box” with the weaving
infrastructure sketched so far. Only introductions that affect the binary compatibility need
to be treated with special care.

Simple Introductions Simple introductions are woven statically into the module that
contains the introducing aspect and all modules further down in the knowledge hierarchy.
Access to the introduced elements can be performed without overhead. Although the C++
compiler “sees” a different target class definition, when it compiles a module that does
not know this aspect, the binary code will still work, because the binary compatibility is
not affected.

Introductions with Language-Level Side-Effects The dynamic weaving infrastructure
is required to detect introductions with side-effects on the language level at compile time.
This is not only a matter of detecting used language features in the aspect definition, but
also depends on characteristics of the target join points. For example, the introduction of a
virtual function does not have any side-effects on the language level as long as it does not
“virtualize” another function in a derived class, as shown earlier in Figure 2. Although
not trivial, this static analysis is feasible, because dac++ can use the join-point repository,
which contains the required structural information about the target component code.

Introductions with Code-Level Side-Effects Introductions that affect the object or class
layout are more complicated. Examples are introductions of new non-static attributes,
base classes, and virtual member functions. Our approach to cope with these cases is to
manipulate all operations that depend on the modified structure. Such operations can only
exist in adaptation modules that know the introducing aspect.

For dynamic attribute introductions, the run-time system manages the storage for
introduced elements. It furthermore provides means to map an object address to the data
structure that holds these elements. If the run-time system is asked for that address instead
of accessing the object directly, the object layout is modified transparently.

In dac++ the transformation of the access sites is performed by the marker post
processor, based on marks that are inserted by an extended static aspect weaver. The post
processor furthermore ensures that the binary compatibility is preserved in all modules.
As the aspect weaver simply introduces new attributes as ordinary members into target
classes, the post processor has to remove these attribute declarations if the target class was
also known by modules further up in the hierarchy. This means that the post processor
needs the join-point repository of this layer.



5. Implementation

As a proof of concept, the dac++ design sketched in the previous section has been imple-
mented and is available at http://dynamic.aspectc.org. This section describes the most
interesting “aspects” of the implementation.

5.1. Join-Point Repository

The following listing is an excerpt from a join-point repository, as it is generated by our
static weaver ac++:

<files>
<header id="117" name="HttpHeader.h" len="266" .../> ...

</files>
<namespace id="0" sig="::"> ...
<class id="166" sig="HttpHeader"> ...
<function id="572"
sig="void HttpHeader::append(const HttpHeader *)">
<src file="401" line="419" len="13" kind="def"/>
<src file="117" line="201" len="1" kind="decl"/>
<exec id="73"/>

</function>
</class>

</namespace>

The repository is an XML document that describes all known join-point shadows. This
includes all functions, classes, and namespaces, which are regarded as (name) join points
in the AspectC++ join-point model. In this example, a function HttpHeader::append() is
listed. With <exec id="73"> ac++ marks this function as shadow of an execution join point.
The pointcut evaluation mechanism of ac++ is solely based on this information, which can
also be used by external tools.
The <src file ="id"...> tags describe the locations in the source code where the function
is defined or declared. By looking up the file ID in the file table at the beginning of the
repository, it is possible to identify the file that has to be consulted for the static type
information for a particular join point.

5.2. Generic Advice

The key to support generic advice is the instantiation of advice code with the proper
static type information as a template parameter. As described earlier, the dynamic advice
generator produces code that is responsible for this instantiation. The following listing
shows an excerpt of the generated code as an example:

#include "HttpHeader.h"
...
#include "DynamicContext.h"
struct StaticContext_73_0 : public DynamicContext {
typedef void Result;
static const int JPID = 73;
static const AC::JPType JPTYPE = (AC::JPType)8;
enum { ARGS = 1 };
static unsigned int args() { return ARGS; };
template <int I, int DUMMY = 0> struct Arg {
typedef void Type;

http://dynamic.aspectc.org


typedef void ReferredType;
};
template <int DUMMY> struct Arg<0, DUMMY> {
typedef const HttpHeader *Type;
typedef HttpHeader *ReferredType;

};
using DynamicContext::arg;
template <int I> typename Arg<I>::ReferredType *arg () {
return (typename Arg<I>::ReferredType*)arg (I);

}
static const char *signature () {
return "void HttpHeader::append(const HttpHeader *)";

} };

For each dynamically affected join point, a C++ struct named
StaticContext_<jpid>_<modid> is generated. jpid and modid are unique numbers that
represent the currently compiled module and affected join-point shadow. The base
class DynamicContext does not depend on the join point. It defines the amount of
dynamic context information that is passed from the run-time system to the advice
code. In this example the affected join point is, again, the execution of the function
HttpHeader::append(). The static information about this function contains the result type,
the join-point ID, the join-point type (e.g., execution or call), the number and types
of arguments, and the function’s signature as a string. The template member function
arg<i>() provides the advice code with a mechanism to access the function’s argument
value at run time in a type-safe way.
All types used in this generated struct would be meaningless without the #include

"HttpHeader.h" directive at the beginning of the listing. The generator can retrieve this
file name by following the file ID in the join-point repository (as described before). The
advice instantiation itself is triggered by the following wrapper function, which is also
generated by the dynamic advice generator:

void __dacwrapper_1_DynamicTracer_a0_before(void *djp) {

typedef StaticContext_73_0 DJP;

Tracer::aspectof()->__a0_before<DJP>((DJP*) djp);

}

This wrapper function is then registered with the runtime system after the module has
been loaded. Tracer is the name of the aspect that contains the advice definition. The
member function aspectof yields a pointer to the aspect instance on which the advice shall
be invoked. As __a0_before is the internal name of the advice code, which is transformed
into a template function, this function call in fact instantiates advice for a particular join
point and provides the static information needed by generic implementations.

5.3. Introductions

In order to efficiently map objects to their dynamically introduced members, we decided to
statically introduce a single pointer in every class that is supposed to be a target of dynamic
introductions. This is done by our static instrumentation aspect (see section 4.2) by a
combination of a static introduction and construction advice for the initialization of the
pointer. An adaptation module now attaches a data structure that contains all introduced
elements, a module ID, and a pointer to further introductions to any target object.



The static weaver ac++ has been extended to mark8 all introduced attributes as well
as operations that access these attributes, such as expr.attr, obj->attr, or only attr.
Based on this information, the marker post processor generates a class definition per
module/target class combination, which contains all attribute declarations (foo and bar

for Mod 2 in our example). Additionally, the marked attribute accesses are replaced by a
call to a generic run-time–system function that looks up the object’s introduction chain
for an entry with the respective module ID. If the object has not been extended yet, an
instance of the class with the new attributes will be constructed on demand and appended.

6. Weaving in Squid at Any Time

Squid is a widely-used web server proxy and well known as an example for dynamic
aspect weaving in C code [6]. While earlier versions of Squid were implemented in C, the
latest version 3.X has an object-oriented design and is implemented in C++. It is a typical
long-running application and, thus, well suited to show that the scenarios envisioned in
section 2 can be put into practice with the tool chain presented in this paper.

6.1. Preparation of Squid

A prerequisite for dynamic weaving into Squid is the code instrumentation, for which we
use a configurable static aspect. In this example we decided to instrument all potential join-
point shadows of execution join points: 3099 functions. This gives us enough flexibility
for hot patches as well as enough join points for development aspects like tracing or
profiling. Due to the selected instrumentation and the runtime system, the code size is
increased from 1.73 MB to 1.88 MB.

6.2. Generic Tracing

Based on this version of Squid, we can now deploy aspects written in AspectC++ at run
time. For example, we implemented a simple tracing aspect for all join points. While
weaving the same tracing aspect statically would take as long as compiling the whole
Squid with ac++ (about 17 minutes), the compilation of the dynamic version takes only
about 5 seconds. This makes it very convenient to modify and recompile tracing aspects,
when more join-point context should be printed or only specific functions are relevant.

Now imagine that we use Squid for web page caching in our company. One day a user
complains that he has problems to download files. While Squid is still running, we decide
to implement a tracing aspect that monitors all functions that deal with the exchange of
HTTP messages on a very detailed level:

aspect HTTPTracer {
advice execution("% ...::Http%::%(...)") : before() {
cout << "trace: " << JoinPoint::signature() << endl;
ArgPrinter<JP::ARGS>::work (tjp);

} };

8in form of source code annotations



This aspect matches 165 of the 3099 instrumented dynamic join points. It prints all
arguments of the traced functions. For this purpose, a template meta-program ArgPrinter

has to be used, which iterates over all arguments at compile-time and thereby generates a
sequence of calls to the stream operator << with the actual argument types. An example
for a similar compile-time loop over all function arguments can be found in [16].

Our run-time system is informed about the new dynamic aspect by sending it a
process signal. It then loads the tracing aspect and we can immediately watch the HTTP
protocol related control flow. When the user repeats the malfunctioning operation, we can
see the following output:

trace: void HttpRequest::initHTTP(_method_t,proto...
Arg 1: 1
Arg 2: 1
Arg 3: /releases/edgy/beta/ubuntu-6.10-beta-dvd-i386.iso
trace: int HttpRequest::parseHeader(const char *)
Arg 1: Range: bytes=17904205-
User-Agent: Wget/1.10.2
Accept: */*
Host: cdimages.ubuntu.com

The output tells us that the user accesses Squid with the wget program, which issues a
“range request” for loading a partial file. It turns out that this particular version of wget
contains a bug in the code that handles our reply on the range request.9

6.3. A Dynamic Hot Patch

After localizing the problem we can now use a dynamic aspect to fix the problem without
having to stop the program. The following aspect does the job10:

aspect CheckForBrokenWget {
advice "HttpRequest" : slice class {
bool _clBroken;

public:
bool clientIsBroken() const { return _clBroken; }
void clientIsBroken(const char *s) {

_clBroken = strstr(s, "Wget/1.10.2");
} };

advice execution("% HttpRequest::parseHeader...") :
after() {
tjp->that()->clientIsBroken(*tjp->arg<0>());

}
advice execution("bool HttpStateData::decide...") :
after() {
HttpRequest *request = *tjp->arg<0>();
if (request->clientIsBroken())

*tjp->result() = false;
} };

The first part consists of a slice introduction. A slice is an AspectC++ language element,
which can be used to group a number of introductions. A class slice can be understood as
a fragment of a class. Here it contains a boolean attribute, a function that checks for the

9In fact wget 1.10.2 works fine. This is a hypothetical scenario.
10match expressions are truncated



name and version of the buggy client and sets the attribute accordingly, and a function to
read the flag. From our source code and tracing output studies we know that the control
reaches HttpRequest::parseHeader(), whenever an HTTP message is received. By calling
the introduced method HttpRequest::clientIsBroken() we check whether this message
comes from a buggy client. Later on in the control flow, Squid has to decide whether the
range request should be handled. This is done by the function which is affected by the
second piece of advice. It checks if our introduced flag is true and manipulates the result
value of the decision function accordingly. This fixes the problem, because client and
server then use an ordinary transfer mode.

After testing the patch with a separate instance of Squid, it can be deployed dynami-
cally. During the whole process our production system never had to be stopped. We
can now weave the same aspect statically into the Squid source code in order to get an
improved version that implicitly contains the fix.

6.4. Performance and Code Size

An important question for the applicability of the approach is whether the performance
impact of instrumentation is acceptable, that is, how much one has to pay for the ability
to apply patches at run time. We retrieved this cost factor by comparing the throughput
(requests per second) of the standard version and the fully instrumented version of Squid11.
The following table lists the results:12

module localhost [req/s] remote [req/s]

squid 3044 1353

squid-instrumented 2834 1338

In a localhost access scenario, the instrumentation causes a performance loss of seven
percent (3044 versus 2834 connections/s). In the more realistic remote access scenario,
however, the difference drops to one percent (1353 versus 1338 connections/s). We
consider this overhead as acceptable for the gained flexibility.

As mentioned earlier, the code size of Squid was increased from 1.73 to 1.88 MB (8
percent) due to the instrumentation of 3099 static join points and the runtime system. Be-
sides Squid itself, also the dynamically loaded modules contribute to the overall code size
in the instrumented version. The following table shows the static memory requirements:

module text data bss total [byte]

squid 1,110,997 4828 61,1636 1,727,461

squid-instrumented 1,259,692 4860 61,6340 1,880,892

HttpTracer 110,734 268 736 111,738

CheckForBrokenWGet 4559 276 68 4903

The HttpTracer module is with a total of 112 KB much bigger than our hot patch, which
takes only 5 KB. The reason is that it affects 165 join points: The tracing advice, which
contains relatively expensive streaming code, has to be instantiated for each of these points.
Additionally, the static context information for each join point contains the executed
function’s signature as a string. The patch on the other hand has an almost negligible code
size. Here only two join points are affected.

11The latter without any further adaptation modules loaded
12Measurements taken on an 2.4 GHz Intel Core2 Quad (Q6600) running Apache Benchmark (ab) under

Ubuntu Linux 8.04.1 (kernel 2.6.24) on the same machine (localhost), respectively over switched ethernet
(remote). Values are averaged over 500,000 requests. All code (squid-3.0.PRE4, ab, aspects) was compiled with
g++ 4.1.2 -O2.



7. Discussion

Our approach is conceptually and technically based on two fundamental observations:
1. Modules in an AOP-based adaptable system constitute a knowledge hierarchy.
2. Runtime weaving of a dynamic aspect is required only upwards the knowledge

hierarchy. Downwards the hierarchy, static weaving can be used instead.
Because of these observations statically and dynamically woven aspects can use static
type information when accessing join-point–specific context. This is the prerequisite
for the major advantages: the support for generic aspect implementations by means of
generic advice and the support of static crosscutting (structural modifications by means
of introductions).

Generic Advice and Introductions. Important AOP features for generic aspect imple-
mentations and static cross-cutting have not been available with dynamic aspect weaving
in statically typed and compiled languages before. Due to the combination of static and
dynamic weaving this is now possible with our approach.

Generic advice is supported, because the approach makes it possible to distribute the
instantiations of the context-dependent parts of the advice code. The advice instances for
join-point shadows in already deployed modules are generated when the aspect (module)
is compiled. This is possible because of observation 1. Advice instantiation for join-point
shadows from yet to know modules is postponed until they are known—by generating
them with the static weaver when the respective module is compiled. This is possible
because of observation 2. As a result, each aspect (module) carries the join-point–specific
advice instantiations for all previously deployed modules, while each module carries
join-point–specific advice instantiations from all previously deployed aspects.

Introductions are supported as they are only visible downwards the knowledge hierar-
chy and, hence, can be applied by the static weaver. This is possible because of observation
2. Static weaving provides the necessary means to replace dynamic introductions that
induced side effects in the machine code by semantically equivalent proxies. Because of
observation 1, it is furthermore possible to detect potential language-level side effects
with modules further up the knowledge hierarchy, hence, reach safety.

A Single Language. The availability of introductions and generic advice furthermore
closes the expressiveness gap between “static” and “dynamic” aspect languages for this
domain. Thereby a real single language approach becomes feasible. In our implementa-
tion, the same AspectC++ aspect code now can be woven either dynamically or statically.
This increases the reusability of aspects and their applicability to different adaptation
scenarios.

Implicit Type Safety. The approach provides implicit type safety for dynamic aspects.
With respect to known modules, type problems are detected at compile-time of the
dynamic aspect. With respect to yet unknown modules from further down the hierarchy,
they are detected at compile-time of the respective module. In the first case the issue has
to be solved in the aspect, in the second case in the new module.

Resource-Optimal Weaving. In contrast to dynamic weaving, static weaving is, in
principle, overhead free [15]. By falling back to static weaving whenever possible and
using runtime weaving only when actually required, the approach is resource-optimal
with respect to an AOP-induced overhead.



7.1. Remaining Issues

Side-by-Side Development Restrictions. As mentioned in Section 4.1 the knowledge
hierarchy has to be in fact a knowledge chain; at the time of deployment, sister modules
in the knowledge hierarchy are forbidden. This is necessary to ensure correctness and
completeness of aspect applications. Correctness, as language and machine code level
side effects of dynamic introductions could not be detected if they occur in an unknown
sister module. Completeness, as generic advice could not be instantiated for such module.
It should be noted, however, that it is nevertheless possible to develop adaptation modules
independently — only at the time of final compilation and deployment there has to be a
valid knowledge chain.

Introduction Side Effects. The (technical) problem that language level side effects
of introductions cannot be applied dynamically hampers the goal of a single language
approach. It can lead to situations where aspects that could have been applied statically
cannot be applied at runtime, thus, we have a semantic difference between static and
dynamic weaving.

A possible solution would be to introduce new elements generally in a way that they
do not “pollute” the namespace of the target class, but have to be looked up via their own
namespace. As mentioned in Section 3.3.2, several Java-based approaches follow this
strategy by applying introductions as mixins. This automatically prevents accidental side
effects. However, it also hinders intended side effects: Especially in combination with
generic and generative programming in C++, the possibility to use aspects for noninvasive
overloading or overriding of identifiers in the namespace of an existing class is quite handy.
Furthermore, placing introduced elements into an extra namespace would significantly
change the current semantics of introductions in AspectC++. Therefore we have refrained
from such solution.

Advice Ordering. An unsolved problem is the ordering of static and dynamic aspects
that affect the same join point. Here AspectC++ provides a sophisticated mechanism:
programmers can specify a required partial order of aspects per join point. In our current
implementation, dynamic aspects can be ordered by the runtime system, but all dynamic
advice is executed indirectly by the static module instrumentation aspect and, thus, inherits
its precedence.

7.2. Applicability to Other Language Domains

While the approach is specifically suited to level the expressiveness gap between “static”
and “dynamic” aspect languages for binary-code languages such as Ada, C, or C++, it is as
well applicable for byte-code based languages such as Java or C#. Many dynamic weavers
in the Java domain already provide support for generic aspect implementations and intro-
ductions, hence the “feature-question” is not that pushing here. However, they generally
seem to suffer from significant performance penalties [11]. On the static side of aspect
weaving, approaches such as Spoon AOP [19] have demonstrated that generic advice
based on static type information is possible and beneficial with Java as well—specifically
with respect to performance. Hence, it should be possible to build a dynamic weaving
framework similar to our dac++ on top of their static weaving framework, potentially
resulting in a highly efficient approach for static and dynamic weaving in Java.



8. Summary and Conclusions

We have described a novel approach for dynamic weaving based on static weaving in
adaptable systems. Our work focuses on statically typed and compiled languages such as
Ada, C or C++. The suggested approach makes it possible to use static join-point context
even for dynamically applied aspects, which in turn facilitates AOP features for static
cross-cutting and generic aspect implementations that had been unavailable with dynamic
weaving before. Our results furthermore show that there is no reason for the current
de facto distinction between “static” and “dynamic” aspect languages. It is possible to
provide the same amount of AOP features independent of the intended aspect deployment
time. Thereby, aspects follow a tradition of other modularization entities from the domain
of binary-code compiled languages such as linker libraries, which were first available for
static linking only. Today, the decision between static or dynamic linking is transparent,
merely just another linker switch. Such deployment transparency is now possible with
aspects as well. This was demonstrated with the Squid web proxy example.

The aim of this paper was also to show the limits of dynamic weaving in this language
domain. The most severe problems are caused by introductions with language-level side
effects and the lack of side-by-side development support. As our example shows, many
useful applications scenarios are possible regardless of these restrictions.

While the approach is specifically suited for binary-code based languages, it could be
beneficial for byte-code based languages such as Java as well. Here it would probably lead
to improved performance and type safety for dynamically woven aspects. This remains a
topic for further research. Besides improving the current implementation with respect to
still missing features and overhead reduction, future work also includes the development
of additional tool support. On the base of the join-point repository, it is now possible to
provide means for aspect impact analysis and join-point visualization even for dynamically
woven aspects.
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