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Abstract

The C Preprocessor (CPP) provides the programmer with powerful means to implement
variability. Therefore the tool CPP is an important standard asset in the development toolchain
for classical system software written in C. Yet, nobody has seriously quantified the effects of
implementing variability with conditional compilation. In this report we describe conditional
compilation in a semi-formal way. On this basis, we present an algorithm that is able to calculate
the resulting variability. With this, we believe that further analysis on variability caused by
preprocessor based configuration can be supported. This is useful to detect bugs caused by
inconsistencies between variability models in the actual implementation and to support exploration
of actually implemented variability in source artifacts.

1 Introduction

Complex software often requires re-implementation of parts and modules for several product
variants. Very often these parts are not consolidated into a single module, but are scattered
across the code base. In order to integrate these variants, programmers need techniques to
enable and disable code snippets according to the required functionality that aredefined by a
specific configuration. Both annotative and compositional approaches (e.g., [14]) are means for
the realization of variability in the code. The annotative approach provided by the C preprocessor
language (CPP) is by far the most employed approach.

Several papers emphasize the problems of preprocessor-based customization of software [21, 10].
Nevertheless, the C preprocessor has to be considered as state of the art for the implementation of
overhead-free, fine-grained customization [9]. Application examples from the domain of operating
systems include all variants and flavors of Linux and BSD as well as the majority of embedded
operating systems, such as FreeRTOS [11], ProOSEK [18], Contiki [7], or eCos [8].

Nevertheless, the flexibility and simplicity of the C preprocessor comes at a price: It is not
powerful enough to manage every detail of variability management. As a result, it is employed only
where it is strong – conditional compilation. Therefore, large projects have to use different tools to
manage other facets of variability management like variant specification, selection of compilation
units for the build process, etc. This leads to a set of tools that are semantically connected (they
control the variation points), however, as we have previously analyzed [22] for the Linux project,
the consistency between these tools are currently poorly guaranteed. This work aims at closing this
gap.

We believe that an algorithm which calculates the variability that results from conditional compi-
lation by means of CPP directives will provide the appropriate interface between the C preprocessor
and the other variability management tools so that the consistency between them can be better
analyzed. In order to achieve this goal we first examine the variability that can be expressed with
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Directive Description
#if EXPR conditional inclusion on the following block if EXPR evaluates

to true
defined IDENT Inside EXPR, the operator defined checks if the CPP flag

IDENT has been defined
#ifdef IDENT abbreviated form for #if defined IDENT
#ifndef IDENT abbreviated form for #if !defined IDENT
#else alternative block if the preceding block is not included
#elif EXPR conditional inclusion on the following block if EXPR evaluates

to true and the preceding block is not included
#else alternative block if the preceding block is not included
#endif terminates an conditional included block

Table 1: C Preprocessor directives related with conditional compilation

conditional compilation. Then we present an algorithm to quantify the variability of source files
that use CPP directives.

This report is structured as follows: First we give a brief overview over the subset of the CPP
language we use for our approach. Then, we revisit the related work. In Section 4 we explain the
variability algorithm in detail. Section 5 explains the plausibility of the algorithm with selected
examples. Finally, we discuss the potential of our approach when integrated in software projects.

2 Conditional Compilation

The semantic rules that arise from the CPP language specification are pretty complex. Fortunately,
for a quantitative analysis we do not need to consider all of them, but only the rules that define
conditional compilation. Still, identifying and quantifying the effects of conditional blocks in an
automated manner is not trivial.

Normally, the C Preprocessor is called while compiling software through an compiler driver.
For the GNU Compiler Collection this driver is called gcc, the Preprocessor is called cpp. The
Preprocessor is used to assemble the input for the actual compiler run. This input is called the
expanded compilation unit.

The C Preprocessor is controlled via special preprocessor directives that are specified directly in
the source code. Not every preprocessor directive is useful for implementing variability. For the
purposes of this analysis, we only consider the subset of the CPP language that include directives
shown in Table 1. The directives #if, #elif, #ifdef and #ifndef are used to declare conditional
blocks, that means blocks that are being skipped or copied to the output stream depending on the
result of the evaluation of their argument. This argument can either be a single CPP flag (such as
the IDENT parameter of the #ifdef and #ifndef directives) or a logical expression (such as the
EXPR parameter of the #if and #elif directives). Additionally, conditional blocks can be nested.
Nested blocks are only considered if the block in which they are nested is included in the expanded
compilation unit.

In this context the C Preprocessor is used to insert slices of source code into its output stream
according to the defined CPP flags. Technically, these flags are defined at compilation time either
as command-line parameter or by using #define directives. We assume that the user is able to
control these CPP flags either manually of by using a configuration tool.

In this paper we discuss boolean configuration flags only. In practice, configuration flags can
also be strings and integers that can be compared and checked at compile time.
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The following listing shows the most trivial example of an conditional block:

1 #ifdef CONFIG_A
2 #endif

The number of variants that can be composed with this block is two: Either the item CONFIG_A is
selected, then the block is selected, or if CONFIG_A is not set, then the block is skipped. The next
listing shows an alternative block:

1 #ifdef CONFIG_A
2 #else
3 #endif

Here, we have again in total two variants that can be composed. Depending on the definition of
CONFIG_A, either the first or the second block is selected. A use of this type of block can be seen in
the following listing:

1 #ifdef CONFIG_A
2 #elif defined CONFIG_B
3 #endif

In this example, in total three variants can be composed: If both items are unset, both blocks are
skipped. The second block is selected only if CONFIG_A is unset and CONFIG_B is set. If both flags
are set, the first block gets precedence.

Considering the configuration flags as input boolean variables and the selection of the configura-
tion blocks as output boolean variables, we can denote the following truth table.

CONFIG_A CONFIG_B Block 1 Block 2
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 0

This table makes it obvious that the number of permutations of configuration flag settings is
commonly higher than the real number of variants that can be composed by the CPP tool. In order
to quantify the effects of conditional compilation, this distinction must be carefully taken into
account.

3 Related Work

The problem of parsing C code in presence of conditional compilation has been studied by
several authors. Among of them, there are techniques to detect parsing problems due to the misuse
of CPP directives. Lattendresse [16] proposes symbolic evaluation in order to find, for every line
of code, the boolean expression under which it can be reached. He presents three rewrite systems
to transform conditional values into boolean expressions, which are applicable at different phases
of macro expansion and evaluation. Finding the boolean expression that describes the conditions
under which each line of code can be compiled is very similar to our work. However, this work
has different goals. Latendresse’s work focuses on possible problems caused by macro expansion,
whereas we concentrate on conditional compilation. Badros et. al. [1] propose a framework that
integrates the C preprocessor and a parser. The framework permits analysis to be expressed in terms
of both preprocessing and parsing actions. The framework permits the analysis of preprocessor
constructs. Unlike our work, this analysis is used to support parsing.
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Another series of work tackles the problem of visualizing the variability described by CPP
directives. Krone et. al. [15] developed a tool that accepts source code with configuration-specific
statements. Using this information an algorithm computes a concept lattice which allows visual-
ization of the structure and properties of possible configurations. Analogous to our work is the
idea of an abstract representation of all possible configurations of files. However, this abstract
representation is used to evaluate the overall quality of the code according to software engineering
principles. Kästner et. al. present the tool CIDE [13] that is able to annotate the abstract syntax
tree of source files with information extracted from CPP directives. The tool provides a source
code editor with an enhanced visualization by using background colors. Moreover, the tool is able
to detect syntactic problems. Although the tool relies on the information obtained from the CPP
directives, it tackles problems of visualization and syntactic error detection, whereas our approach
focuses on the quantification and analysis of variability.

The evaluation of variability from models is also related to our work. Czarnecki et. al. [6]
present an approach to transform logic formulas into feature models. This technique could be
combined with ours in order to automatically generate models from the boolean formula that is
generated with our algorithm. Benavides et. al. [4] present several techniques for reasoning on
feature models after transforming them into boolean formulas. The same kind of reasoning could
be applied to the boolean formula generated by our approach in order to improve the analysis of
the variability and to detect problems.

To the best of our knowledge, we are not aware of any work that uses the information from
CPP directives in order to quantify variability. Moreover, in order to reduce the complexity of our
approach we decided not address syntactic error detection, neither from the CPP language nor from
the programming language using conditional compilation. Our approach simply requires that the
files to be analyzed can be successfully parsed by the C preprocessor.

4 Calculating Variability

In this section we present an algorithm that calculates the variability of CPP-based compilation
units. In order to make the understanding of the algorithm easier we provide some definitions in
advance. The terms configuration flag and conditional block are used consistent to their descriptions
in Section 2.

4.1 Basic definitions

Definition 1 (Configuration). Given n boolean flags, a configuration is the boolean vector ~f =
f1, . . . , fn, where fi is the value of the i-th configuration flag.

When compiling a file with CPP directives, the user assigns configuration flags so that the blocks of
interest are enabled for compilation. Each member of this vector represents the configuration flag
assignment as given to CPP. As already mentioned in Section 2, in this report we consider boolean
configuration flags only. The variables are set to 1 (true) if they are set, and 0 (false) otherwise.

Definition 2 (Block Selection). Given a compilation unit u with m conditional blocks, the block
selection is the boolean vector ~bu = b1, . . . , bm, where bi represents the selection of the i-th conditional
block.
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Each bit in this vector represents a conditional block in the compilation unit u. When applying the
tool CPP to a source file, the block selection represents which blocks CPP has selected (the bit is
set) and which are skipped. Note that in practice, the same configuration is applied to different
compilation units. With these two definitions, the process of applying a set of configuration flags ~f
to a compilation unit u that contains m conditional blocks ~b can be expressed with the following
function P:

P(~f, u) 7→ ~bu (1)

This function represents a mapping from a given configuration to a specific block selection when
preprocessing is performed by the CPP tool. This function is well defined by the semantics of the
CPP language.

4.2 Variability estimations

The function P is not injective, as in general there can be two different configurations that map to
the same block selection. It is also not surjective, as in general there may be block selections that
cannot be composed by any configuration because of the semantics of the CPP language.

The total number of different configurations a source file can be compiled with is (obviously) 2n.
This number is an upper bound of block selections for a given compilation unit. Another upper
bound for a compilation unit u with m conditional blocks is 2m. However, due to the semantics
imposed by the CPP language, it is very common that different configurations map to the same block
selection. Consider the conditional block in Listing 1. We note three different configuration flags
and a single conditional block. The upper bound for the number of possible configuration is in this
example 23+1 = 16. However, the real number of configurations is obviously 2: Either all three
items are defined – then the block is selected – or the block is skipped. This means that 7 out of
23 = 8 flag combinations lead to exactly the same post-processed file.

1 #ifdef (CONFIG_A && CONFIG_B && CONFIG_C)
2 #endif

Listing 1: Conditional Block with four items

As we have already seen in Section 2, simply using the upper bound 2n as number of variants
is not appropriate for a serious quantification of variability. Instead, an algorithm for quantifying
variability must properly consider all details of the CPP language that are relevant for conditional
compilation:

• Compound expressions like in Listing 1.

• Nested blocks: Only if the outer expression evaluates to true, the inner expression are further
evaluated.

• #if-#elif-#else conditions: only if the first expression in the #if group evaluates to
false, the following #elif expression are evaluated. If the leading #if expression evaluates
to true, the other blocks are not selected.
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4.3 The checker function
The algorithm described in this section builds a helper function that checks if a configuration of
conditional blocks ~b is selected with a given input configuration ~f .

Definition 3 (Checker Function). Given a function P that represents the conditional compilation
semantics of the CPP language, a configuration vector ~f and a compilation unit u with the block
selection vector ~bu, the checker function C is defined as:

C(~f, ~bu)→

{
true, P(~f) = ~bu

false, P(~f) 6= ~bu

(2)

Algorithm 1 Constructing the checker function C
1: C := true
2: for i := 1 to m do

3: C := C ∧
I1︷ ︸︸ ︷

(bı → parent(bı))

4: C := C ∧
I2︷ ︸︸ ︷

(bı → exp(bı))

5: C := C ∧
I3︷ ︸︸ ︷

(bı → ¬succ(bı))

6: C := C ∧
I4︷ ︸︸ ︷

((parent(bı) ∧ exp(bı) ∧ ¬succ(bı))→ bı)
7: end for

Algorithm 1 builds the checker function C. In Step 1 the boolean variable C is initialized to true.
The algorithm iterates over all block boolean variables B. In each iteration, different implications
are conjugated to C. These implications result directly from the semantics of the CPP language and
are described in the following.

A block always implies its parent when it is not a top-level block, this clause in shown on Step 3
under the symbol I1. This rule ensures that a block can only be selected if its parent is also selected
as well. If the block is nested, the function parent(b) returns true if and only if the block in which
the current block is nested is selected as well. If no such block exists or the block is not selected, the
function returns false.

The rule in Step 4 reflects that the selection of a block also always implies its expression (clause
shown on Step 4 under the symbol I 2). This means that if a block is selected, its expression is
implied. The function exp(b) returns the expression boolean variable for this block, which may be a
complex expression or a simple flag. In the case of #else blocks, the negation of the expression of
its predecessor block (which may be a #if, #if or #elif block) is returned.

#ifdef clouds require special treatment. With this term we mean groups of directives containing
at least one #elif or #else directives, multiple occurrences of #elif directives are allowed and
at most one #else is permitted. In such groups at most one of them will be selected at a time.
When an #else directive is present, there is always exactly one block of the cloud that is present,
even if the expression of multiple directives of the same cloud evaluate to true. In this case, the
block that is selected is determined by the order in which they are declared, that is, the first block
with an expression that evaluates to true. Subsequent blocks will always be skipped, independent of
their expressions. In the algorithm, Step 5 generates the necessary constraints. That clause uses the
function succ(b) (under the brace I3 in Figure 1), which ensures that none of its predecessors in
the same #ifdef cloud is selected.

The last clause generated for each block is shown in Step 6 and marked with the symbol I4. It
ensures that when a block has all its conditions fulfilled (by re-using the functions I1,I2 and I3)
the block itself is selected.
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4.4 Calculating possible block selections

With the checker function we define the term variability as follows:

Definition 4 (Variability). Given a compilation unit u and the checker function C, the variability V
of a compilation unit u is the set of all block selections ~b for that there exists a selection ~f , so that C is
satisfied:

V = {~b | ∃~f : C(~f, ~bu)} (3)

Algorithm 2 Algorithm for calculating block selections
1: for all conditional blocks do
2: introduce first-order logic variable bi

3: end for
4: for all #ifdef expressions e do
5: introduce first-order logic variable ei

6: for all configuration items inside ei do
7: introduce first-order logic variable fi

8: end for
9: end for

10: construct checker function C
11: calculate ~f and ~bu that satisfy C
12: return all ~bu of the calculated set

The variability V is therefore the set of vectors ~bu that can be mapped by the function P(~f, u)
with at least one input configuration ~f . Algorithm 2 shows how to calculate V. First, for each
block a boolean variable is declared (Step 1). These block variables bi represent the vectors ~bu

of equation (2) and will be used for constructing the checker function C in Step 10. Then, for
each configuration item inside an #ifdef expression a configuration flag variable ~fi is declared
(Step 7) that represents the setting for that a configuration flag. Finally, for each expression a
boolean variable ei is declared for the corresponding #ifdef directive, which is also used for
constructing the checker function. These variables reference the configuration flag variables and
essentially represent the evaluation of the respective logical expression.

After all these helper variables are declared, the checker function P (Step 10) is created and
inputs that result true are calculated, which can be done with standard SAT solvers or BDD packages.
Sets with the same vector ~b are considered equivalent, as they represent the same block selection. V
is then the set of unique vectors ~b.

5 Examples

In order to explain how the algorithm from Section 4 works in practice, we show the results of the
checker function for selected trivial examples. In order to make the understanding easier, we use the
following annotations:

• The symbol � and the end of each line specifies in which iteration of the algorithm the clause
was generated.

• Each clause has been marked with an overbrace (
In︷︸︸︷) in order to indicate which step of the

algorithm generated the clause. This clarifies which of the four conditions of the respective
block is enforced.
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5.1 Simple Conditional

1 #ifdef CONFIG_A
2 #endif

Listing 2: Trivial Example

With the file shown on Listing 2 is given as input to our algorithm the following checker function
is generated with our algorithm:

C =
( I2︷ ︸︸ ︷
(b1 → A)∧

I4︷ ︸︸ ︷
(A→ b1)

)
(� 1)

As the file has only one conditional block, the algorithm builds the formula in a single iteration.
The first clause (I2) represents the dependency of the block and the flag (A) used in the #ifdef
directive. Due to the fact that the sole block is a top-level block (no nesting) and it does not form a
if-cloud, clauses generated by the conditions I1 and I3 do not appear in the resulting formula. As
a result, the last clause I 4 is simply the implication of the flag A and the block b1. The formula
enforces that the block will necessarily be selected if and only if the flag it depends on is also
selected. This can be seen when we rewrite the formula in an equivalent and simpler form, resulting
in X = b1 ↔ A. For this example the following inputs1 satisfy the checker function:

{
(∅, ∅), ({A}, {b1})

}
From these tuples the algorithm calculates as variability the following vectors ~bu: (0), (1). For the
following examples, we use the following abbreviated form:

V =
{
∅, {b1}

}
The vector ~bu is noted as sets of selected blocks. The set has only two members, the empty set, which
means that when no configuration flags are set then the block is skipped. The other configuration
show that by enabling the flag A, the Block b1 will be selected as well.

5.2 Expressions

1 #if defined(CONFIG_A) && defined(CONFIG_B)
2 #endif

Listing 3: Example of a CPP directive with a logic expression

1NB: We note the inputs as tuples with the vectors ~f and ~b. In order to improve readability we describe the vector in form
of a set that omits blocks and flags that are not set in the vector; the sets contain only the name of blocks and flags that are
selected or set. Moreover, we denote the null vector ~0 as the empty set ∅. This notation is be used in the remainder of this
document.
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The example shown in Listing 3 is very similar to the previous one (Listing 2) with the difference
that the block does not depend on a single flag, but on a combination of flags that form a logic
expression. With this listing as input, the algorithm produces the following checker function:

C =
( I2︷ ︸︸ ︷
(b1 → (A ∧B))∧

I4︷ ︸︸ ︷
((A ∧B)→ b1)

)
(� 1)

As the input file has only one block, this function is again built in one iteration. Clauses I1 and I3
are not applied because the block is top level and there are no if-clouds. The clause I2 is built using
the expression (A ∧B) present on the #if directive. The same for the clause I4, which forms the
bi-implication. Therefore, the block b1 will be selected only if the expression evaluates to true, and
in this case (no nesting, and no clouds), the block will always be selected if the expression evaluates
to true. The solution for this checker function is:

{
(∅, ∅), ({A}, ∅), ({B}, ∅), ({A, B}, {b1})

}

The first tuple represents the trivial solution. The next two sets do not contain the block b1 because
the expression does evaluate to true if and only if both flags are selected. This solution is represented
by the last set and therefore the algorithm produces as variability V:

V =
{
∅, {b1}

}
(4)

5.3 Parent Relationship

1 #ifdef CONFIG_A
2 #ifdef CONFIG_B
3 #ifdef CONFIG_C
4 #endif
5 #endif
6 #endif

Listing 4: Example with nested CPP directives

Listing 4 consists of three blocks – one is top level and the other two are nested. With this listing
as input to the variability algorithm, the boolean function in Figure 1 is generated.

The algorithm iterates over three blocks. In the first iteration the conditions for the top level
block (b1) are generated, which are, the expression clause (I 2) and the clause I 4 to form the
implication of the block’s conditions. The second iteration begins by generating the parent condition
of the block b2, which is nested on block b1, and therefore, b2 can only be selected if b1 is also
selected. This is ensured by the clause I1. Clause I2 ensures that the second block also depends
on its expression. Clause I4 is the implication of the block’s conditions (expression and parent) and
the block itself. This guarantees that when all of its conditions are met, the block will necessarily be
selected.

The third block (b3) has the same conditions to be selected as the second, namely, expression
(I2) and parent (I1). However, it depends on a different flag (C), and it has a different parent

11
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C =
( I2︷ ︸︸ ︷
(b1 → A)∧

I4︷ ︸︸ ︷
(A→ b1)

)
(� 1)

∧
( I1︷ ︸︸ ︷
(b2 → b1)∧

I2︷ ︸︸ ︷
(b2 → B) (� 2)

∧
I4︷ ︸︸ ︷

((A ∧ b1)→ b2)
)

(� 2)

∧
( I2︷ ︸︸ ︷
(b3 → C)∧

I1︷ ︸︸ ︷
(b3 → b1) (� 3)

∧ (

I4︷ ︸︸ ︷
(B ∧ b2)→ b3)

)
(� 3)

Figure 1: Checker function for Listing 4

(b2). Note that its parent is a nested block as well, that is, the third block can only be selected if the
first block is selected.

As the property nested in is transitive, it is not necessary to apply the implication I 1 to all
parents of a given block; the direct parent is sufficient. This means that in this example the condition
b3 → b1, (i.e., Block 3 cannot be selected without Block 1) is implicitly assured. Therefore, the
nesting depth of each block does not matter for the algorithm.

The inputs that satisfy the checker function for this listing is:

{
(∅, ∅), ({B}, ∅), ({C}, ∅), ({B, C}, ∅), ({A}, {b1}), ({A, C}, {b1}),

({A, B}, {b1, b2}), ({A, B,C}, {b1, b2, b3})
}

Again, the trivial solution is found first. The next three sets are the configuration of variable
flags that do not select any blocks. In the fifth set shows that if the flag CONFIG_A is set alone, then
the block b1 is selected. Adding the flag CONFIG_C (sixth set) does not cause additional blocks to
be selected. Selecting flag CONFIG_A and CONFIG_B (seventh set) selects blocks b1 and b2. The
last set shows the solution when all three flags are selected: all three blocks are selected as well.
From these solutions, we identify as variability:

V =
{
∅, {b1}, {b1, b2}, {b1, b2, b3}

}
5.4 IF Groups

1 #ifdef CONFIG_A
2 #elif CONFIG_B
3 #else
4 #endif

Listing 5: Example with CPP directives that belong to an #if Group
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C =
( I2︷ ︸︸ ︷
(b1 → A)∧

I3︷ ︸︸ ︷
(b1 → ¬(b2 ∨ b3)) (� 1)

∧
I4︷ ︸︸ ︷

((A ∧ ¬(b2 ∨ b3))→ b1)
)

(� 1)

∧
( I2︷ ︸︸ ︷
(b2 → B)∧

I3︷ ︸︸ ︷
(b2 → ¬(b3)) (� 2)

∧
I4︷ ︸︸ ︷

((B ∧ ¬(b3)→ b2)
)

(� 2)

∧
( I3︷ ︸︸ ︷
(b3 → ¬B)∧

I4︷ ︸︸ ︷
(¬B → b3)

)
(� 3)

Figure 2: Checker function for Listing 5

Listing 5 shows a file containing three top-level blocks all belonging to a single if-cloud, when it
is given as input to the variability algorithm, the checker function shown in Figure 2 is generated.

As the listing contains the conditional blocks, the checker functions is constructed in three
iterations. In the first iteration, the expression condition (I2) for the block b1 is generated, and also
the if-cloud condition (I3). The latter assures that this block implies the negation of the disjunction
of all of its successors (b2, b3 and b4) in the if-cloud. This means that when this block is selected,
none of its successors is selected. Again, condition I4 enforces that b1 will necessarily be true when
all of its conditions are met.

The second iteration is very similar to the first one, except by the fact that the block b2 has a
different expression (shown on clause I2) and it has one successor less then b1 (shown on clause
I3). Naturally, these differences are reflected on clause I4.

The last iteration generates the conditions for the block b3 representing the #else directive.
For the generation of the expression condition (I 2), the function exp(b3) returns the negation
of the cloud leader (the first block of the if-cloud), this function could also return the negation of
the disjunction of all precedent cloud members’ expressions. Because clause I3 is generated for
all of its predecessors in previous iterations, the negation of the disjunctions is not necessary; the
negation of the cloud leader’s expression is sufficient. The clause I4 for b3 is the implication of the
expression returned by exp(b3) and the block itself, as it is neither nested nor it has any successors.

The following solutions satisfy the calculated checker function:

{
(∅, {b3}), ({A}, {b1}), ({B}, {b2}), ({A, B}, {b1})

}
The first set is again the solution with no CPP flags set. In this case however, it is not empty but

contains the block b3. When looking at Listing 5, we see that when neither the flags CONFIG_A nor
CONFIG_B is set, the #else block in line 3 is selected.

The next two sets represent the solutions that the flag CONFIG_A causes block b1 (Line 1) and
that CONFIG_B block b2 to be selected. The last shows the situation when both flags have been
selected. In this case, block b1 wins. This is again in accordance with the CPP language specification.

From these solutions we identify as variability:

V =
{
{b3}, {b1}, {b2}

}
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5.5 Combined Example

1 #if defined CONFIG_A || defined CONFIG_B || defined (CONFIG_C)
2 # if defined ( CONFIG_A && CONFIG_B )
3 # elif defined ( CONFIG_A && CONFIG_C )
4 # elif defined ( CONFIG_B && CONFIG_C )
5 # ifdef CONFIG_C
6 # else
7 # endif
8 # else
9 # endif

10 #endif

Listing 6: Combined example

The example shown on Listing 6 shows a combination of all semantic elements presented in the
previous examples. The complexity of the example is typical for real world code.

From the source code in Listing 6, the checker function shown in Figure 3 is constructed. The
listing consists of the top-level block b1 (line 1) which ranges over all of the listing. Nested inside
that block, there is an #if-cloud with four members. The first block (#if) is the block-leader,
followed by two #elif’s and one #else directives.

The fist iteration generates the clauses required by the top level block (b1). Clauses I2 and I4
assure that it depends only on its expression.

For blocks b2 (line 2), b3 (line 3) and b4 (line 4) the clauses I1, I2, I3 and I4 are generated
with the corresponding expressions and successors and with the same parent. This can be seen on
iterations 2, 3 and 4 in the above formula.

Blocks b5 (line 5) and b6 (line 6) form a cloud nested in block b4. Therefore, iteration 5 and 6
generate the clauses I1, I2, I4 for both blocks, naturally, with the corresponding expressions and
using the same parent (b4). The clause I3 is generated only for block b5 as the block b6 represents
the #else directive that has no successors.

Block b7 (line 6) is treated in the last iteration. Only the clauses I1, I2 and I4 are generated.
The algorithm identifies the following solutions that satisfy this checker function:

{
{∅, ∅}, {C, b1, b7}, {B, b1, b7},

{B, C, b1, b4, b5}, {A, b1, b7}, {A, C, b1, b3},

{A, B, b1, b2}, {A, B,C, b1, b2}
}

From these solutions, we identify as variability:

V =
{
{b1, b7}, {b1, b4, b5}, {b1, b7}, {b1, b3, }{b1, b2}

}
(5)

6 Discussion

The algorithm presented in this report can be used for many applications. An important use is the
analysis and evaluation of the variability regarding the consistency of the code base. Examples for
consistency violations are dead code, that is, conditional blocks that cannot be selected, and zombie
code, that means blocks that cannot be disabled by any configuration [22]. An example of dead
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C =
( I2︷ ︸︸ ︷
(b1 → (A ∨B ∨ C))∧

I4︷ ︸︸ ︷
((A ∨B ∨ C)→ b1)

)
(� 1)

∧
( I1︷ ︸︸ ︷
(b2 → b1)∧

I2︷ ︸︸ ︷
(b2 → (A ∧B)) (� 2)

∧
I3︷ ︸︸ ︷

(b2 → ¬(b3 ∨ b4 ∨ b7)) (� 2)

∧
I4︷ ︸︸ ︷

(b1 ∧ (A ∧B) ∧ ¬(b3 ∨ b4 ∨ b7))→ b2)
)

(� 2)

∧
( I1︷ ︸︸ ︷
(b3 → b1)∧

I2︷ ︸︸ ︷
(b3 → (A ∧ C)) (� 3)

∧
I3︷ ︸︸ ︷

(b3 → ¬(b4 ∨ b7)) (� 3)

∧
I4︷ ︸︸ ︷

(b1 ∧ (A ∧ C) ∧ ¬(b4 ∨ b7))→ b3)
)

(� 3)

∧
( I1︷ ︸︸ ︷
(b4 → b1)∧

I2︷ ︸︸ ︷
(b4 → (B ∧ C)) (� 4)

∧
I3︷ ︸︸ ︷

(b4 → ¬(b7)) (� 4)

∧
I4︷ ︸︸ ︷

(b1 ∧ (B ∧ C) ∧ ¬(b7))→ b4)
)

(� 4)

∧
( I1︷ ︸︸ ︷
(b5 → b4)∧

I2︷ ︸︸ ︷
(b5 → C) (� 5)

∧
I3︷ ︸︸ ︷

(b5 → ¬(b6)) (� 5)

∧
I4︷ ︸︸ ︷

(b4 ∧ C ∧ ¬(b6))→ b5)
)

(� 5)

∧
( I1︷ ︸︸ ︷
(b6 → b4)∧

I2︷ ︸︸ ︷
(b6 → ¬(C)) (� 6)

∧
I4︷ ︸︸ ︷

(b4 ∧ ¬(C))→ b6)
)

(� 6)

∧
( I1︷ ︸︸ ︷
(b7 → b1)∧

I2︷ ︸︸ ︷
(b7 → ¬(A ∨B ∨ C)) (� 7)

∧
I4︷ ︸︸ ︷

(b1 ∧ ¬(A ∨B ∨ C))→ b7)
)

(� 7)

Figure 3: Checker function for Listing 6
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code is shown in Listing 6 on page 14, where the block starting in Line 6 is dead. If we look at the
variability for the example shown on Equation 5, the Block b6 does not appear in any member of the
variability set. This means that this block will never be selected by the C preprocessor, and therefore,
can be considered as dead code. Similarly, zombie code is represented by code blocks that appear on
all members of a variability set, and, therefore, will never be skipped by the C preprocessor.

For large code bases, our algorithm can be used for exploration of variability. Especially
for new developers in a software project, the implementation and effects of variability often is
difficult to assess and requires a lot of time to be fully understood. But also existing developers and
reviewers could be assisted with a tool that calculates the variability as described in this report in
order to verify refactorings of variability implementations. Last, we imagine that on the basis of the
calculated variability, test cases can be written to ensure that the expected variability is achieved.

Another area for the application of our approach is checking the consistency between the
code base and abstract variability models. Normally, software projects with a large amount of
variability often maintain an abstract variability model in order to ease the configuration process.
Such models are responsible for describing the variability in the project and are basically a compact
form representing all possible variants of the project. In the Software Product Line community
feature models[5] are used. For the Linux kernel[17], kconfig [20, 19] is used as the abstract model
that allows the user to tailor a specific kernel configuration according to his needs. We assume that
in many cases the variability of the abstract model in such projects does not follow the variability
of the respective implementation assets and during development, diverges over time. Here, our
approach can help to detect inconsistencies by calculating the variability of both the implementation
and the models independently, and comparing the results afterwards. Furthermore, several kinds
of comparisons between the actual implementation and abstract models can be performed, like
comparing the number of allowed configurations in the code base with the abstract model variability.
This allows, for example, insight into the coverage of the code base with respect to the set of variants
that the user can configure.

There are several approaches to analyze the variability described by such abstract variability
models. However, to the best of our knowledge, we are not aware of any work that checks
the consistency between the code base variability and the abstract models. Several researchers
[6, 12, 2, 3] have studied the transformation of feature models into boolean formulas. We aim
at combining such formulas with our algorithm in order to check consistency. By means of the
conjunction between the boolean formulas describing the code base and the abstract model, we
can find inconsistencies such as dead and zombie code that arise from the divergence of the family
model and the variability implemented in the source artifacts.

The algorithm described in this work has been developed as part of the VAMOS project. More
information about the developed tools inclunding screenshots and demos can be found on the project
website: http://www4.informatik.uni-erlangen.de/Research/VAMOS/demo.shtml.

Threats of Validity and Future Work

The algorithm we have presented in this report has two obvious limitations. First, the subset of
the CPP language contains conditional compilation with boolean configuration flags only. As far
as conditional compilation is concerned, the decision if a block is selected or not is intrinsically
boolean. In practice, for evaluating CPP expressions with nonboolean configuration flags like strings
and integers, they are always used with a comparator function (e.g., ==, <, etc.). In order to support
these cases as well, the algorithm can be extended to create a new boolean variable for each term
that needs to be evaluated at compilation time. Further (static) knowledge about the assignment of
these flags can be used to add additional conjunctions for the checker function in order to improve
the variability calculations.

The CPP language allows undefinition and redefinition of flags in any line of the source code.
This language detail is not currently considered by the presented algorithm, but could be supported
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by again adding additional conjunctions the checker function, more specifically the exp(bi) function.
Here, for each expression the function would need to take undefinitions and redefinitions of the
undefined or redfined CPP flags into account.

While both cases are rather straight forward to implement, we believe that even the current
implementation of the algorithm is well suited for most of the use cases we outlined above.

7 Summary

This report discusses the effects of conditional compilation regarding the resulting variability in
implementation assets that use the C Preprocessor language CPP. In essence, the tool CPP selects
available conditional blocks in an implementation unit according to a given input configuration. In
order to quantify implementation variants that can arise from different configurations, we present
an algorithm that calculates and properly quantifies the implementation variability of any source text
that uses the CPP language. This algorithm can be seen as building block for various future tools.
First, bugs like dead code caused by inconsistencies can be found systematically. Second, tools that
assist developers and reviewers with exploring mechanisms that implement variability could make
great use of the calculated variability especially in code bases with a large amount of variability.
Last, in model driven software projects and Software Product Line engineering, crosschecking
the variability model with the implementation variability of the source code allows to verify the
intended amount of variability.
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