
Gradual Software-Based Memory Protection∗

Michael Stilkerich Daniel Lohmann Wolfgang Schröder-Preikschat
{stilkerich,lohmann,wosch}@cs.fau.de

Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT
Software-based memory protection (MP) provides not only
spatial isolation of different applications, but also additional
means to detect programming errors within an application.
However, this luxury comes at the cost of extra runtime
checks that add overhead to the application. In this paper,
we present the idea of gradual software-based MP, where we
only add a subset of runtime checks to a program to gain
configurability with respect to the tradeoff between depend-
ability and cost. To support the selection, we analyze the
importance of different classes of safety checks and research
which types of checks could be implemented at no cost by
a hardware protection unit. After examining the relative
frequency of different runtime checks in a large Java class
library, we expect these ideas to be applicable to the majority
of runtime checks in an embedded application.

1. INTRODUCTION
Electronic support functions in cars have rapidly developed

in the past decade [2]. A modern mid-class car is equipped
with about 80 electronic control units (ECUs), which com-
municate with each other through up to five different bus
systems. This development is problematic in several aspects:
the multitude of ECUs and wires that connect the ECUs
with each other are costly, especially with the ever increasing
copper price; the wires with about 50 kg noticeably con-
tribute to the weight of the car; the connectors that attach
the wires to the ECUs are known to be fault-prone and a
major cause of hardware defects. To address these issues, the
automotive industry is currently consolidating the number of
ECUs in a car by replacing multiple ECUs with fewer, but
more powerful microcontrollers, where multiple applications
that formerly ran on a dedicated ECU now share a common
microcontroller.

The coexistence of multiple applications on a microcon-
troller introduces the requirement to the underlying system

∗This work was partly supported by the DFG under grant
no. SCHR 603/4 and SCHR 603/7-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IIDS 2010 Paris, France
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

software to enable the isolation of the applications with re-
spect to different aspects. One of the key aspects is memory
protection (MP), which is one of the points in that AU-
TOSAR OS [1] improves over its predecessor OSEK OS [13] in
that it mandates write-protection in some scalability classes.
The protection model of AUTOSAR is region-based and re-
quires the presence of a memory protection unit (MPU) on
the target microcontroller. On controllers without an MPU,
MP is not supported.

Besides hardware-based MP there is software-based MP,
where safety is constructively ensured by the executing pro-
gram itself. Normally this is achieved by writing software in a
type-safe programming language or employing runtime safety
checks. Past research has shown that software-based protec-
tion based on the use of a type-safe high-level language [3,
5, 12] is superior in terms of overhead compared to lower
level approaches [7], as it enables high-level static analyses
that can validate many safety checks at compile time. Type-
safe languages not only provide software-based MP, which
increases the dependability of the resulting software prod-
uct and precludes or detects many common programming
errors [14] (e.g., uninitialized variables, off-by-one errors),
it often also supports modern programming paradigms that
increase productivity in software development [15], an im-
portant factor if costs matter.

Both of these approaches have advantages and disadvan-
tages compared to each other. Memory protection is not
a one or the other decision and should be a configurable
property of the system software.

We have developed a system that allows choosing the type
of MP, a fundamental architectural property, without the
need to change the application. In this paper, we give an
overview on this system (Section 2) and present some ideas
(Sections 3–4) in the context of software-based MP based
on observations we made in our research. In Section 5, we
discuss, how these ideas could be applied in practice, and in
Section 6, we give some early numbers to get an impression
of the practicability of our approach.

2. MEMORY PROTECTION AT OPTION
Our protection model is designed according to the needs

of the domain of embedded systems and similar to that
of AUTOSAR OS with some extensions. For hardware-
based MP, we require the presence of an MPU that allows
restricting memory access to regions of the address space.
Memory management units that manage the memory at
the finer granularity of pages are found on only very few
microcontrollers.

application

trusted untrusted

hardware protection software protection

runtime checks

global impact local impact hw support

composition rule:
software protection requires Java

programming language

C Java

Figure 1: Memory Protection Variants

The AUTOSAR-OS protection model distinguishes trusted
and non-trusted applications. An application comprises a
number of tasks and ISRs. The data that belongs to an
application is the stacks of its tasks and ISRs plus the private
data segment of the application. Trusted applications run
with MP features disabled and thus become part of the
trusted computing base, whereas non-trusted applications
only have write access to their own data. Read protection
additionally restricts read accesses of an application to its
own data and is optional in AUTOSAR.

We combine the Multi-JVM KESO with the operating
system family CiAO to create a system that allows mixing
applications isolated through different MP mechanisms. The
available configuration spectrum is depicted in the form of a
feature diagram in Figure 1.

2.1 The CiAO OS Family
CiAO [9] (CiAO is Aspect-Oriented) is a family of operat-

ing systems for embedded applications that has been designed
and developed to be highly configurable by aspect-oriented
programming (AOP) [6]. The implementation language of
CiAO is AspectC++. CiAO’s system design allows config-
uring even fundamental and highly crosscutting OS policies,
among them hardware-based MP which we presented in a
previous paper [10]. The primary target platform for CiAO
is the Infineon TriCore, an architecture of 32-bit microcon-
trollers mostly used in the automotive industry that also
serves as a reference platform for AUTOSAR. CiAO provides
an API as defined by AUTOSAR OS.

2.2 The KESO Multi-JVM
To provide besides MPU-based MP the option of software-

based MP, we run KESO on top of CiAO. KESO [17] is a
Multi-JVM, that is, it allows tasks being isolated in different
protection domains, each of which appears as a JVM of its
own from the application’s point of view. This isolation is
constructively ensured by preventing any shared, global data
among the different domains. Initially, this is established by
providing each of these domains with an own set of global
data (i.e., the static fields of classes in Java), and later on
sustained by preventing object references from being passed
to other domain through the available IDC mechanisms.

The main objective of KESO is to provide software-based
MP tailored towards the domain of embedded systems. KESO
does not support all aspects of the Java language and the Java
virtual machine (JVM) and does not provide the full Java

standard class library. In particular, KESO requires static
applications and does support neither dynamic class loading
nor Java reflection. The class library provided by KESO
provides access to the system services of an OSEK/VDX or
AUTOSAR OS, which is presumed as infrastructure soft-
ware, and a safe and lightweight mechanism to access device
registers from Java code without affecting the type-safety of
the program. KESO supports optional garbage collection for
applications that want to use dynamic memory allocation.

Part of KESO is an ahead-of-time Java Compiler that gen-
erates ISO C code from Java bytecode. KESO uses whole-
program static analyses to perform many runtime checks
at compile time. Where static analyses fail to validate the
check ahead of time, an appropriate runtime check is emitted
to the generated C code. Upon failure of such a runtime
check, an exception will be raised. KESO does—for reasons
of efficiency—not support fully-fledged Java exception han-
dling. Instead, an exception is considered a fatal error in
the program’s execution, which can (as configured) result in
either the invocation of a user defined exception handling
routine, the termination of the control flow that caused the
exception, or a reset or halt of the complete system (fail-stop-
behavior). This is similar to the error hook routine found in
OSEK/VDX or AUTOSAR operating systems.

2.3 Gradual Software-Based MP
One of KESO’s features is that it allows disabling the emis-

sion of runtime checks based on criteria such as the type of
the check and the bytecode instruction that causes the check,
which enables the generation of a partially checked, gradu-
ally safe program. At the extreme side, all checks can be
omitted, resulting in a program that does not suffer any over-
head penalties but still benefits from increased dependability
due to the checks successfully performed ahead-of-time com-
pared to a program written in an unsafe low-level language.
In the feature diagram (Figure 1), this corresponds to the
sub-features of software-based memory protection (printed in
black). We will discuss these features in the remainder of this
paper. Our discussion is based on the following observations:

• The concrete microcontroller used in a mass product is
usually the cheapest suited one from a line of function-
ally equivalent microcontrollers that scale in resources
and price. However, even after choosing the smallest
model from the line that still fulfills the requirements,
the available resources will never be utilized by 100%.
Individual runtime checks need very little resources,
but each check contributes to the dependability of a
program. The spare resources on such a microcontroller
can therefore be used to increase the dependability by
adding a selected set of runtime checks to the applica-
tion.

• The consequences of an omitted runtime check that
would have failed are not the same for all checks. De-
pending on the type of check and the checked instruc-
tion, we can group the checks into those that only have
a local impact on the current application and those
with global impact. We highlight these differences using
the example of the two most common types of runtime
checks in Section 3.

• Some microcontrollers have an MPU available that is
not used by the system software. Such an MPU can be
used to perform certain checks in hardware at no cost,
rendering these runtime checks unnecessary in software.

We examine which types of checks can be shifted to
hardware in Section 4.

• Bugs are not equally distributed over the codebase.
According to [11], 80% of the bugs are within 20% of
the software modules. Software modules containing
bugs are likely to contain further bugs, so runtime
checks should preferably be added to such modules to
help finding these bugs. We propose some approaches
for applying gradual software-based MP in practice in
Section 5.

2.4 Transferability to
Other Type-Safe Languages

Note that while Java may not seem the most appealing
language to embedded-system programmers, KESO dispenses
with most Java features that lead to the common sense that
Java may be unsuited for embedded systems. We instead
focus on the Java language as an example of a type-safe
language because we have the implementation at hand and
emphasize, that other type-safe languages, particularly those
derived from C [3, 5, 12], employ runtime checks very similar
to those of Java and that the ideas presented in this paper
can easily be transferred to these.

3. IMPACT CLASSIFICATION
A self-evident criterion to classify the safety-value of run-

time checks is the severity of the impact that the absence of
such a check may cause to the system. In this section, we
attempt to create a classification based on this criterion for
the two most common types of runtime checks, null checks
and array-bounds checks.

We split safety checks into the following two groups, which
we will refer to as impact classes of a certain check:

Local Impact The omission of a check with the impact
classification local may result in a malfunctioning of the
application (i.e., the protection domain) in the context of
which the check would normally have raised an exception.
This defect will, however, not affect other applications on
the same system.

Global Impact The omission of a check with the impact
classification global may result in a malfunctioning of ap-
plications other than the one in the context of which the
check would normally have raised an exception. The conse-
quences of the defect may not be contained within the faulty
application.

Omitting all checks of impact class local would still re-
tain a degree of protection comparable to the one provided
by hardware-based MP with the help of a memory protec-
tion unit (MPU), which is also the MP level required by
AUTOSAR OS.

Table 1 summarizes the results that we will elaborate on in
the remainder of this section, grouped by the type of runtime
check. The first column contains a general description of the
operation that causes the check; column two lists the Java
bytecode instructions [8] that correspond to these operations
in the JVM; column three shows the impact class of the
check; the last column shows if the check may be performed
by the hardware (see Section 4).

In the following, we separately consider load and store
operations. We assume static knowledge of the address space
layout of the target platform.

For load operations, the data type of the loaded value
makes the difference between local and global impact. While

bytecode impact
operation instructions class HW

Null Check
Instance Field

load
reference type

getfield
global 4

primitive type local 4
store putfield local/global 4

Array Operations
load

reference type aaload global 4
primitive type [bcdfils]aload local 4

store [abcdfils]astore local/global 4
get length arraylength local 4

Method Invocation

dynamic binding
invokeinterface

global 6
invokevirtual

static binding invokespecial global å local

Array-Bounds Check
null array analogue to missing null check 6
valid array

store [abcdfils]astore global 6
load analogue to missing null check 6

Arithmetic Error Checks
division by zero [il]div, [il]rem local 4

Table 1: Impact Classification

the erroneous load of a primitive data value will only affect
the computations of the application that loaded that value,
interpreting a random value as a reference introduces wild
pointers and breaks the soundness of the type system. Sub-
sequent operations on that wild reference may affect data of
other applications.

For store operations, we are interested in the memory
regions that could be modified by such a store. In a system
that constructively isolates applications by means of software-
based MP, the data of different applications is not necessarily
physically separated from each other, but may, for example,
be allocated from a common heap. It often is, however, the
case, that portions of the address space are not being used,
particularly on MCUs with a large address width. If an
illegal store happens at an address that belongs to an unused
portion of the address space, it does not corrupt data of the
application (or, cause other defects, such as a reconfiguration
of a hardware device if device registers where mapped to the
affected address) and we consider the impact being of class
local. On the other hand, if the store affects a used portion
of the address space, the effect depends on the type of data
stored there. Giving an answer to this question—if possible
at all—would be a very tedious task, so we assume a global
impact in such cases.

3.1 Null Checks
There are no wild pointers in type-safe languages. Refer-

ences or pointer values always point to an existing object,
with the exception of one special null reference. This special
value introduces the need to null-check operations on an
object reference. If such a check is omitted, an illegal access
will take place at a particular offset from the null reference,
which is normally address 0. In contrast to unsafe languages,
the absence of wild pointers therefore puts us in position to
predict the affected address regions within a certain range.
For the individual operations that require a null check, the
impact is as follows:

Instance field stores happen at fixed offsets from the base
address (i.e., the address 0 in the case of an invalid reference).
These offsets are statically known for each individual null
check. It is therefore exactly possible to foretell the memory
slot that might be affected by omitting a particular null
check. The maximum offset of an instance field depends on
the numbers and types of members of the used Java classes,
but is usually small in the area of approx. 20 bytes.

Array component stores use an offset, which may vary
in different iterations of the check and whose range may not
be determinable at compile time. The largest possible offset
is the size of the array’s datatype (statically known for each
individual site) times the maximum array index. While the
Java Virtual Machine specifies array indexes of 32-bit signed
data type, KESO provides the option to the developer to
choose a smaller data type such as unsigned 16-bit or 8-bit,
since this is sufficient for most embedded applications.

Instance method invocations are the third type of
operation that requires a null check. Since KESO normally
assumes the this reference to be null checked at the call
site, it does not generate null checks for operations on the
this reference within instance methods. Consequently, the
omission of a null check on a method invocation’s call site can
generally have the union of effects of all the other null checks
and thus belongs to the impact class global. A special case
is method calls with dynamic binding, where the address of
the actually called candidate is determined at runtime from
the actual type of the object the method is called on. In the
case of a null reference, an unknown, possibly random, value
would be interpreted as the type and an arbitrary address
would be called, resulting in a loss of control flow integrity.
However, if the type read were a predictable value (e.g., 0),
one could benefit from this knowledge by pointing this slot
of the dispatch table to an error handler to detect the error,
trading a few bytes of RAM for the saved execution time.

3.2 Array-Bounds Checks
Array-bounds checks consist of a null check preceding the

bounds check itself. We have already discussed the null
check portion. The impact of an omitted bounds check
is mostly the same as omitting the associated null check,
with one exception: a missing bounds check on an array
store operation on a valid array will certainly affect valid
application data, since the access will not happen relative
to the null address but to the address of the array which
lies within the application data. The bounds check of an
array store operation is thus more important than the null
reference portion and should not be omitted. KESO splits
array-bounds checks into a null check and a bounds check
which allows them to be individually omitted.

3.3 Summary
To summarize, based on the knowledge of the address

space layout, some checks show to be less important than
others. The checks marked as local in Table 1 can be omitted
without losing the MP properties that would be provided by
an MPU. For load operations, this decision is independent
of the actual address space layout and only depends on the
data type loaded. For store operations, one has to check
whether a used portion of the address space could be affected
by an illegal store to decide whether the check is of local or
global impact. For this reason, the impact class of runtime
checks caused by store operations is denoted as local/global

0 1048576 2097152 3145728 4194304

Figure 2: Infineon TC1796 Address Space

in Table 1. Telling the actual impact class is easily possible
for store operations with a fixed, known offset from the
base address; for array operations, where the operation is
parameterized with an index value that might not be known
at compile time, the prediction has to take into account
the value range that this index may take. KESO allows
system designers to choose a small data type as needed by
the application to limit this range.

4. HARDWARE-SUPPORTED
SOFTWARE-BASED MP

Many larger microcontrollers come with a trap system
that can detect and signal certain error conditions in the
execution of a program. In this section, we analyze which of
the common runtime checks we considered could principally
be performed in hardware. The last column of Table 1
summarizes the results of these considerations, based on the
example of a TC1796 platform. A simple case of a runtime
check that is usually also performed by the hardware is the
detection of a division by zero (given that the instruction set
provides a division instruction).

Many 32-bit microcontrollers come with an MPU, which
is often left unused. Normally, an MPU is used to restrict
memory accesses of different applications to data regions
that belong to this application. In order to use this feature,
the applications have to be structured in a way that allows
identifying for each piece of data in the system the appli-
cation that this piece of data belongs to, and to physically
group data belonging to the same application in memory
(since an MPU only supports a small number of regions). In
addition to these structural requirements, the MPU needs to
be reconfigured whenever the execution changes the context
to a different protection domain. This includes the use of
system services and context switches, which can pose a sig-
nificant overhead especially for applications that frequently
communicate with other applications or the kernel; to give an
example, in CiAO the temporal overhead to the AUTOSAR
service ActivateTask() is 258% [10] when MPU-based MP
is enabled. For these reasons, an MPU is often left unused.

We found that a statically configured MPU could be used to
support software-based MP by shifting some of the runtime
checks from software to hardware, saving both the costs of
code memory and execution time without sacrificing safety.
32-bit microcontrollers are good examples of MCUs, where
large parts of the address space are often unused. Figure 2
shows used (black) and unused (white) portions of the address
space of the TC1796 MCU; more than 75% of the address
space is reserved. This still does not imply that the remaining
25% are actually being used; in fact, normally only a few MiB
of the four GiB address space actually contain application
code, application data, or memory-mapped device registers
that are actually being used by the particular application.

On any Tricore derivate, the first eight bytes of the ad-
dress space are generally reserved and the MPU provides a
designated trap (memory protection NULL trap) for accesses
to this region. This is similar to many other architectures
and is because the address 0 is commonly used as a reserved
address value. In addition, the entire lower two GiB of the

address space are reserved on the TC1796 MCU, since these
are used on processors of the line that are equipped with a
memory management unit (MMU). Consequently, without
any MPU configuration, memory accesses to the lower two
GiB of the address space would trap. Statically configuring
the MPU so that only the union of regions actually being
used by the applications in the system reduces the accessible
address space to the necessary minimum.

MPU-based protection cannot perform semantically rich
checks such as array-bounds checks, however, it is suited
to perform a large portion of the null checks in hardware.
The last column of Table 1 summarizes how MPU-based
protection can support software-based protection: null checks
for field accesses with a fixed, known and small offset from the
address 0 are likely to be completely shiftable to hardware.
For array operations, it depends on whether the widest region
that may be affected is within an unused portion of the
address space. In the case of KESO running on the TC1796
platform, if the application does not require arrays of more
than 65536 elements, the null reference portion of the array
checks can entirely be performed in hardware. This support is
particularly valuable for operations loading reference values,
where we found that an omission may result in a global
impact. For statically bound method invocations, the MPU
cannot directly detect the error at the call-site, however, with
the presence of bounds checks for array store operations and
null checks for dynamically bound method invocations the
impact of the missing check can be reduced to local.

5. BUG HIDEOUTS
In this section, we propose approaches that could be used

for the decision which checks to include and which to omit
with respect to the expected cost-benefit ratio. The ap-
proaches can also be combined. In any approach, if the used
microcontroller platform permits checks to be shifted to the
hardware as discussed in Section 4, this should always be the
first step as it eliminates the costs of these checks without
impairing the safety of the system. The considerations of the
following approaches would then be reduced to the remaining
checks.

Instruction Based. One possible approach is to choose
the more important checks based on our findings of Section 3.
By omitting checks with local impact, a safety level similar
to that provided by MPU-based MP can be retained.

By Developer. Another approach is to let the developer
partition the application with respect to the likeliness of
different modules of the software to contain bugs, and to
include runtime checks in those modules. The criteria a
developer uses to identify those modules could be based on

• Quality Assurance (QA). In some industries, the
pressure to reduce the time-to-market may prevent
all modules of a software system to undergo the QA
process. Modules that went through the QA process
are less likely to contain bugs than a module that has
not been reviewed.

• Case studies. There exist various case studies [4] that
found bugs not to be equally spread across the program,
but to concentrate in few software modules. One of the
reasons for this is the fact that not all software modules
are equally complex. An example for a fault-prone class
of software is device-drivers [16].

Feedback Approach A different approach that also builds
on the finding that bugs concentrate in few modules of a

software product [4] uses existing knowledge to identify bug-
prone modules. This knowledge could be generated by feed-
back from the testing phase, or from bugs found in previous
generations of the product. This approach can be refined
over several generations. To return to the use case of the
automotive industry, the process could be executed as fol-
lows: For the first generation of the product, feedback from
code reviews or results of the testing department are used
to identify modules where a high number of bugs have been
found; or, for the first generation of the product, all safety
checks are enabled, possibly accepting the need for a larger
variant of the microcontroller line for this generation. In
subsequent generations, reports from garages form the basis
for the identification of the buggy modules; safety checks in
well working modules could be reduced while the number
of safety checks in modules that caused problems in the
wild could be increased. This could lead to a reduction of
the number of safety checks that might allow for a smaller
microcontroller derivate in subsequent generations.

6. PRACTICABILITY
We do not yet have an embedded Java application at

hand that could provide a representative measure of the
practicability of the presented approaches, which depends
on the frequency with which the different type of checks
appear in the code base. To get an impression of the relative
frequency of the different checked instructions we considered
before, we have analyzed the bytecode of the Java class
library GNU classpath, version 0.12. We are well aware
of the fact that the code characteristics of this library are
different from those of a typical embedded application, but
still believe that the classpath library can give at least an
impression of the proportions.

Figure 3a shows the absolute numbers of the operations
that we considered in Section 3 and the check types that
each of these operations require. Noticeable is the high
number of dynamically bound method invocations as opposed
to the very few statically bound method calls. This can
be explained as follows: in Java, most instance method
invocations are dynamically bound, except for some special
method invocations (e.g., the invocation of the constructor of
the parent class). When KESO compiles Java bytecode to C
code, it determines the candidates available for each virtual
method and, if there is only a single candidate, generates
a statically bound call instead of the dynamically bound
one. Embedded applications normally make very little use of
actual virtual function calls, so that KESO is normally able
to statically bind most method invocations. For this reason,
we have not included the null checks caused by method
invocations in Figure 3b–d. Figure 3b shows the portions
of local and global null checks in GNU classpath. 22% of
the null checks stem from operations that load primitive
values (local impact), opposing 12% checks that are caused
by operations loading reference values (global impact). The
majority of 66% is caused by store operations, the impact of
which can only be told with knowledge of the address space
layout and the respective offsets. For the Tricore 1796b
microcontroller in combination with 16-bit array indexes, all
of these checks belong to the impact class local, wherefore
only 12% of the null checks need to be retained to ensure
application isolation as provided by MPU-based isolation.
Figure 3c shows the amount of the checks that could be
supported by hardware, again using the example of the

operation freq checks needed
field operations

load primitive 2380 null
load reference 1878 null
store 645 null

array operations
load size 1720 null
load primitive 2599 null + bounds
load reference 1714 null + bounds
store 19571 null + bounds

method calls
dyn. binding 24752 null
stat. binding 217 null
(a) Frequency of Operations

local	
22%	

maybe	
local	
66%	

global	
12%	

(b) null checks: Impact
Class

HW	
poss.	
56%	

HW	 not	
poss.	
44%	

(c) null+bounds checks:
HW-supportable

local	 or	
by	 HW	
61%	

global	
39%	

(d) null+bounds checks:
overall

Figure 3: Distribution of Runtime Checks in GNU Classpath 0.12

TC1796 microcontroller; basically, all null checks could be
performed in hardware, whereas the bounds checks could not.
Figure 3d finally shows that 61% of all the null and bounds
checks are either of local impact or could be performed by
the hardware.

7. CONCLUSION
In this paper, we presented the idea of applying software-

based MP gradually to spend spare resources to increase the
dependability of embedded software. The approach is based
on selecting a subset of the runtime checks based on different
criteria. We found that not all checks provide the same
degree of safety, and created a classification for the two most
common types of runtime checks, finding a subclass of checks
that is sufficient to provide a degree of spatial isolation as
required by the AUTOSAR-OS standard. We also examined
which runtime checks could be performed by a statically
configured MPU at no cost. We proposed approaches to
apply these ideas in practice, and discussed our expectation
that a significant portion of the runtime checks either could
be performed by hardware or is of an impact class that allows
its omission while retaining spatial application isolation.

8. REFERENCES
[1] AUTOSAR. Specification of operating system (version

2.0.1). Technical report, Automotive Open System
Architecture GbR, June 2006.

[2] M. Broy. Challenges in automotive software engineering.
In 28th Int. Conf. on Software Engineering (ICSE ’06),
pages 33–42, New York, NY, USA, 2006. ACM.

[3] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and
G. C. Necula. Dependent types for low-level
programming. In R. D. Nicola, editor, ESOP, volume
4421 of LNCS, pages 520–535. Springer, 2007.

[4] A. Endres. An analysis of errors and their causes in
system programs. In Proceedings of the International
Conference on Reliable Software, pages 327–336, New
York, NY, USA, 1975. ACM.

[5] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In 2002 USENIX TC, pages 275–288, Berkeley, CA,
USA, 2002. USENIX.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, 11th Eur. Conf. on OOP

(ECOOP ’97), volume 1241 of LNCS, pages 220–242.
Springer, June 1997.

[7] R. Kumar, E. Kohler, and M. Srivastava. Harbor:
Software-based memory protection for sensor nodes. In
IPSN ’07: 6st Int. Conf. on Information Processing in
Sensor Networks, pages 340–349, New York, NY, USA,
2007. ACM.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. AW, second edition,
1999.

[9] D. Lohmann, W. Hofer, W. Schröder-Preikschat,
J. Streicher, and O. Spinczyk. CiAO: An
aspect-oriented operating-system family for
resource-constrained embedded systems. In 2009
USENIX TC, pages 215–228, Berkeley, CA, USA, June
2009. USENIX.

[10] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and
W. Schröder-Preikschat. Configurable memory
protection by aspects. In 4th W’shop on Progr. Lang.
and OSes (PLOS ’07), pages 1–5, New York, NY, USA,
Oct. 2007. ACM.

[11] S. McConnell. Code Complete. MS Press, second
edition, 2004.

[12] G. C. Necula, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy code. In POPL ’02: 29th
ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 128–139, New York,
NY, USA, 2002. ACM.

[13] OSEK/VDX Group. Operating system specification
2.2.3. Technical report, OSEK/VDX Group, Feb. 2005.
http://portal.osek-vdx.org/files/pdf/specs/

os223.pdf, visited 2009-09-09.

[14] G. Phipps. Comparing observed bug and productivity
rates for Java and C++. Softw. Pract. Exper.,
29(4):345–358, 1999.

[15] E. Quinn and C. Christiansen. Java Pays – Positively.
IDC Bulletin W16212, May 1998.

[16] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. ACM
Trans. Comp. Syst., 23(1):77–110, Feb. 2005.

[17] C. Wawersich, M. Stilkerich, and
W. Schröder-Preikschat. An OSEK/VDX-based
multi-JVM for automotive appliances. In Embedded
System Design: Topics, Techniques and Trends, IFIP
International Federation for Information Processing,
pages 85–96, Boston, 2007. Springer.

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

	1 Introduction
	2 Memory Protection at Option
	2.1 The CiAO OS Family
	2.2 The KESO Multi-JVM
	2.3 Gradual Software-Based MP
	2.4 Transferability toOther Type-Safe Languages

	3 Impact Classification
	3.1 Null Checks
	3.2 Array-Bounds Checks
	3.3 Summary

	4 Hardware-SupportedSoftware-Based MP
	5 Bug hideouts
	6 Practicability
	7 Conclusion
	8 References

