
Leviathan: Taming the #ifdef Beast in Linux et al.*

Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schröder-Preikschat, Daniel Lohmann
Friedrich–Alexander University Erlangen–Nuremberg

{hofer,elsner,wosch,lohmann}@cs.fau.de
∗ This work was partly supported by the German Research Council (DFG) under grant no. SCHR 603/7-1.

1. MOTIVATION
A lot of Linux’s success in very different application
domains stems from its configurability; it currently
offers more than 10,000 features, a number that has
doubled in the last five years. The implementation of
configurability in system software is mostly realized
via #ifdef directives, leading to Linux having more
than 80,000 conditionally included code blocks. In
his keynote at ECRTS 2010, Linux kernel developer
Thomas Gleixner mentioned this fact to be one of
the most pressing maintenance challenges in Linux:
“#ifdef’s sprinkled all over the place are neither an
incentive for kernel developers to delve into the code
nor are they suitable for long-term maintenance.”

We therefore propose to provide the developer with
variant views on the filesystem level, effectively provid-
ing virtual files with preprocessed content according
to a given configuration. Using our Leviathan filesys-
tem, arbitrary editors and tools that work on files
can benefit from operating on variants instead of hav-
ing to operate on potentially cluttered configurable
source code. This enables our system to be toolchain-
independent, which is a crucial property both in open-
source development like the Linux kernel, where the
freedom of choosing your editor is existential, and in
industry settings, where diverse and domain-specific
tools are being used.

2. LEVIATHAN IN ACTION
bar.c

#ifdef CONFIG_A
int var_a;
#%endif
bar();
bar2();
something();

bar.c

int var_a;
bar();
bar2();
something();

bar.c

bar();
bar2();
something();

Configurable Code Base

View on Variant 1

View on Variant 2

foo.c

foo_init();
#ifdef CONFIG_A
do_feat_a();
#endif
#ifdef CONFIG_B
do_feat_b();
#endif
foo_cleanup();

foo.c

foo_init();
do_feat_a();
foo_cleanup();

foo.c

foo_init();
do_feat_b();
foo_cleanup();

Leviathan
Filesystem

Var0 = {}
Var1 = {CONFIG A}
Var2 = {CONFIG B}
Var3 = {CONFIG A, CONFIG B}

Variant Definitions

input (1.)

mount Var1
(2.)

mount Var2
(2.)

write()
(3.)

merge
changes

(4.)

Using the example of Linux, the Leviathan filesystem
roughly works as follows (see the steps in the figure).
First, Leviathan is given one or more variant defini-
tions as output by make config and the directory of
the configurable Linux code base (1.). This makes the
variants accessible at the specified mount points (2.),

enabling the user to simultaneously work on different
views of the same source file. Thus, the developer can
focus on a small amount of features or even a single
feature at a time. If needed, maintenance operations
can be performed using the editor of choice, eventu-
ally issuing a write() system call (3.). This triggers
Leviathan’s write-back engine to merge the changes
made on the virtual file back to the original file (4.).

Leviathan eases several typical Linux development
tasks:

• Reasoning about (and comprehending) Linux
variants and their implementation differences by
comparing files from mounted configurations.

• Debugging a specific Linux variant that has been
reported to exhibit a bug and fixing the bug
directly in the variant—Leviathan will write
back the changes to the code base.

• Refactoring only code that belongs to a specific
maintainer by having scripts run on the appro-
priately configured view.

• Enabling the use of #ifdef-unaware analysis tools
that do not work on configurable code, such as
WCET tools or deadlock detection tools.

• Analyzing feature changes by mounting the same
variant of different kernel versions simultaneously.

3. WRITE-BACK SUPPORT
A core challenge in Leviathan is the write support
in the mounted views. Since the filesystem is only
invoked upon write() system calls, it only has discrete
content snapshots to operate on instead of an actual
edit protocol. This renders changes performed on
the view ambiguous (consider inserting a line between
two former configuration blocks), which we aim at
controlling using two configurable write-back modes.

A heuristics engine uses a merge algorithm as known
from revision control systems to assign changes to lines
and lines to former configuration blocks. After merging,
the configuration blocks are written back to the code
base, together with their original #ifdefs.

To make edit intentions unambiguous, Leviathan
can output language-dependent comment lines in the
views as markers between former #ifdef blocks. This
way, lines can directly be assigned to blocks and written
back to the code base. This option re-introduces clutter
to a small extent and only for blocks visible in the
view.


