
State Transfer for
Hypervisor-Based Proactive Recovery
of Heterogeneous Replicated Services

Tobias Distler Rüdiger Kapitza
Friedrich-Alexander University
Erlangen-Nuremberg, Germany
{distler,rrkapitz}@cs.fau.de

Hans P. Reiser
LASIGE

Universidade de Lisboa, Portugal
hans@di.fc.ul.pt

Abstract
Intrusion-tolerant replication enables the construction of sys-
tems that tolerate a finite number of malicious faults. An
arbitrary number of faults can be tolerated during system
lifetime if faults are eliminated periodically by proactive re-
covery. The periodic rejuvenation of stateful replicas requires
the transfer and validation of the replica state. This paper
presents two novel efficient state transfer protocols for a
hypervisor-based replication architecture that supports proac-
tive recovery. Our approach handles heterogeneous replicas,
and allows changing/updating the replica implementation
on each recovery. We harness virtualization for an efficient
state transfer between “old” and “new” replicas in virtual ma-
chines on the same physical host, and use copy-on-write disk
snapshots for low-intrusive recovery of replicas in parallel
with service execution. We apply the generic algorithm to a
realistic three-tier application (RUBiS) and study the impact
of recovery and state transfer on system performance.

1. Introduction
Dependability is an increasingly important requirement for
distributed systems. In the extreme case, a system should
operate correctly even if some parts of it are compromised by
a malicious attacker. Byzantine fault-tolerant (BFT) replica-
tion [5] is a practical approach to build such systems. Typical
BFT systems need n ≥ 3f + 1 replicas in order to tolerate up
to f malicious faults. Replica diversity is necessary to avoid
common-mode faults in multiple replicas (achieved either by
expensive N-version programming [2], or by opportunistic
components-off-the-shelf diversity [6, 9] and system-level
diversification such as address-space randomization [16]).

Accepted for publication in:
Proceedings of the 5th “Sicherheit, Schutz und Zuverlässigkeit”
Conference (SICHERHEIT ’10)
http://www.sicherheit2010.de/

BFT systems also need a mechanism for recovering (re-
freshing) faulty replicas. Otherwise, given enough time, at-
tackers could eventually succeed in compromising more
than f replicas. Proactive recovery [5] is a technique for
refreshing replicas periodically. It enables systems to tolerate
an unlimited number of faults during system lifetime as long
as the number of faults remains limited within the recovery
period. Recovery operations can reduce system availability,
and compensating this impact by increasing the number of
replicas [15] is expensive. In practical systems, a better op-
tion is to instead minimize the impact of periodic recovery
actions on system operation.

The VM-FIT project [12] has shown that virtualization
technology can be harnessed efficiently for building an
intrusion-tolerant replication architecture with proactive re-
covery. The architecture uses a hybrid failure model, support-
ing BFT at the service-replica level, whereas the replication
infrastructure is executed in a trusted computing base that
fails only by crashing. Thus, VM-FIT can be seen as a in-
termediate step between simple fail-stop systems and pure
BFT replication. It requires only 2f + 1 replicas, which
reduces resource requirements and makes it easier to use
heterogeneous components-off-the-shelf software. Another
benefit of VM-FIT is that the system support for proactive
recovery has a negligible impact on system availability, with-
out adding more replicas. However, VM-FIT misses support
for state transfer of large application state, which is essential
for proactively recovering real-world applications, such as a
multi-tier web application.

In this paper, we define two efficient state-transfer strate-
gies and integrate them into VM-FIT. The first approach is
based on snapshots and basic conversion routines to trans-
form the service state from/to an abstract format. The second,
a log-based variant, optimizes the transfer of large applica-
tion states and requires minor changes to a service. Both
protocols result in a proactive recovery scheme that permits
the simultaneous recovery of all replicas with low impact
on service performance. We evaluate and analyze our state

1

http://www.sicherheit2010.de/


transfer protocols using a micro benchmark and the three-tier
benchmark system RUBiS. Thereby, we apply opportunistic
N-version programming using different operating systems
and different application servers. Our results show that our
protocols are able to recover stateful services with a down-
time of a few hundred milliseconds.

The next section provides an overview of the VM-FIT
architecture, and Section 3 defines the state transfer protocols.
Section 4 experimentally evaluates the current prototype with
a micro benchmark and RUBiS. Section 5 discusses related
work, and Section 6 concludes.

2. The VM-FIT Infrastructure
VM-FIT [12] implements a generic architecture for intrusion-
tolerant replication of network-based services using isolated
virtual machines on top of a virtual machine monitor. It sup-
ports efficient proactive recovery by booting a new replica
instance (shadow replica) in an additional virtual machine be-
fore shutting down the old replica (senior replica). Most other
systems that support proactive recovery require rebooting the
entire physical host from a secure read-only image [1, 6],
which leads to significantly longer replica unavailability dur-
ing reboot. Client/service interaction in VM-FIT is exclu-
sively performed via request/reply network messages that
can be intercepted at the network level. The remote service
is deterministic and replicated using standard state-machine
replication techniques.

In VM-FIT, a replica manager runs in a privileged domain,
whereas service replicas execute in completely separated
application domains (see Figure 1). The replica manager
communicates with clients, delivers requests to replicas in
total order using a group communication system, and votes
on replies; it also contains the logic for proactive recovery.
The virtual machine monitor and the privileged domain with
the replica manager form the trusted computing base of
VM-FIT that can only fail by crashing. Service replicas,
which include a separate operating system, a middleware
infrastructure, and a service implementation, are placed in
isolated, untrusted application domains. They may fail in
arbitrary (Byzantine) ways. This hybrid fault model allows us
to build services that tolerate any kind of failure in application
domains, including malicious faults. This is a significant
improvement over applications that do not tolerate intrusions
at all. Furthermore, recent advances in software security (e. g.,
the verification of the virtual machine monitor Hyper-V [7])
show that it is becoming feasible to verify the correctness
of a trusted computing base with the complexity of what
we use in VM-FIT.

The basic request processing workflow of VM-FIT con-
sists of the following steps: A client sends a service request,
which is then received by one of the replica managers. Next,
the manager transmits the request to all replica managers
using the group communication system. Upon receiving the
request, each replica manager passes it to the local application

Service 
Replica 

Application Domain Privileged Domain

VM-FIT Replica 
Manager 

Hardware 

Physical 
Host A 

Virtual Machine Monitor 

Group Communication System

Physical 
Host B 

Physical 
Host C 

I/O 
Network

Figure 1. VM-FIT basic replication architecture

domain, which processes the request and returns a reply. The
replica manager that is connected to the client collects the
replies from the other replica managers, votes on the replies,
and after having obtained f + 1 identical values, returns a
result to the client. Note that we need only 2f + 1 replicas
to tolerate f malicious faults in the replica domains, as the
group communication is part of the trusted computing base
of the system. Assuming an asynchronous, reliable network,
the voter eventually receives replies from all correct replicas,
so it always obtains at least f + 1 identical replies, even if f
replicas are malicious.

The replica manager provides a system component that
controls proactive recovery in a reliable and timely way. The
basic recovery strategy uses the following algorithm:

1. Upon trigger of periodic recovery timer:

→ Start new virtual machine (shadow replica) from
secure image

→ After startup completion, broadcast recovery-ready
to all replicas

2. Upon reception of kth recovery-ready (k is the number
of non-crashed nodes):

→ Suspend request processing

→ Create local snapshot of senior replica

→ Resume request processing on senior replica

→ Transfer application state to new replica domain

3. Upon completion of the state transfer:

→ Process (buffered) client requests in shadow replica

→ Shut down senior replica

Note that as recovery-ready messages are totally ordered
relative to client requests, all k snapshots represent the
same logical point in service history. As soon as the replica
manager resumes request processing, all requests are also
forwarded to the shadow replica, which processes them as
soon as the state transfer is completed.

The outlined algorithm delays execution of requests during
snapshot generation and state transfer. For a small application
state, we have shown this time to be negligible compared to
replica startup [12]. For a large application state, however,
transfer can take a significant amount of time. In this paper,
we propose two optimized state transfer algorithms that tackle
this problem and substitute the current simple approach.

2



3. State Transfer
The recovery of a stateful application’s replica requires that
the new replica instance receives the current service state.
Assuming non-benign faults, the state transfer protocol must
ensure transferring a non-corrupted state. Instead of copying
the state of a single replica, VM-FIT transfers the state
of multiple replicas in parallel and ensures the correctness
by voting. Software diversity usually results in different
internal state representations in each replica. Nevertheless,
all correct replicas will maintain a consistent state from a
logical point of view. This means that for voting all replicas
need to convert their specific application state into a uniform
external representation (abstract state), and vice versa. Such
an approach requires explicit support for state transformation
in the replica implementations.

A straight-forward way for transferring state across vir-
tual machines is a black-box approach that considers the
whole memory and disk image of a virtual machine as state.
However, this view includes a lot of data that is irrelevant
for the logical state of a replicated service, such as internal
operating system variables. VM-FIT instead distinguishes
between system state and application state, and transfers only
the application state. The system state includes all state of
operating system and middleware that requires no consistent
replication; we assume that a correct system state can be re-
stored from a secure code storage. In contrast, the application
state, composed of volatile state (data stored in memory) and
persistent state (data stored on disk), pertains to the replica
implementation.

The efficiency of the state transfer highly influences
service availability and performance during recovery. In
the following, we present a snapshot-based state transfer
protocol that exploits the locality provided by virtualization;
a preliminary version of this protocol was published in [8].
As most of the state data is transferred directly between the
old and the new domain running on the same machine, it is
suited for scenarios where large states have to be transmitted.
For some applications, state conversion to and/or from the
abstract state is costly. In these cases, a benefit can be
obtained by differentiation techniques that reduce the amount
of transferred data. Unfortunately, direct propagation of
state updates in implementation-specific formats such as
memory pages is impossible for heterogeneous replicas. To
resolve this problem, we integrated an efficient log-based
state transfer protocol into VM-FIT that copes with diverse
replica implementations and yet only transfers state changes
made since the previous recovery.

3.1 Snapshot-Based State Transfer
Virtualization can be harnessed for transferring state directly
from senior replica to shadow replica on the same physical
host. Remote replicas can validate the local state by calculat-
ing and transferring checksums of their local abstract state via
the network. Unlike traditional reboot approaches, in which

Privileged DomainSenior
Replica

Error Correction

Transmission

Verification

Capture

Conversion

Deltifying

Adoption

Restoration

Deltifying

Shadow
Replica

Virtual Machine Boundaries optional

Figure 2. Conceptual phases of a state transfer

only a subset of the replicas can be restarted at a time in order
to avoid complete unavailability [15], our virtualization-based
approach allows the simultaneous recovery of all replicas.
The recovery process in VM-FIT starts with the creation
of the shadow domain by the recovery unit (see Section 2).
On each machine, the replica manager initiates and controls
the subsequent snapshot-based state transfer between senior
replica and shadow replica, using the following conceptual
phases (see Figure 2):

Capture Phase (Capture, Conversion, optional Deltifying)
Prior to the state transfer, senior replicas have to generate
a consistent checkpoint. As soon as the replica manager re-
ceives a recovery-ready message, it suspends the distribu-
tion of client requests. After all pending requests have fin-
ished, it instructs the replica to write all replication-relevant
volatile state to disk. Next, the replica manager creates a snap-
shot of the disk volume containing the replica application data.
Thereby, volatile and persistent state of the application are
both captured. After that, the replica manager attaches the
snapshot to the senior domain, which now has a read-only
view as well as a copy-on-write view of the same logical
disk. The read-only view contains the snapshot and is used
for state conversion and transfer. The copy-on-write view,
which is the still attached but reconfigured replica disk, on
the other hand, is used as a basis for further service execution.
Thus, the senior replica can resume request processing and
change the state of the copy-on-write view without affecting
the snapshot. As soon as the snapshot exists, the replica man-
ager resumes forwarding client requests. When the senior
replica restarts processing, the replica manager logs these
requests in order to re-execute them at the shadow replica.
This way, the actual period of replica unavailability can be
reduced to the process of taking the snapshot. Optionally, the
senior replica can build a delta between the abstract state used
for its initialization (as a result of the previous recovery cycle)
and the current abstract state. Transferring the delta instead
of the full abstract state reduces the data transmission time.

State Transmission and Verification (Transmission, Verifi-
cation, Error Correction) The senior replica converts the
application-specific state that has been captured on the snap-
shot volume to the abstract format. The abstract state is trans-
ferred directly to the shadow replica as a stream of bytes. A
replica wrapper (a VM-FIT component fulfilling only this
task during state transfer) in the shadow domain calculates

3



block-wise checksums over the received stream data. It then
transmits them to the local replica manager, which forwards
them to all other replica managers. As soon as f remote
checksums that match the local checksum have been received
(i. e., there are f + 1 identical values), the replica manager
signals the shadow replica that it can safely convert the block
from the abstract format to the application-specific represen-
tation. The reception of f + 1 identical remote values not
matching the local value indicates a state corruption. In this
case, the correct data block is requested from a remote replica
manager that supplied a correct checksum.

Finishing State Transfer (optional Deltifying, Restoration,
Adoption) Finally, the shadow replica converts the verified
abstract state to the local application-specific representation.
If deltifying has been used, the complete abstract state has
to be obtained by applying the received change set on the
abstract state of the previous recovery provided by the replica
manager. Afterwards, the replica manager takes a snapshot
that builds the basis of the following recovery. To become
up to date, the replica then re-executes all post-snapshot
requests, discarding the replies, and takes over the role of the
senior replica. After that, the replica manager shuts down the
previous senior replica.

3.2 Log-based State Transfer

The snapshot-based state transfer process is generic. It does
not require any modifications to the replicated application
itself, the only replica-specific requirements are conversion
routines for the state. However, state conversion and restora-
tion can take a significant amount of time, thereby delaying
replica handover. Thus, we propose another state transfer vari-
ant that performs conversion, adoption, and deltifying during
normal operation mode and omits state capturing operations.
It requires minor changes to the application code.

The core idea is to constantly log all state changes in the
abstract state format and apply them during recovery to a pre-
initialized replica. This approach requires the identification
of certain locations in an application where standardized
write operations are performed. For web-based multi-tier
applications, an appropriate location is the transition between
application layer and data layer, as most of the processing
has already been performed. At this point, results are usually
written to database, typically using SQL.

We do not directly log the SQL operations of the applica-
tion. These operations might be crafted maliciously in order
to exploit a vulnerability of one of the database replicas. In-
stead, we retrieve the effective write set of an operation from
the database and transform it into a state update operation
and append this operation to a log. The log is verified in the
same way as the snapshot is verified in the snapshot-based ap-
proach. If a malicious request corrupts the state of a database
replica, this problem is detected during the verification phase
and subsequently corrected by transferring a validated remote

log. Additionally, if the same data is changed multiple times,
we use online log reduction; that is, during state transfer we
only consider the latest update.

In the shadow replica, the log is re-executed on the
database that has been initialized using the verified snapshot
of the previous recovery, leading to a verified up-to-date
replica state. After the replay, but prior to processing further
requests, the replica manager takes a file-system snapshot
of the current state. This snapshot forms the secure basis to
initialize the shadow replica of the next recovery round. This
way, we avoid costly conversion operations without changing
the processes of state transmission and finishing state transfer.

4. Evaluation
This section demonstrates that proactive recovery in VM-FIT
using our state-transfer algorithms causes only negligible
downtime for stateful services. We analyze the snapshot-
based state transfer with a micro benchmark and the log-based
approach with a complex three-tier application. The evalua-
tion uses a cluster of four hosts (Intel Core 2 CPU, 2.4 GHz,
2 GB RAM, Xen 3.1 hypervisor), connected with 1 Gb/s Eth-
ernet. One host simulates clients, the other three hosts exe-
cute VM-FIT with identical configurations in the privileged
domain and different operating systems in the application do-
main (Debian Linux, NetBSD, and OpenSolaris). Snapshots
of replica application states are created using LVM [10], a
logical volume manager for Linux.

4.1 Micro Benchmark
The micro benchmark used to evaluate the snapshot-based
state transfer uses 500 clients concurrently retrieving and
modifying records in a Java service that implements a simple
database. We run the benchmark with empty, small (10 MB)
and large (1 GB) application states. Each run takes 30 minutes
and includes a recovery after 15 minutes. Furthermore, there
is one comparison test run without recovery. Figures 3 and 4
and Table 1 present the results of the micro benchmark. All
graphs are synchronized at snapshot creation time (t = 0).
The measurements show that there are two main factors
degrading performance during the recovery process: First,
setting up the shadow domains puts additional load on each of
the physical hosts. The complete startup usually takes about
one minute and results in a 10-20% throughput decrease. This
number is independent of state size.

The second factor influencing throughput during recov-
ery is state transfer. In contrast to shadow domain startup,
this recovery step is dominated by the characteristics of an
application. The results of the benchmark confirm that mov-
ing a larger state not only takes more time, but also impacts
performance: Transferring a 10 MB state, for example, de-
creases throughput for 120 seconds by an average of 17%,
whereas recovery with 1 GB of state leads to a temporary
performance drop of 33% during 169 seconds. There are two
reasons for the increase in throughput degradation: More data

4



-15 -10 -5 0 5 10 150

1K

2K

3K

4K

5K

6K

T
hr

ou
gh

pu
t [

re
qs

/s
]

Empty state

-15 -10 -5 0 5 10 150

1K

2K

3K

4K

5K

6K

T
hr

ou
gh

pu
t [

re
qs

/s
]

Small state (10 MB)

-15 -10 -5 0 5 10 15
Time [min]

0

1K

2K

3K

4K

5K

6K

T
hr

ou
gh

pu
t [

re
qs

/s
]

Large state (1 GB)

Figure 3. Realized throughput for the micro benchmark
with snapshot-based proactive recovery for different state
sizes of 0 B, 10 MB, and 1 GB.

has to be copied and checked, and an extended transmission
and verification phase leads to more requests being buffered,
which then have to be re-executed afterwards. As state trans-
fer in the empty-state scenario is limited to the short period
of costly snapshot creation, a rather low throughput of 3459
requests per second can be observed during that period. Com-
bining shadow replica startup and state transfer, the results
show that proactive recovery in the micro benchmark is very
cheap: For the small application state scenario, the average
throughput during the test is 4547 req/s which is only 2%
below the result of the no-recovery run (4620 req/s). As dis-
cussed above, transferring a bigger state further decreases
performance. However, the costs for the recovery of a large
state only add up to throughput degradation of 4%.

The results of the micro benchmark show no observable
service downtime during any stage of the recovery process.
Additional measurements conducted with higher sampling
rates outline the actual service disruption. Figure 4 presents
the throughput development around the snapshot of a 10 MB
state. For an interval of 600 milliseconds the throughput drops
significantly, with a maximum continuous service downtime
of 130 milliseconds.

4.2 Rice University Bidding System (RUBiS)
The Rice University Bidding System (RUBiS) is a web-based
auction system built to benchmark middleware infrastructures
under realistic load situations [13]. We replicated RUBiS in
its Java servlet variant using VM-FIT. In the snapshot-based
state transfer, retrieving/restoring the state from/to a database

application state transfer overall
state size throughput throughput

empty 3459 req/s 4555 req/s
10 MB 3828 req/s 4547 req/s

1 GB 3078 req/s 4431 req/s
no recovery - 4620 req/s

Table 1. Average realized throughput of a proactive-recovery
micro benchmark for variable state sizes.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time [s]

0

100

200

300

400

500

600

T
hr

ou
gh

pu
t [

re
qs

/1
00

m
s]

Figure 4. Detailed characteristics of a proactive-recovery
micro benchmark for a state size of 10 MB during
snapshot creation.

(via plain SQL interface) during the conversion/restauration
phase would take several minutes. Therefore, RUBiS is an
excellent candidate for the log-based state transfer, as logging
state changes during normal operation circumvents the need
to retrieve a complete abstract state.

We implemented our approach by intercepting calls at the
JDBC layer that represents the interface between application
layer and data layer. Each modifying operation is followed by
a read of the affected table entry whose result is then logged
in plain SQL1. The generated log contains the (differential)
abstract state to be distributed and verified during state
transfer. Shadow replicas are initialized using a verified
snapshot of the previous recovery. Then, they re-execute
the operations from the verified log on the database. Before
starting to execute client requests, the replica manager takes
a file-system snapshot of the database, which serves as the
verified snapshot used in the next recovery round.

Besides using different operating systems, additional het-
erogeneity is achieved by different web/application servers
(Jetty 6.1.12rc1 on the Solaris and BSD replicas, Apache
Tomcat 5.5.27 in the Debian guest domain). All clients are
simulated by the RUBiS client emulator processing the de-
fault transition table (which approximates the behaviour of
human clients browsing an auction website). Each test run
starts with an identical initial state taken from a database
dump provided on the RUBiS web site [13]. It includes data

1 More efficient approaches for retrieving the write set from a database
could also be used [14], but this simple approach was suitable in the
context of our evaluation.

5



-15 -10 -5 0 5 10 150

50

100

150

200

250

300

T
hr

ou
gh

pu
t [

re
qs

/s
]

450 clients

-15 -10 -5 0 5 10 15
Time [min]

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t [

re
qs

/s
]

750 clients

(a) 100 MB database

-15 -10 -5 0 5 10 150

50

100

150

200

250

300

T
hr

ou
gh

pu
t [

re
qs

/s
]

450 clients

-15 -10 -5 0 5 10 15
Time [min]

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t [

re
qs

/s
]

750 clients

(b) 1 GB database

Figure 5. RUBiS benchmark with recovery for database sizes of 100 MB and 1 GB.

300 450 600 750
Number of clients

0

50

100

150

200

A
vg

. t
hr

ou
gh

pu
t [

re
qs

/s
]

unreplicated
VM-FIT without recovery
VM-FIT with recovery

(a) 100 MB database

300 450 600 750
Number of clients

0

50

100

150

200

A
vg

. t
hr

ou
gh

pu
t [

re
qs

/s
]

unreplicated
VM-FIT without recovery
VM-FIT with recovery

(b) 1 GB database

Figure 6. Throughput for the plain service and VM-FIT with
and without proactive recovery for different database sizes.

sets of about one million users and more than five million
bids. The total size of the application state, based on the
original SQL dump, exceeds one gigabyte. In addition, we
conduct a series of tests with a downscaled database of about
100 MB. Our evaluation compares the unreplicated RUBiS
benchmark to VM-FIT with and without proactive recov-
ery, varying the number of clients from 300 to 750. Clients
perform a 30 minute runtime session. Proactive recovery is
triggered after 15 minutes.

Figures 6 shows the overall throughput results for the
RUBiS benchmark. For the small database, the average
throughput of VM-FIT without recovery is within 3.2% of
the throughput achieved by the unreplicated benchmark, with
a maximum of 158.8 requests per second at 750 clients. The
results for the tests where VM-FIT proactively recovers using
the log-based state transfer are basically equal (less than 0.1%
deviation). Using the large database, 750 clients saturate the
RUBiS service on our machines due to database operations
being more costly, leaving VM-FIT without recovery with
an average throughput of 119.9 requests per second. Here,
VM-FIT with recovery has a throughput of 118.4 requests
per second, a decrease of 1.3%. These numbers show that

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time [s]

0
5

10
15
20
25
30
35

T
hr

ou
gh

pu
t [

re
qs

/1
00

m
s]

Figure 7. Detailed characteristics of the state-capture phase
during the RUBiS benchmark with recovery (1 GB database).

the log-based proactive recovery has only little effect on the
overall service performance.

Figure 5 (we omit the results for 300 and 600 clients due
to limited space) gives a more detailed view of the impact of
the log-based state transfer. A major difference in comparison
to the micro benchmark results is that shadow domain startup
has almost no influence on throughput. Note that this circum-
stance is due to the different application characteristics of the
RUBiS service; it is not related to the log-based state transfer.
However, applying the log-based approach has a great influ-
ence on other recovery phases: Instead of transmitting and
verifying the whole application state of 1 GB (in case of the
small database: 100 MB), only modified database entries are
transferred. For 750 clients, they add up to 2.0 MB (2.1 MB);
about 0.2% (2.1%) of state size. As a consequence, state
transfer is done in 95 seconds (50 seconds), temporarily de-
creasing throughput by 11.2% (10.7%).

The most important benefit of the log-based approach
is its implementation of the state capture phase. Instead of
expensively creating a snapshot of the application state, the
log that records state changes is just truncated. Figure 7 shows
that this procedure is executed without disrupting the service.

6



5. Related Work

System recovery is a popular strategy to cope with bugs and
intrusions. Recovery-Oriented Computing (ROC) [3] and Mi-
croreboots [4] represent approaches to cure potential faults
by rebooting fine-grained components. Both focus on coun-
teracting hard-to-detect faults that over time cause service
degradation, such as memory leaks. Self-Cleansing Intru-
sion Tolerance [1] targets cleaning intrusions by rebooting
services executed in a virtual machine. To prevent service
disruption, a backup instance immediately takes over once
the primary service instance is rebooted. Similar to this work,
the Rx [11] system goes one step further by modifying the
environment after a software failure. This enables Rx to han-
dle certain kinds of deterministic bugs that otherwise would
lead to repetitive reboots because of recurring faults. None of
these systems is able to handle state corruptions.

The work by Sousa et al. [15] uses a trusted computing
base on the basis of a virtual machine monitor and a trusted
virtual machine for proactive and reactive recovery in the
context of BFT replication. The trusted computing base only
provides functionality for recovery; there is no support for
state transfer at the virtualization layer. Our approach is
similar to this architecture in the sense that it uses the virtual
machine monitor to implement a trusted computing base, but
we focus on stateful recovery.

The problem of state transfer has been addressed by the
BFT protocol of Castro and Liskov [5]. They recognize that
efficiency of state transfer is essential proactive recovery
systems and propose a solution that creates a hierarchical
partition of the state in order to minimize the amount of
data to transfer. BASE [6] proposes abstractions that capture
parts of the state in an abstract format for use during state
transfer in a heterogeneous BFT system. In addition, BASE
provides wrapper functions for handling non-determinism
that could also be added to our architecture. Our system
also uses the concept of an abstract state, but we define two
different approaches: first, a generic snapshot-based state
transfer, and second, a log-based state transfer that requires
slight changes to the replicated application, but reduces
overhead. The approach of creating a differential state used in
BASE [6] is not suitable for RUBiS, as some requests involve
multiple related database operations. The need to reproduce
them outside the application would lead to a duplication of
great parts of the database layer. Additionally, we exploit
virtualization for minimizing state transfer time.

Sousa et al. [15] define requirements on the number of
replicas that avoid potential periods of unavailability given
maximum numbers of simultaneously faulty and recovering
replicas. Our approach instead considers stateful services and
reduces unavailability during recovery by performing most
of the recovery in parallel to normal system operation on the
basis of virtualization technology.

This work expands on preliminary results proposing ef-
ficient state transfer for the proactive recovery of stateful
services published at the WRAITS workshop [8] by propos-
ing log-based state transfer, a more detailed design as well as
extended evaluation results.

6. Conclusion
We have presented two protocols for efficient state trans-
fer between heterogeneous replicas in an intrusion-tolerant
replication system with proactive recovery. Snapshot-based
state transfer only requires the provision of conversion rou-
tines from/to an abstract state format. Creating a new replica
instance using virtualization technologies and utilizing copy-
on-write techniques for fast generation of atomic state check-
points enables to continue service provision while the state is
transferred. Additionally, we proposed log-based state trans-
fer as a further extension for scenarios where enough knowl-
edge of the service is available to employ a differential state
transfer. The results of the micro benchmark and the RU-
BiS use-case illustrate the efficiency of proactive recovery in
VM-FIT. The evaluation shows that there is only a negligi-
ble service disruption during recovery. This allows building
BFT systems which continuously run stateful applications
without needing additional replicas during proactive recovery.
Although state size is not a crucial factor regarding service
availability, it nevertheless influences performance. There-
fore, the abstract state transferred should be limited to in-
formation that is required to initialize the application in the
shadow replica. As shown with the RUBiS evaluation, log-
based state transfer is an excellent way to approach this task
as it reduces the transferred abstract state to the essential
updates. This way, we can by simultaneously recovering all
replicas of a complex three-tier application with only 2-6%
decrease in the overall throughput.

Acknowledgements
This work was partially supported by the German Research
Council (DFG) under grant no. KA 3171/1.

References
[1] D. Arsenault, A. Sood, and Y. Huang. Secure, resilient

computing clusters: Self-cleansing intrusion tolerance with
hardware enforced security (SCIT/HES). In Proceedings of
the 2nd International Conference on Availability, Reliability,
and Security (ARES ’07), pages 343–350, 2007.

[2] A. Avižienis and L. Chen. On the implementation of N-version
programming for software fault tolerance during execution. In
Proceedings of the 1st IEEE Computer Software and Applica-
tions Conference (COMPSAC ’77), pages 149–155, 1977.

[3] G. Candea, A. B. Brown, A. Fox, and D. Patterson. Recovery-
oriented computing: Building multitier dependability. Com-
puter, 37(11):60–67, 2004.

7



[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot – a technique for cheap recovery. In Proceedings
of the 6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), pages 31–44, 2004.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions on
Computer Systems, 20(4):398–461, 2002.

[6] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE:
using abstraction to improve fault tolerance. ACM Transactions
on Computer Systems, 21(3):236–269, 2003.

[7] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: a
practical system for verifying Concurrent C. In Proceedings
of the 22nd International Conference on Theorem Proving in
Higher Order Logics (TPHOLs ’09), pages 23–42, 2009.

[8] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. Efficient
state transfer for hypervisor-based proactive recovery. In
Proceedings of the 2nd Workshop on Recent Advances on
Intrusion-Tolerant Systems (WRAITS ’08), pages 7–12, 2008.

[9] Ilir Gashi, Peter Popov, and Lorenzo Strigini. Fault tolerance
via diversity for off-the-shelf products: A study with SQL
database servers. IEEE Transactions on Dependable and
Secure Computing, 4(4):280–294, 2007.

[10] LVM: Logical Volume Manager. http://sourceware.org/
lvm2/, 2010.

[11] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating bugs
as allergies—a safe method to survive software failures. ACM
Transactions on Computer Systems, 25(3):235–248, 2007.

[12] Hans P. Reiser and Rüdiger Kapitza. Hypervisor-based efficient
proactive recovery. In Proceedings of the 26th International
Symposium on Reliable Distributed Systems (SRDS ’07), pages
83–92, 2007.

[13] RUBiS: Rice University Bidding System. http://rubis.

ow2.org/, 2010.

[14] J. Salas, R. Jiménez-Peris, M. Patiño Martı́nez, and B. Kemme.
Lightweight reflection for middleware-based database repli-
cation. In Proceedings of the 25th International Symposium
on Reliable Distributed Systems (SRDS ’06), pages 377–390,
2006.

[15] Paulo Sousa, Nuno Ferreira Neves, Paulo Verı́ssimo, and W. H.
Sanders. Proactive resilience revisited: The delicate balance
between resisting intrusions and remaining available. In
Proceedings of the 25th International Symposium on Reliable
Distributed Systems (SRDS ’06), pages 71–82, 2006.

[16] Paulo Sousa, Alysson Neves Bessani, and R. R. Obelheiro. The
FOREVER service for fault/intrusion removal. In Proceedings
of the 2nd Workshop on Recent Advances on Intrusion-Tolerant
Systems (WRAITS ’08), pages 13–18, 2008.

8

http://sourceware.org/lvm2/
http://sourceware.org/lvm2/
http://rubis.ow2.org/
http://rubis.ow2.org/

	Introduction
	The VM-FIT Infrastructure
	State Transfer
	Snapshot-Based State Transfer
	Log-based State Transfer

	Evaluation
	Micro Benchmark
	RUBiS

	Related Work
	Conclusion

