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ABSTRACT
General purpose operating systems such as Linux are rea-
sonably suited for managing massively parallel computing
platforms made from many-core processors. However, due
to limitations in organization and architecture of the system
software, these sorts of operating systems are fairly unsuited
for parallel execution in order to better perform on behalf of
the (massively) parallel processes needed for running one or
more application programs. Regarding many-core support,
their functional properties are satisfactorily, however, their
nonfunctional properties leave a lot to be desired.

The paper touches on some of the problems discovered in
reengineering critical sections of operating systems. It aims
at making aware of difficulties, rather than providing solu-
tions, in adapting system software to parallel processing.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design, Software Architec-
tures, Reusable Software; D.4.7 [Operating Systems]: Or-
ganization and Design—hierarchical design

General Terms
Critical section engineering
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1. INTRODUCTION
Forthcoming many-core processor technology poses seri-

ous challenges not only to software in general but in par-
ticular to system software, that is, operating systems. Al-
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though an operating system is always the epitome of a non-
sequential program and developers can fall back on substan-
tial know-how in this domain, contemporary and prominent
exponents still suffer from considerable performance handi-
caps when the number of processors increases significantly.
In addition, an effective use of cores for ones own sake in or-
der to improve overall system service is anything but simple.
Stumbling block often is the overall design and the software
architecture of the operating system, that is to say, the way
how the various system functions are implemented and not
necessarily what these functions are about.

Being in the fortunate position of building a parallel op-
erating system from scratch, taking care of high perfor-
mance and dedicated application support is almost straight-
forward, particularly by experience made with large-scale
shared-memory systems [3]. Recent developments set a good
example [2, 1, 5]. However, reengineering a contemporary
general-purpose operating with the objective of providing
roughly similar performance as those special-purpose (paral-
lel) ones is a complete different story—nonetheless indispen-
sible if one is not willing to forswear all the comfortable ser-
vices general-purpose operating systems typically provide.

2. ROOT OF ALL EVIL
Recent experiments with Linux 2.6 on a 16-core proces-

sor [2] revealed, on the one hand, a tremendous decline in
performance by a factor of 40 due to nonlocal data accesses
issued from “remote” cores and, on the other hand, abso-
lutely no performance increase when getting more than one
core in charge of application processing. The case of the
latter was manifold:(a) false sharing of a central kernel-level
data structure, the file descriptor table, (b) too large crit-
ical sections, and (c) blocking synchronization. Although
deficiencies like these are known, coming up with proper so-
lutions is challenging. Figure 1 gives an idea why this is the
case.

Blocking synchronization does not scale, in contrast to
nonblocking synchronization. However, the former technique
is predominant in Linux as almost all of the various synchro-
nization mechanisms are derived therefrom (cf. Fig. 1). A
similar picture can be drawn from FreeBSD. The Linux ker-
nel is pervaded by critical sections in the form of the one
exemplified in listing 1. Locating critical sections like these,
in order to replace samples of blocking synchronization by
nonblocking (lock- or wait-free) equivalents, is not always
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Figure 1: Complexity of design and implementation of synchronization in Linux 2.6.

feasible using pattern matching tools, that is, static program
analysis. Even after locating such a section, a complete un-
derstanding of the locking protocol in use is needed. When
inspecting the sample in listing 1, the use of the spin-lock
embracing an“atomic” instruction (lines 11 and 13) does not
seem necessary, but looking behind the scences as defined by
the actual context justifies its use.

Listing 1: Critical section sample (Linux 2.6)
1 void enable mmiotrace (void )
2 {
3 mutex lock(&mmiotrace mutex ) ;
4 i f ( i s e n a b l e d ( ) )
5 goto out ;
6

7 i f ( nommiotrace )
8 p r i n f o ( ”MMIO t r a c i n g d i s ab l ed .\n” ) ;
9 kmmio init ( ) ;

10 e n t e r u n i p r o c e s s o r ( ) ;
11 s p i n l o c k i r q (& t r a c e l o c k ) ;
12 atomic inc (&mmiotrace enabled ) ;
13 s p i n u n l o c k i r q (& t r a c e l o c k ) ;
14 p r i n f o ( ”enabled .\n” ) ;
15 out :
16 mutex unlock(&mmiotrace mutex ) ;
17 }

A major challenge in reengineering operating systems is
the reverse engineering part, including the task of under-
standing existing code. Such code often consists to a great
extent of tricky solutions and, for example, also intimates
polymorphism in plain C using structures (i.e., records) with
function pointers as member variables. Variability is imple-
mented extensively using macros and conditional compila-
tion, or even runtime patching of machine instructions. In
the case of abstract interfaces implemented through function
pointers, an extraction of the function call stack for code re-
view may even fail. In FreeBSD, for example, a reengineer
is faced with a 16-level hierarchy behind a function named
lock mtx once the function pointer embedded in the respec-
tive abstract interface has been resolved. In addition to
locating the pointer target, the meaning of every single level
in this hierarchy needs to be understood in order to cogitate
about semantically equivalent nonblocking solutions.

3. SOLUTION STATEMENT
A Linux developer not only has to choose the correct syn-

chronization primitive from a myriad of possibilities (Fig.1),
but each of these primitives can be fine-tuned through con-
figuration options. We are developing techniques and tools
for checking integrity between these options and the corre-
sponding conditional blocks. General basis of this effort is
feature-oriented domain analysis. First results have shown
that keeping the Linux kernel source base consistent with
the set of configuration options is hard. We have already
found several code blocks that cannot be selected by any
valid option combination. In order to confirm our findings
we have submitted error corrections to the Linux commu-
nity, resulting in a dozen patches accepted. Based on these
intermediate results we have cause for concern of various in-
consistencies regarding the definition/usage of the synchro-
nization primitives. As part of the VAMOS project [4], we
aim at further developing tools to detect such “semantic”
dependencies to generally aid critical section reengineering.
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