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Abstract

Modern computer systems require an enormous amount of flexibility. This is especially the
case in low-level system software, from embedded devices to networking services. From
literature and practice, various approaches to modularize and integrate adaptations have
been investigated. However, most of this work is implemented with dynamic languages that
offer extensive run-time support and enable easy integration of such approaches. System
software is written in languages like C or C++ in order to minimize utilization of system
resources and maximize efficiency. While for these languages highly optimized and reliable
compilers are available, the support for static and dynamic adaptation is rather limited. In
order to overcome these limitations, we present an adaptation approach that is based on
a sophicticated combination of static and dynamic aspect weaving for aspects written in
AspectC++. This facilitates the incremental evolution and deployment of system software
that has to be "always on". We demonstrate the feasibility of our approach and its applicability
to two pieces of system software, namely the Squid web proxy and the eCos operating
system, which is used in the domain of resource-constrained deeply embedded systems.
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1 Introduction

Infrastructure software, such as network services or operating systems, is often
faced with high availability demands. This poses a real challenge when it comes to
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deploying adaptations (such as a feature extension or a bug fix) to the running system.
Application-specific approaches (such as plugins) to load adaptation modules at run
time often provide an extension interface in order to modify the behavior of the base
application. However, this approach inherently limits what the adaptation module
can change; in fact, it fails for modules that require more flexibility than what the
extension interfaces provides. A good example for such an adaptation module is a
bugfix, which potentially affects any part of the application.

One of the hardest problems with implementing adaptation modules is to specify
where to apply what changes in the base program. Aspect-oriented programming
(AOP) languages provide mechanisms to solve these challenges by obliviousness and
quantification [11]. Obliviousness means that the application of adaptations, called
aspects, can be completely oblivious to the component code, in the sense that neither
components nor their developers have to be aware of the aspects. Quantification
stands for the property that the same aspect code can easily affect several adaptation
points.

Most existing AOP approaches can be categorized as either dynamic or static,
referring to the point in time when the actual aspect weaving process is performed.
If the aspect weaver performs static weaving, the aspects are woven in at compile
time, link time, or load time. With dynamic weaving, the aspects are woven into an
already running program, which promises to overcome the limits that are imposed
by traditional extension interfaces.

Dynamic aspect weavers, which feature invasive modification of run-time behavior,
are clearly more complex and therefore seldom used than their static counterparts
for system software written in C/C++. However, they allow changing the traditional
deployment strategy for corrective changes to an already deployed software from
having to restart the whole system to a less intrusive processes. In order to bring
these benefits to legacy applications, we are looking for an infrastructure that
provides enough flexibility for more intrusive modules like bugfix hot-patches or
feature extensions. In this article, we present an approach to deploy such adaptation
modules flexibly at compile time or run time in low-level system software.

1.1 Problem Statement

Ideally, an AOP user would be able to select the aspect language and the weaving ap-
proach independently, solely based on the problem to solve. However, most existing
aspect languages provide weaver support for either static or dynamic weaving only.
What should be independent in theory, is tightly coupled in practice: the decision for
a particular aspect language involves the decision for either dynamic or static weav-
ing as well. From a user’s viewpoint, we have de facto “static” and “dynamic” aspect
languages. This is especially true with languages that are directly compiled into
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binary machine code. In the C/C++ domain there are observable differences in the
provided AOP features: The available “dynamic” aspect languages for C/C++ (such
as Arachne [9], TinyC² [37], TOSKANA [12], or KLASY [36]) offer significantly
fewer features than their “static” counterparts (such as AspectC [6], AspectC++ [32],
Mirjam/WeaveC [26], Aspicere and Aspicere2 [1,2], and ACC [14,15]). Especially
language features for generic aspects and static crosscutting are hardly supported.
This is unsatisfying; the expressive power of an aspect language (to address the
“what” part of the problem) should not depend on the intended deployment time (the
“when”) and vice versa. From the viewpoint of weaver implementation, it is, however,
understandable: Languages that are strongly based on static typing and compile-time
genericity offer hardly any support for run-time reflection, not to speak of means
for extension, adaptation, or introduction of new types at runtime. In a sense, Ada,
C and C++ are “just not designed” to support many AOP features with runtime
weaving. Nevertheless, a uniform, feature-rich, and deployment-time independent
aspect language would provide numerous benefits; Section 3 lists some motivating
application scenarios.

1.2 Our Contribution

We present results from our efforts to add dynamic weaving support to a statically
typed and compiled aspect language, for which only static weaving support had
existed before. Our approach is based on a novel combination of static and dynamic
weaving, which makes it possible to use AspectC++ features such as generic advice
(statically typed) and introductions even for dynamically woven aspects. We are not
aware of any other implementation for the C/C++ language domain that offers both,
static and dynamic weaving of aspects written in the same aspect language.

Our targeted application domain is applications that run in a resource-constrained
environment. For this reason, we cannot afford invasive modifications of the base
application, nor a heavy weighted runtime system. Instead we extend our static aspect
weaver to collect type information about the adapted software while preparing it
for dynamic weaving. This extra information is then used within the C++ template
instantiation mechanisms to generate advice code that is executed at runtime.

We analyze and discuss the combination of static and dynamic weaving with respect
to two dimensions: language and tools. On the language level, we provide an in-
depth analysis of challenging AOP features from the focus of a statically typed
base language. On the tool level, we show how we implemented them in a dynamic
weaver for AspectC++. Insights about the relationship between static and dynamic
weaving on the tool level and an evaluation of our implementation in the context
of the Squid web proxy [33] and the eCos operating system [25,10] round up our
contribution.
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Figure 1. Syntactical Elements of an Aspect in AspectC++

The article extends on previous work, as it provides an actual solution for the
problems that have been identified and briefly discussed in [31]. The focus on
the implementation challenges of dynamic weaving of static cross-cutting sets it
furthermore significantly apart from our previous work on application-tailorable
dynamic weaver run-time systems in [13].

1.3 Outline of the Article

We begin with a brief introduction into AOP and the AspectC++ language in Section
2 and the presentation of some motivating application scenarios in Section 3. This
is followed by the analysis of the implications with respect to dynamic weaving
support in Section 4. Section 5 provides an overview of related work. The concepts
and some details of our implementation for AspectC++ are described in Sections 6
and 7, followed by two case studies in Section 8. The first one shows how dynamic
weaving can help to dynamically adapt a system service – here the proxy server
Squid – both at compile time and at run time. The second study demonstrates how
our approach has been successfully deployed in the context of deeply embedded
systems. Section 9 discusses the pros and cons of our approach. Finally, our work is
summarized and some conclusions are given in Section 10.

2 AOP Concepts at a Glance

Today, most AOP languages use the concepts and terminology that was first intro-
duced by AspectJ[18]. In the remaining parts of this section, we will give a brief
overview of the most common AOP language elements in general and the AspectC++
notion in particular, as required for understanding the remaining parts of this article.
Even though the introduction is based on AspectC++, it basically holds for any
statically woven AOP language.
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2.1 Terminology

The most relevant AOP concepts are join point and advice. An advice definition
describes a transformation to be performed at specific positions either in the static
program structure (static cross-cutting) or in the runtime control flow (dynamic
cross-cutting) of a target program. A join point denotes such a specific position
in the target program. The target program implicitly exhibits – by its structure
and nature – a large set of potential join points, which are commonly called join-
point shadows [17,24]. Advice is given by aspects to sets of join points called
pointcuts. Pointcuts are defined declaratively in a join-point description language.
The sentences of the join-point description language are called pointcut expressions.
An aspect encapsulates a cross-cutting concern and is otherwise very similar to a
class. Besides advice definitions, it may contain class-like elements such as methods
or state variables.

As an example, Figure 1 illustrates the syntax of aspects written in AspectC++. The
aspect increments the member variable elements after each call of the function
Queue::enqueue(). In AspectC++, pointcut expressions are built from match
expressions and pointcut functions. Match expressions are already primitive pointcut
expressions and yield a set of name join points. Name join-points represent elements
of the static program structure such as classes or functions. Technically, match
expressions are given as quoted strings that are evaluated against the identifiers
of a C++ program. The expression “% Queue::enqueue(...)”, for instance,
returns a name pointcut containing every (member-) function of the class Queue
that is called enqueue. In the case of overloaded functions with different argument
types the expression would match all of them. Code join points on the other hand,
represent events in the dynamic control flow of a program, such as the execution of a
function. Code pointcuts are retrieved by feeding name pointcuts into certain pointcut
functions such as call() or execution(). The pointcut expression call(“%

Queue::enqueue(...)”), for instance, yields all events in the dynamic control
flow where a function Queue::enqueue is about to be called.

As pointcuts are described declaratively, the target code itself has not to be pre-
pared or instrumented to be affected by aspects. Furthermore, the same aspect can
affect various and even unforeseen parts of the target code. These principles of
obliviousness and quantification [11] are considered a major advantage of AOP.

2.2 Static Cross-cutting

An aspect that encapsulates static cross-cutting alters the static structure of the
program. In most AOP languages, such modifications of the static structure are
restricted to the extension of classes by new elements like methods, state variables
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or base classes.

In AspectC++, the encapsulation of static cross-cutting is supported by a specific
type of advice called slice introduction. Consider the following aspect, which adds
support for thread local storage to a thread control block class:

1 aspect ThreadLocalStorage {
2 advice "os::ToC" : slice class {
3 int tlsentry;
4 public:
5 int getTLS() {
6 return tlsentry;
7 }
8 void setTLS(int v) {
9 tlsentry = v;

10 }
11 };
12 };

The above aspect introduces a slice of class elements, namely the (private) state
variable tlsentry and some (public) accessor methods getTLS() and setTLS()
into the thread control block class, or, more precisely, into all classes that are matched
by the expression “os::ToC”.

2.3 Dynamic Cross-cutting

An aspect that encapsulates dynamic cross-cutting intercepts certain events in the
control flow of a running program. Aspects basically provide means to execute some
advice code before, after, or instead of (around) the current statement if the event
occurs. In the following, this is demonstrated by three different variants of an aspect
that intercepts entries into and exits from an operating-system kernel to implement
some kernel locking strategy, however, the same pattern can be used to implement
locking in any component that needs synchronization. The advice body is identical
for all three variants of the KernelLock_x aspect: it acquires the lock (which is
a member of the aspect), proceeds to the intercepted function (tjp->proceed())
and finally releases the lock.

1 aspect KernelLock_1 {
2 pointcut kernel() = "% kernel::%(...)";
3 os::Lock lock; // aspect member variable
4

5 advice execution(kernel()) : around() {
6 lock.enter();
7 tjp->proceed(); // execute the intercepted method
8 lock.leave();
9 }

10 };

In variant 1, the advice is triggered, whenever any function or method from the class
or namespace kernel is about to be executed. This, however, works only if kernel
functions do not invoke each other, as calls to lock.enter()/lock.leave()
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must not be nested. Variant 2 provides a less restrictive solution by intercepting the
kernel invocation on the caller side:

1 aspect KernelLock_2 {
2 ...
3 advice call(kernel())
4 && !within(kernel()) : around() {
5 ...
6 }
7 };

The call() pointcut function yields all events in the control flow, where a given
function is about to be called. The within() pointcut function simply returns all
join points in the given classes, functions or namespaces. By intersecting (&&) all
calls to kernel() with the negation (!) of all join points inside kernel(), the
pointcut expression finally evaluates to those calls to a kernel() function that are
not made from a kernel() function itself. This, however, has another potential
drawback: as the interception now takes place on the caller side, not only the kernel
code, but also the client code has to be woven with the aspect. In many cases, this
is not feasible. In variant 3 kernel invocation is therefore again intercepted on the
callee side, but further filtered to certain control flows:

1 aspect KernelLock_3 {
2 ...
3 advice execution(kernel())
4 && !cflow(within(kernel())) : around() {
5 ...
6 }
7 };

The cflow() pointcut function yields all code join points that occur while being
in a given control flow. The execution() pointcut function yields all code join
points, where a given function is about to be executed. The above pointcut expression
therefore evaluates to any nonnested execution of a kernel() function. Compared
to variant 2, this solution does not require weaving the client code and furthermore
reliably detects indirectly nested kernel calls.

2.4 Join-Point Context

In many cases, advice for dynamic cross-cutting needs to read or modify the join-
point–specific invocation context such as the actual argument values passed to the
intercepted function. To fulfill the goal of quantification, join-point–specific context
information has to be provided through a generic interface, as the same advice
implementation should be applicable to many different join points, such as functions
with different signatures. Most AOP languages provide a join-point API for this
purpose. In AspectC++, the join-point API is implicitly available in advice bodies
through the JoinPoint *tjp type and instance pointer:

1 aspect Tracing {
2 ...

7



3 advice execution("% ...::%(...)" && !"void ...::%(...)") : after() {
4 JoinPoint::Result res = *tjp->result();
5 cout << "leaving " << tjp->signature()
6 << " returning" << res;
7 }};

The after-advice implementation of the above Tracing aspect is generic. It can be
applied to any function with a nonvoid return type, as the join-point API provides
the required abstractions from the actual return type.

2.5 Weaving

Aspect weaving is the term used to describe the process of transforming the structure
or behavior of a program in order to let aspects “affect” other modules. The As-
pectC++ compiler weaves by transforming AspectC++ code into ordinary C++ code.
It is a preprocessor that mainly generates transparent wrapper functions. This kind
of weaving is called “static weaving” as it is performed at compile-time. “Dynamic
weaving” is a different weaving approach that supports to weave aspect code into an
already running program.

In this article we discuss both, static and dynamic weaving. In fact, our dynamic
weaver reuses the tools for static weaving, which enables us to use the very same
language for both flavors of weaving.

3 Adaptation Scenarios

Both, static and dynamic weaving, offer their own specific advantages. Supporting
both for the same aspect language would increase usefulness and reusability of
aspect code, as the same aspect can be used in very different scenarios. As a major
advantage, dynamic weaving facilitates in-vivo adaptation, that is, the modification
of a running program without having to stop it first. Typical application scenarios
include (1) hot patching of, (2) policy optimization in, and (3) “on-demand” feature
extension for long-running enterprise services [23,9]. Other suggested use cases are
introspection and debugging of system software [36]. For “development aspects”
significantly shorter compilation times are another major advantage of dynamic
weaving. This facilitates short turn-around times for the step-wise refinement of
tracing and debugging aspects.

Besides the fact that currently most “static” aspect languages offer significantly
more language features than their dynamic counterparts, a major advantage of
static weaving is efficiency. In a comparative study on Java-based dynamic weavers,
HAUPT and MEZINI observed an advice invocation cost factor of up to 10,000

8



compared to a plain method call [16]. Even though the runtime overhead of C/C++-
based approaches is lower [12,9,13,36] there probably always will be some overhead
– as well as additional memory costs for the dynamic weaver runtime system. A
static weaver, in contrast, can apply most AOP constructs absolutely cost neutral
and overhead free [21].

Interestingly, many of the aforementioned use cases for dynamically woven aspects
are actually temporary solutions. Typically, they have to be applied as dynamic
aspects only until the system can be shut down and can then be deployed as static
aspects. As we will show in the evaluation section, deploying aspects statically
is generally preferable in order to avoid unnecessary overhead. Hence, in such
cases, the combination of static and dynamic weaving would offer some noticeable
advantages:

• A hot patch (1) can be applied as a dynamic aspect to all running instances of
a service. Meanwhile, the very same patch can be applied as a (more efficient)
static aspect to the service program, resulting in a new software binary that can
be used if a new instance of the service is started.

• After the policy aspect (2) that performs best in a real-world load situation has
been found, it can become the new default and be woven in statically for the
next software release.

• If the software itself uses a concept of runtime-loadable modules, a new feature
(3) can be applied as a dynamic aspect to all currently loaded modules of the
service while being woven statically into those modules that are currently not
loaded.

As these examples show, a combination of static and dynamic weaving offers the
best of both worlds: while the extra flexibility of dynamic weaving is available at
any time, its principle overhead would only apply as long as its principle advantages
(run-time adaptation) are actually needed.

4 Analysis

In the following sections, we analyze some of the prerequisites and implications for
the development of dynamic weavers that arise from a combination of static and
dynamic weaving in the domain of statically typed and compiled languages. Our
application perspective is the scenario of an adaptable software system, which, once
deployed, is incrementally extended by aspects.
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4.1 AOP and Adaptable Software Systems

We understand an adaptable (software) system as a base program that can be modi-
fied or extended after its deployment time with previously unknown functionality by
adaptation modules. The Base program and adaptation modules are binary modules,
compiled from a set of classes or aspects. Technically, this can be understood as a
process running the base program, in whose address space adaptation modules are
loaded at runtime. “Previously unknown” means that neither nature nor structure of
an actual adaptation module needs to be known when the base program is developed
and compiled.

Knows-Relationship without AOP. With traditional modularization concepts,
this is, however, not completely true for statically compiled languages that lack
extensive support for reflection like C and C++. To provide the intended functional
change, the adaptation module has to be explicitly called from the base program’s
control flows. Furthermore, it may have to perform callbacks into the base program.
For this purpose, the base program typically defines an adaptation contract by a
set of interfaces that can be used by adaptation modules. As a matter of fact, these
interfaces, as well as all points in the control flow where adaptation may occur,
had to be known at the compile time of the base program. Conceptually, there is
some bi-directional knows-relationship between the base program and its adaptation
modules (Figure 2.a).

Knows-Relationship with AOP. A frequently made observation (first published by
COLYER, RASHID and BLAIR [7]) is that by aspects such bi-directional relationships
can become uni-directional. By the AOP concept of advice, adaptation modules can
integrate “themselves” into the base program’s control flow, freeing the base program
from the burden of specifying an adaptation interface and explicitly ensuring that
potential adaptation modules are invoked from it’s control flow. This is often referred
to as the obliviousness principle of AOP [11] and considered as highly advantageous,
as the (potential) adaptation points do not have to be known in advance. The result
is an uni-directional knows-relationship from adaptation modules to the base system
(Figure 2.b).

Knowledge hierarchy of Modules. The uni-directional knows-relationship facili-
tates incremental adaptation. By understanding an already extended base system as
the new base system, knows becomes transitive. Further adaptation can be applied
recursively, resulting in a knowledge hierarchy of adaptation modules with the base
system as root and the latest adaptation module as leaf (Figure 2.c) .

Inter-Module Crosscutting. It is the nature of a crosscutting concern that it does
not stop to cut across a system at module boundaries. Therefore, an aspect should
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Figure 2. Nature of module relations in adaptable systems: a) traditional extensible sys-
tems b) AOP-based systems c) knowledge hierarchy d) up- and downward weaving

affect all matching join points, regardless whether the base or adaptation modules
contain corresponding join-point shadows. For instance, a logging aspect in the base
system that logs names and parameters of all performed file operations should not
only affect the functions of the base system. It should also affect adaptation modules
loaded later at runtime. Otherwise the aspect’s output would be incomplete.

It is remarkable that, although they were unknown when the base program was
developed and are loaded into the base system at run time, the logging aspect can
be woven statically into the adaptation modules. The reason is that the adaptation
modules are further down in the knowledge hierarchy and the logging aspect is
known when the adaptation modules are being compiled. The only need for dynamic
weaving arises when an adaptation module contains an aspect that affects join-point
shadows within an already deployed part of the system, that is, join-point shadows
within a module further up in the knowledge hierarchy. Consider the situation that
the logging aspect is not part of the base system, but itself applied as an adaptation
module. In this case it has to be woven dynamically into the base system, but can
still be woven statically into all further adaptation modules. This is an example of a
general rule: upward weaving within the knowledge hierarchy of modules has to be
done dynamically, while downward weaving can be done statically (Figure 2.d).

4.2 Dynamic Weaving in Compiled Code

In this article we focus on aspect weaving in statically typed and compiled code, writ-
ten in languages such as C, C++, or Ada. Compared to byte-code–based languages
(such as Java), which are just-in-time compiled and executed by a virtual machine,
these languages and their execution containers offer very poor support for run-time
inspection and adaptation. This makes the implementation of dynamic weavers more
challenging. Nevertheless, quite some work has already been conducted in this area
(see Section 5), we therefore give here just a brief overview on the basic concepts of
dynamic weaving in compiled code.
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Weaver Binding. Weaver binding denotes how the advice code is actually bound
to join points at run time and how the join-point shadows are retrieved [13]. The
two general approaches used in the domain of compiled languages are binary code
patching and code instrumentation.

Dynamic weavers that are based on binary code patching modify the machine
code at run time to bind advice to specific join-point shadows. Join-point shadows
and the actual weaving positions (e.g., of function calls) in the binary code are
retrieved from linker symbol tables or debug information generated by the compiler.
Literature shows that binary code patching can be very efficient with respect to
runtime overhead of advice invocation. Arachne [9], for instance, binds around-
advice to call join points by patching the matching function calls in the machine
code, which results in very low overhead. The downside of binary code patching is
that it requires structural information of the high-level language to be still present
in the machine code. Therefore, compiler optimizations such as inlining have to
be disabled, as an inlined function call is no longer available as a call join point
in the machine code. While this is less of a problem with existing C code, modern
C++ libraries (such as the C++ STL) heavily rely on function inlining to achieve a
good performance and a small code size. Naturally, binary code patching is a highly
platform-specific approach.

A platform-independent alternative is code instrumentation. In order to retain oblivi-
ousness this is done transparently, either on the source-code level by a pre-processor,
or by the compiler itself. After the instrumentation, each potential join-point shadow
provides a hook that can be used by dynamic aspects to register advice. These extra
hooks, of course, induce some overhead. On the other hand, all join-point shadows
from the high-level language are available and all compiler optimizations can be
used. This is the approach that is used in our prototype implementation.

Run-time System. In both approaches a run-time system is needed to load and un-
load dynamic aspects at run time and to connect the advice code with the component
code. Loading and unloading of aspects is typically realized by means of dynamic
link libraries offered by the underlying operating system.

4.3 Challenges

From the viewpoint of dynamic weaving in a statically typed and compiled language,
AOP features that either depend on join-point–specific static type information or that
change the static structure of the base program are rather challenging. The generic
advice feature, which is crucial for quantification, falls into the first category, while
support for static crosscutting, namely introductions, falls into the second.
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4.3.1 Generic Advice. To induce similar, but not identical effects on a set of re-
lated join points, the aspect language has to provide means to transparently adapt the
advice behavior with respect to the actual join point it is invoked for. In AspectC++
generic advice [20] is used for this purpose. This type of advice uses static context
information provided by the join-point API to instantiate the advice code at compile
time with respect to the current join point:

1 aspect TraceResults {
2 advice execution("% %(...)" && !"void %(...)") : after() {
3 cout << tjp->signature() << "returns: " << *tjp->result() << endl;
4 } };

This simple aspect prints the values returned by all nonvoid functions from the
global namespace. Even though simple, it already depends on generic advice. The
join-point–API function tjp->result() retrieves a typed pointer to the return
value with the actual static type T of the affected function. The compiler implicitly
uses this information to find the best matching version of the stream operator <<
for type T during overload resolution. Developers can provide additional stream
operators to support streaming of user-defined data types. Thereby, the advice is
generic; it can print result values of any type for which a stream operator has been
defined. If the compiler cannot find a suitable overload of the stream operator, a
compile-time error is thrown.

Advice genericity is an important property of generic aspect languages [19]. Com-
pared to run-time genericity based on reflection, which is commonly used in Java-
based AOP approaches for similar purposes, generic advice has advantages with
respect to type safety [22]. While this is nice, the point is that in a statically typed
language, such as C++, there is no alternative to compile-time genericity. Reason-
able support for run-time–type reflection or a uniform interface (such as Object in
Java) that offers common functionality, such as toString(), is just not available.
Note that this even holds with the C++ RTTI (run-time type information), which
provides only very limited information and no polymorphic behavior. Even worse:
RTTI is available only for class types that define virtual functions, but not for plain
class types nor for the (still very common) C-style PODs (structs, arrays) and built-in
types (int, char, float).

Hence, generic advice based on static type information is a crucial feature for
dynamic aspect weavers in this domain. As this means that advice code has to be
instantiated for each join point at compile-time, a dynamic weaver that implements
generic advice requires access to all relevant type information. For our domain, we
consider adding RTTI to all classes containing join-point shadows too expensive.
We therefore focus on using type information at dynamic aspect compilation time
rather than deployment time.

4.3.2 Introductions. By the concept of introduction, an aspect can extend exist-
ing types of the base program with additional elements, such as member functions,
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Figure 3. Introductions with language-level side effects.

attributes, inner types, and base classes. A static weaver usually merges the intro-
duced code into all matching classes and thereby ensures that introduced elements
become visible before the referencing code fragments are compiled. It is, however,
impossible to modify a type ex-post in the binary code or at runtime, at least not in a
feasible way for statically compiled languages, such as C/C++. The assumptions
made by the compiler about internal layout and relationships of types are too deeply
reflected in the generated machine code. Therefore, for a dynamic weaver, the goal
cannot be to manipulate the target types at run time, but to achieve similar semantics.
This means that clients of the affected class, which are aware of the dynamic intro-
duction, shall be able to use the introduced element as if it was introduced statically.
At the same time clients, which are not aware of the introduction, must not be broken,
which means that the behavior of existing classes, methods, and members, must
not change 1 . In the following, we analyze the semantic effects of introductions in
AspectC++ and their consequences with respect to dynamic weaving:

Simple introductions. Many introductions have no semantic impact on existing
clients of the affected class. On the language level newly introduced nested classes,
enums, typedefs, attributes, or member functions are normally just ignored by exist-
ing clients. Only new clients that are aware of the aspect and the new elements can
use them explicitly. Hence, in the vast majority of cases it should be possible to dy-
namically introduce elements into classes that are defined further up the knowledge
hierarchy without affecting the behavior of their clients on the level of language
semantics.

Introductions with Language-Level Side Effects. In C++, a method that has
once been declared as virtual in the inheritance tree, remains virtual if overridden
by derived classes, whether they declare it as virtual or not. By this mechanism, a
virtual method introduced into some base class can implicitly “virtualize” existing
methods of derived classes (Figure 3 case 1, aspect Virtualize). Other side effects
are induced by the complex C++ name look-up rules. If an introduced element’s

1 As described for generic advice, we consider invasive modifications to the base program
like adding a vtable into all classes as not acceptable for our target domain.
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identifier is not new, but covers, overrides or overloads an already existing and
accessible identifier, the compiler might implicitly prefer the introduced version to
the previous one. In Figure 3, the aspect Overload introduces a method process()
for arguments of type char into class D, which overloads the already existing version
for arguments of type int. As a side effect, this new version has now to be preferred
whenever process() is called with a char argument (Figure 3 case 2), while
previously the int version was used. Similar effects can happen, if an introduced
element overrides identifiers imported from a base class (Figure 3 case 3, aspect
Override).

Even though these scenarios can (arguably) be considered as “pathological”, they are
perfectly legal and part of the C++ language semantics. For dynamic weaving they
are critical, because not only the object layout might be affected but also the behavior
of the target class and its clients. In the case of a dynamic introduction, this may
result in a different behavior of the running program than if the same introduction had
been applyed by a statically woven aspect. In order to support semantic equivalence
in such an adaptation scenario, the dynamic weaving infrastructure would need to
replace previously running (and potentially even inlined) code and transform the
internal program state to the new executable code. For our target domain, we have
identified this as not feasible and, in fact, practically impossible.

The practical consequence for the development of dynamic aspects would be to
avoid introductions that cause side effects on modules, which have already been
deployed. It is possible to detect this reliably, as these modules are known when the
aspect itself is compiled and developed.

Introductions with Code-Level Side Effects. Even if they do not cause semantic
side effects on the language level, some simple introductions cause side effects on
the machine code level. This is the case for all introductions that change the binary
representation of objects and classes in memory. Examples are introductions of
nonstatic attributes or base classes. The introduction of a virtual member function
can also change the object layout, but only if the class does not already contain a
virtual function. An additional virtual function may furthermore impact the internal
representation of the class itself, specifically the layout of its vtable.

A dynamic weaver can hardly modify the internal binary representations of objects
in the address space running modules further up in the knowledge hierarchy. Because
of that, the binary representation must also not be modified for new modules further
down the knowledge hierarchy, as we allow object instances to be passed between
different modules and the binary representation must be identical everywhere. How-
ever the introduced element can only be referenced from modules further down the
knowledge hierarchy; so it is possible to replace access operations transparently.
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5 Related Work

The AOSD community for dynamic weaving has proposed many different ap-
proaches for dynamic weaving.Most of them target the domain of byte-code in-
terpreted languages, namely Java. Much fewer have been suggested for compiled
languages such as C or C++.

5.1 Dynamic Weaving Approaches for Java

Dynamic weaving approaches for Java can be roughly categorized in based on
virtual machine extensions (PROSE [29], Steamloom [4], Axon [3]) and based on
load-time or run-time bytecode manipulation, usually by exploiting Java Hotswap or
some similar mechanism (JAC [28], Wool [30], JAsCo [34], AspectWerkz [5]). All
Java-based approaches provide means to access the current join-point context via the
Java reflection mechanism. This facilitates, from a pragmatic point of view, generic
aspect implementations. 2 AspectWerkz and Wool furthermore support introductions,
which are applied as mixins to the classes of the base program. After weaving, the
introduced elements can be accessed by explicitly casting an object reference to
the mixin interface. By the required explicit cast, AspectWerkz and Wool basically
restrict introductions to what we called simple introductions in Section 4.3.2 and
prevent the problems of side effects on the language level. Mixins have furthermore
to conform with the constraints imposed by Java interfaces, which means that only
new methods can be introduced. This additionally avoids the discussed side effects
regarding the binary representation of object instances. Only AspectWerkz provides
support for dynamic as well as static weaving.

5.2 Dynamic Weaving Approaches for C/C++

All approaches to support dynamic weaving in C are based on runtime binary
code manipulation. TinyC² [37], TOSKANA [12], KLASY [36], and Arachne [9]
are built on existing or homegrown code-instrumentation frameworks to rewrite
the binary code at run time. The actual weaving positions in the binary code are
examined with the help of symbol or debug information, generated by the C compiler
during compilation of the targets. Hence, the general restrictions of binary code
weaving discussed in Section 4.2 apply, even though KLASY overcomes parts of the
information loss by using an extended C compiler. Their gcc generates additional
symbol information and instruments the code to provide features that are unique
in this domain, such as pointcuts on data member access and join-point context

2 According to the definition by KNIESEL and RHO [19], reflection-based approaches do
not qualify for a generic aspect language.
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Figure 4. The structure of the dynamic weaving infrastructure

that includes values of local variables. Arachne specifically provides sophisticated
means for control flow matching. Means for generic aspect implementations, support
for dynamic introductions, as well as support for static and dynamic weaving are
not provided by any of the existing weavers. Neither is support for inter-module
crosscutting with yet to know modules.

6 Dynamic AspectC++

This section introduces the underlying concepts of the dynamic AspectC++ weaving
infrastructure dac++. While earlier work on dac++ focused on saving resources
by tailoring the weaver’s runtime system and exploiting a-priori knowledge about
dynamic aspects [13], we here concentrate on the design implications of the analysis
presented in Section 4.

6.1 Compilation of Adaptation Modules

During compilation of any adaptation module, two kinds of aspects have to be
considered: known and unknown aspects. Known aspects are either defined by the
module itself or by a module that was developed earlier. In the first case, aspects
can be woven completely statically as in nonadaptable systems. The second case is
trickier, as an aspect that is known does not necessarily have to be loaded already
into the system. Hence, these aspects are woven statically, but can be dynamically
turned on and off by the run-time system when the module that defines the aspect is
dynamically loaded or unloaded.

Unknown aspects, that is, aspects that will be developed in the future, could affect
any join-point shadow in the currently compiled module. Hence each module needs
to be prepared for dynamic binding of advice by our infrastructure.
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The main building block of the dynamic weaving infrastructure is a static weaver.
Figure 4 shows the structure of dac++ as well as its inputs and outputs while
compiling an adaptation module on level i in the knowledge hierarchy. The static
weaver is mainly needed to weave all known aspects statically. Besides this, it creates
a join-point repository that describes the shadows of all potential join points that are
located in modules, as well as the known aspects, pointcut definitions, and pieces of
advice. The idea behind this repository is to provide sufficient information about
join points in order to evaluate pointcut expressions without having to collect all
necessary information by parsing the source code (again).

The join-point repository of the current level i as well as the repository of level
i−1 are needed by the second dac++ building block, which is the dynamic advice
generator. It uses the repositories to find out, which piece of advice of the current
module affects join points further up in the knowledge hierarchy. For these join
points, advice has to be bound dynamically. As generic advice has to be instantiated
for each target join point, it is the responsibility of the dynamic advice generator
to provide the necessary type information about join points located further up in
the hierarchy. (Section 6.3 describes the advice instantiation in more detail). It also
generates the code that registers the dynamic advice instances with the runtime
system at load-time of the module.

All transformed or generated files are then, once again, transformed by a marker
post processor. Its purpose is to fix the code in cases where language features with
side effects on the binary representation of classes were used. As described earlier
in Section 4.3.2, critical code has to be replaced transparently. In order to avoid
time-consuming reparsing, the static weaver is extended and now marks all critical
operations. Based on this information and the join-point repository of the next upper
level, the marker post processor can deal with binary code side effects.

6.2 Dynamic Weaving Approach

The two most important approaches for weaving in compiled code were already
discussed in section 4.2. For dac++ the code instrumentation approach is used. The
source code is instrumented with an aspect, which uses regular pointcut expressions
to define the joint-point shadows, that is, the joint points that are available for
pointcuts of dynamic aspects.

The decision to use code instrumentation induces a little overhead in terms of code
size. However, here we are exploring the expressiveness of aspect languages for
dynamically woven code. Using code instrumentation guarantees that the dynamic
weaver can offer the same pointcut expressiveness as the static weaver. Technically,
the instrumentation aspect introduces a function pointer for each potential join
point. The actual weaving and unweaving of dynamic aspects is implemented by a
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module loading and unloading mechanism combined with a run-time system that
manipulates the function pointers. As the “hooks” are effectively implemented by
checking a function pointer, this ensures that the overhead is kept at a minimum.

One issue with this approach is that the number of join-point shadows in “known”
modules is finite and fixed; new join-point shadows can only be introduced by
new extension modules. This means that the decision on the amount of join-point
shadows to be instrumented directly affects the later adaptability of the system. At
instrumentation time, a tradeoff must be made between instrumenting all join-point
shadows – which would bring maximal flexibility, but also induce high run-time
costs – and too few shadows. In our experience, a good compromise is to instrument
all execution join-point shadows. Their number is relatively small (it is bounded
by the number of functions), so the run-time costs are tolerable. On the other
hand, this gives enough control to hook into all run-time control flows. Even if an
(uninstrumented) call join-point shadow was necessary, one can always fall back to
replacing the complete function that contains the call with an instrumented version –
by giving around advice to its execution join point.

6.3 Generic Advice

Advice Instantiation in the Static Case. An example for generic advice has
already been presented in Section 4.3.1. In order to instantiate the advice for each
join-point shadow, the static weaver for AspectC++ transforms generic advice into
a C++ template member function of the aspect, which itself is transformed into
an ordinary C++ class [32]. The instantiation is triggered by wrapper code that is
inserted at a specific join-point shadow. To provide the necessary type information
for the advice, a join-point–specific class is generated that contains the necessary
type information as C++ typedefs. This JoinPoint class is used as a template
parameter in the advice function call [20]. When the C++ compiler translates a
template function call, it instantiates the function (the advice in our case) if it has
not been instantiated already.

Advice Instantiation in the Dynamic Case. For join points that are located
further up in the knowledge hierarchy there is no such wrapper function that could
instantiate the advice. Instead of this, the run-time system allows to register a
function to be called when a specific dynamic join point is reached. Of course, the
run-time system can neither provide static type information nor can it instantiate the
template function at run time. Hence, the adaptation module instantiates the advice
for these join points itself. This task is performed by the dynamic advice generator
(Figure 4). It generates structures with typedefs similar to the JoinPoint classes
in the static case. The necessary type names are found in the join-point repository of
the next upper level. Furthermore, the repository provides the names of all source
files that actually define the needed types. If the types are defined in header files,
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the generator simply includes the definitions in the generated advice instantiation
module.

Dynamic JoinPoint classes alone do not instantiate advice code. Some additional
wrapper function is needed that calls the advice template functions and uses the
corresponding dynamic JoinPoint class as a template parameter. These wrapper
functions are registered with the run-time system when the module is loaded.

By this mechanism, dynamic and static advice code is transformed in an identical
manner. Thus, the same static aspect weaver can be employed. In both cases the
advice function template is parameterized with a JoinPoint type for static type
information and compile-time constants (such as the number of arguments). Run-
time–context information is passed similarly. In AspectC++, each advice expects
a parameter JoinPoint *tjp that is used to access the run-time context. In the
case of dynamic weaving, the generated wrapper functions not only provide the
typedefs in the JoinPoint type, but also the requested run-time context via the
same interface as in the static case.

6.4 Introductions

Many dynamic introductions can be woven almost “out of the box” with the weaving
infrastructure sketched so far. Only introductions that affect the binary compatibility
need to be treated with special care.

Simple Introductions. Simple introductions are woven statically into the module
that contains the introducing aspect and all modules further down in the knowledge
hierarchy. Access to the introduced elements can be performed without overhead. Al-
though the C++ compiler “sees” a different target class definition, when it compiles
a module that does not know this aspect, the binary code will still work, because the
binary compatibility is not affected.

Introductions with Language-Level Side Effects. The dynamic weaving infras-
tructure is required to detect introductions with side effects on the language level
at compile time. This is not only a matter of detecting used language features in
the aspect definition, but also depends on characteristics of the target join points.
For example, the introduction of a virtual function does not have any side effects on
the language level as long as it does not “virtualize” another function in a derived
class, as shown earlier in Figure 3. Although not trivial, this static analysis is feasi-
ble, because dac++ can use the join-point repository, which contains the required
structural information about the target component code.
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Introductions with Code-Level Side Effects. Introductions that affect the object
or class layout are more complicated. Examples are introductions of new non-static
attributes, base classes, and virtual member functions. Our approach to cope with
these cases is to manipulate all operations that depend on the modified structure.
Such operations can only exist in adaptation modules that know the introducing
aspect.

For dynamic attribute introductions, the run-time system manages the storage for
introduced elements. It furthermore provides means to map an object address to
the data structure that holds these elements. If the run-time system is asked for
that address instead of accessing the object directly, the object layout is modified
transparently.

In dac++ the transformation of the access sites is performed by the marker post
processor, based on marks that are inserted by an extended static aspect weaver. The
post processor furthermore ensures that the binary compatibility is preserved in all
modules. As the aspect weaver simply introduces new attributes as ordinary members
into target classes, the post processor has to remove these attribute declarations if
the target class was also known by modules further up in the hierarchy. This means
that the post processor needs the join-point repository of this layer.

7 Implementation

As a proof of concept, the dac++ design sketched in the previous section has been
implemented and is available at http://dynamic.aspectc.org. This section
describes the most interesting “aspects” of the implementation.

7.1 Join-Point Repository

The following listing is an excerpt from a join-point repository, as it is generated by
our static weaver ac++:

1 <files>
2 <header id="117" name="HttpHeader.h" len="266" .../> ...
3 </files>
4 <namespace id="0" sig="::"> ...
5 <class id="166" sig="HttpHeader"> ...
6 <function id="572"
7 sig="void HttpHeader::append(const HttpHeader *)">
8 <src file="401" line="419" len="13" kind="def"/>
9 <src file="117" line="201" len="1" kind="decl"/>

10 <exec id="73"/>
11 </function>
12 </class>
13 </namespace>
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The repository is an XML document that describes all known join-point shad-
ows. This includes all functions, classes, and namespaces, which are regarded
as (name) join points in the AspectC++ join-point model. In this example, a func-
tion HttpHeader::append() is listed. With <exec id="73"> ac++marks this
function as shadow of an execution join point. The pointcut evaluation mechanism
of dac++ is solely based on this information. Moreover, other applications, like
editors and development environments, could make use of the information from this
repository as well.

The <src file ="id"...> tags describe the locations in the source code where
the function is defined or declared. By looking up the file ID in the file table at the
beginning of the repository, it is possible to identify the file that has to be consulted
for the static type information for a particular join point.

7.2 Generic Advice

The key to support generic advice is the instantiation of advice code with the
proper static type information as a template parameter. As described earlier, the
dynamic advice generator produces code that is responsible for this instantiation.
The following listing shows an excerpt of the generated code as an example:

1 #include "HttpHeader.h"
2 ...
3 #include "DynamicContext.h"
4 struct StaticContext_73_0 : public DynamicContext {
5 typedef void Result;
6 static const int JPID = 73;
7 static const AC::JPType JPTYPE = (AC::JPType)8;
8 enum { ARGS = 1 };
9 static unsigned int args() { return ARGS; };

10 template <int I, int DUMMY = 0> struct Arg {
11 typedef void Type;
12 typedef void ReferredType;
13 };
14 template <int DUMMY> struct Arg<0, DUMMY> {
15 typedef const HttpHeader *Type;
16 typedef HttpHeader *ReferredType;
17 };
18 using DynamicContext::arg;
19 template <int I> typename Arg<I>::ReferredType *arg () {
20 return (typename Arg<I>::ReferredType*)arg (I);
21 }
22 static const char *signature () {
23 return "void HttpHeader::append(const HttpHeader *)";
24 } };

For each dynamically affected join point, a C++ struct named
StaticContext_<jpid>_<modid> is generated. jpid and modid are
unique numbers that represent the currently compiled module and affected
join-point shadow. The base class DynamicContext does not depend on the join
point. It defines the amount of dynamic context information that is passed from the
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run-time system to the advice code. In this example the affected join point is, again,
the execution of the function HttpHeader::append(). The static information
about this function contains the result type, the join-point ID, the join-point type
(e.g., execution or call), the number and types of arguments, and the function’s
signature as a string. The template member function arg<i>() provides the advice
code with a mechanism to access the function’s argument value at run time in a
type-safe way.

All types used in this generated struct would be meaningless without the
#include "HttpHeader.h" directive at the beginning of the listing. The genera-
tor can retrieve this file name by following the file ID in the join-point repository
(as described before). The advice instantiation itself is triggered by the following
wrapper function, which is also generated by the dynamic advice generator:

1 void __dacwrapper_1_DynamicTracer_a0_before(void *djp) {

2 typedef StaticContext_73_0 DJP;

3 Tracer::aspectof()->__a0_before<DJP>((DJP*) djp);

4 }

This wrapper function is then registered with the run-time system after the module
has been loaded. Tracer is the name of the aspect that contains the advice definition.
The member function aspectof yields a pointer to the aspect instance on which the
advice shall be invoked. As __a0_before is the internal name of the advice code,
which is transformed into a template function, this function call in fact instantiates
advice for a particular join point and provides the static information needed by
generic implementations.

7.3 Introductions

In order to efficiently map objects to their dynamically introduced members, we
decided to statically introduce a single pointer in every class that is supposed to
be a target of dynamic introductions. This is done by our static instrumentation
aspect (see section 6.2) by a combination of a static introduction and construction
advice for the initialization of the pointer. An adaptation module now attaches a data
structure that contains all introduced elements, a module ID, and a pointer to further
introductions to any target object.

The static weaver ac++ has been extended to mark 3 all introduced attributes as
well as operations that access these attributes, such as expr.attr, obj->attr,
or only attr. Based on this information, the marker post processor generates a
class definition per module/target class combination, which contains all attribute
declarations. Additionally, the marked attribute accesses are replaced by a call to
a generic run-time–system function that looks up the object’s introduction chain

3 in form of source code annotations
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for an entry with the respective module ID. If the object has not been extended yet,
an instance of the class with the new attributes will be constructed on demand and
appended.

8 Case Studies

In this section we present the results and experiences we made while applying our
dynamic weaving infrastructure to third party projects in order to demonstrate the
effectiveness and feasibility of our approach. In the first case study, the proxy server
Squid is introduced and prepared for static adaptation. This enables us to develop
dynamic aspects that support an incremental analysis of the dynamic behavior of
Squid, and eventually create a hot patch that can be applied without having to restart
the service. The second study illustrates the economical resource consumption of our
approach and, thus, its applicability to even embedded systems using the example
of eCos. eCos is a well known operating system and widespread in the area of
embedded systems. We show how to improve the static and run-time adaptability of
eCos by the application of static and dynamic aspect weaving.

8.1 Case Study 1: Weaving in Squid at Any Time

Squid is a widely used web server proxy and well known as an example for dynamic
aspect weaving in C code [8]. While earlier versions of Squid were implemented in
C, the latest version 3.X has an object-oriented design and is implemented in C++. It
is a typical long-running application and, thus, well suited to show that the scenarios
envisioned in section 3 can be put into practice with the tool chain presented in this
article.

8.1.1 Preparation of Squid. A prerequisite for dynamic weaving into Squid
is the code instrumentation, for which we use a configurable static aspect. In this
example we decided to instrument all join-point shadows of execution join points:
3099 functions. Due to the selected instrumentation and the run-time system, the
code size is increased from 1.73 MB to 1.88 MB.

8.1.2 Generic Tracing. Based on this version of Squid, we can now deploy
aspects written in AspectC++ at run time. For example, we implemented a simple
tracing aspect for all join points. While weaving the same tracing aspect statically
would take as long as completely compiling Squid with ac++ (about 17 minutes),
the compilation of the dynamic version takes only about 5 seconds. This makes
it very convenient to modify and recompile tracing aspects, when more join-point
context should be printed or only specific functions are relevant.
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Now imagine that we use Squid for web page caching in our company. One day a
user complains that he has problems to download files. While Squid is still running,
we decide to implement a tracing aspect that monitors all functions that deal with
the exchange of HTTP messages on a very detailed level:

1 aspect HTTPTracer {
2 advice execution("% ...::Http%::%(...)") : before() {
3 cout << "trace: " << JoinPoint::signature() << endl;
4 ArgPrinter<JP::ARGS>::work (tjp);
5 } };

This aspect matches 165 of the 3099 instrumented dynamic join points. It prints
all arguments of the traced functions. For this purpose, a template meta-program
ArgPrinter has to be used, which iterates over all arguments at compile-time and
thereby generates a sequence of calls to the stream operator << with the actual
argument types. An example for a similar compile-time loop over all function
arguments can be found in [22].

Our run-time system is informed about the new dynamic aspect by sending it a
process signal. It then loads the tracing aspect and we can immediately watch the
HTTP protocol related control flow. When the user repeats the malfunctioning
operation, we can see the following output:

1 trace: void HttpRequest::initHTTP(_method_t,proto...
2 Arg 1: 1
3 Arg 2: 1
4 Arg 3: /releases/edgy/beta/ubuntu-6.10-beta-dvd-i386.iso
5 trace: int HttpRequest::parseHeader(const char *)
6 Arg 1: Range: bytes=17904205-
7 User-Agent: Wget/1.10.2
8 Accept: */*
9 Host: cdimages.ubuntu.com

The output tells us that the user accesses Squid with the wget program, which issues
a “range request” for loading a partial file. It turns out that this particular version of
wget contains a bug in the code that handles our reply on the range request. 4

8.1.3 A Dynamic Hot Patch. After localizing the problem we can now use a
dynamic aspect to fix the problem without having to stop the program. The following
aspect does the job (match expressions are truncated):

1 aspect CheckForBrokenWget {
2 advice "HttpRequest" : slice class {
3 bool _clBroken;
4 public:
5 bool clientIsBroken() const { return _clBroken; }
6 void clientIsBroken(const char *s) {
7 _clBroken = strstr(s, "Wget/1.10.2");
8 } };
9

10 advice execution("% HttpRequest::parseHeader...") :
11 after() {

4 In fact wget 1.10.2 works fine. This is a hypothetical scenario.
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12 tjp->that()->clientIsBroken(*tjp->arg<0>());
13 }
14 advice execution("bool HttpStateData::decide...") :
15 after() {
16 HttpRequest *request = *tjp->arg<0>();
17 if (request->clientIsBroken())
18 *tjp->result() = false;
19 } };

The first part consists of a slice introduction, which was introduced in Section 2.2.
Here it contains a boolean attribute, a function that checks for the name and version
of the buggy client and sets the attribute accordingly, and a function to read the flag.
From our source code and tracing output studies we know that the control reaches
HttpRequest::parseHeader(), whenever an HTTP message is received. By
calling the introduced method HttpRequest::clientIsBroken() we check
whether this message comes from a buggy client. Later on in the control flow, Squid
has to decide whether the range request should be handled. This is done by the
function, which is affected by the second piece of advice. It checks if our introduced
flag is true and manipulates the result value of the decision function accordingly.
This fixes the problem, because client and server then use an ordinary transfer mode.

After testing the patch with a separate instance of Squid, it can be deployed dynami-
cally. During the whole process our production system never had to be stopped. We
can now weave the same aspect statically into the Squid source code in order to get
an improved version that implicitly contains the fix.

8.1.4 Performance and Code Size. An important question for the applicability
of the approach is whether the performance impact of instrumentation is acceptable,
that is, how much one has to pay for the ability to apply patches at run time. We
retrieved this cost factor by comparing the throughput (requests per second) of the
standard version and the fully instrumented version of Squid 5 . The following table
lists the results: 6

module localhost [req/s] remote [req/s]

squid 3044 1353

squid-instrumented 2834 1338

When measuring the overhead by running the benchmark application on the same
host, the actual overhead is shown precisely. However, this is not entirely realistic,
as this setting ignores the network induced jitter (e.g., by routers, switches, etc.) for
the incoming requests and sent replies. For this reason, this evaluation measures
both cases. In a localhost access scenario, the instrumentation causes a performance

5 The latter without any further adaptation modules loaded
6 Measurements taken on an 2.4 GHz Intel Core2 Quad (Q6600) running Apache Bench-
mark (ab) under Ubuntu Linux 8.04.1 (kernel 2.6.24) on the same machine (localhost),
respectively over switched ethernet (remote). Values are averaged over 500,000 requests.
All code (squid-3.0.PRE4, ab, aspects) was compiled with g++ 4.1.2 -O2.
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loss of seven percent (3044 versus 2834 connections/s). In the more realistic remote
access scenario, however, the difference drops to one percent (1353 versus 1338
connections/s). We consider this overhead as acceptable for the gained flexibility.

As mentioned earlier, the code size of Squid was increased from 1.73 to 1.88 MB
(8 percent) due to the instrumentation of 3099 static join points and the run-time
system. Besides Squid itself, also the dynamically loaded modules contribute to the
overall code size in the instrumented version. The following table shows the static
memory requirements:

module text data bss total [byte]

squid 1,110,997 4828 61,1636 1,727,461

squid-instrumented 1,259,692 4860 61,6340 1,880,892

HttpTracer 110,734 268 736 111,738

CheckForBrokenWGet 4559 276 68 4903

The HttpTracer module is with a total of 112 KB much bigger than our hot patch,
which takes only 5 KB. The reason is that it affects 165 join points: The tracing
advice, which contains relatively expensive streaming code, has to be instantiated
for each of these points. Additionally, the static context information for each join
point contains the executed function’s signature as a string. The patch on the other
hand has an almost negligible code size. Here only two join points are affected.

8.2 Case Study 2: Static and Dynamic Adaptaion of the eCos Operating System

eCos is a small and highly configurable operating system targeting the market of
embedded systems. It is available for a broad variety of 16 and 32 bit microprocessor
architectures (PPC, x86, H8/300, ARM7, ARM9, . . . ) and used in many differ-
ent application domains (MP3 player, digital cameras, printers, routers, . . . ). The
eCos system itself is provided as a congregation of various components, which are
configured statically with a configuration tool called eCosConfig. The components
are implemented in a mixture of C++, C, C-preprocessor macros and assembly
code. After the user selects an appropriate eCos configuration within eCosConfig, a
configuration-specific system of headers and makefiles is generated, which is used
to build the eCos-library. The final applications are linked against this library.

8.2.1 Analysis. In the context of this case study, we analyzed several parts
of the eCos system (kernel, C library, POSIX subsystem, µITRON subsystem,
Memory Management, Wallclock Driver, and Watchdog Driver) with respect to their
adaptability. In this case study we will exemplarily concentrate on the eCos kernel.

For system software clean encapsulation of the different features is crucial in order
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to be adaptable. Therefore, our first goal was to figure out the positions and the
amount of code that implements highly crosscutting concerns and locally crosscut-
ting optional features. The analysis revealed that 20.54% of the kernel source code
is needed to implement four highly crosscutting concerns (CCCs): Tracing, Asser-
tion, and Kernel Instrumentation (profiling) for development support and Interrupt
Synchronization. The following table (column “original”) presents the numbers for
each of these concerns individually. Actually, these figures only reflect the number
of call sites activating these crosscutting concerns, the functional parts of their
implementations were not taken into account here.

original aspectized

LOC % LOC %

CCC Code 1069 20.54 % 290 6.41 %

Component Code 4136 79.46 % 4237 93.59 %

Total 5205 100.00 % 4527 100.00 %

The results of the analysis show that eCos indeed is configurable to a great extent,
but certainly lacks adaptability. The high portion of crosscutting concerns and the
amount of scattered configuration options in the eCos kernel indicate that complex
correlations between different features exist on the level of the implementation.
These correlations make it very hard to omit certain features or add new ones. In
other words, these correlations hamper the adaptation of the eCos kernel.

8.2.2 Static Adaptability. During the case study, we enhanced the adaptability
of eCos by “aspectizing” the highly crosscutting concerns and crosscutting optional
features mentioned in the previous section. The necessary refactoring of the source
code was straight forward, as the affected code was easy to spot. Highly crosscutting
concerns such as Tracing are realized as macros to avoid code redundancy. Optional
feature implementations are bracketed by preprocessor directives for conditional
compilation.

The refactored code was also analyzed and the results are shown in the table below.
This analysis is a refinement of the one presented above with respect to the cross-
cutting concerns, only. These results clearly illustrate, that most of the crosscutting
concerns and optional features could be modularized very well by aspects. However,
we were not able to modularize assertions, due to their individual semantic, and
features implemented in C, as our aspect weaver is not capable of weaving in pure
C code.
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original aspectized

Tracing 336 4

Assertions 384 286

Kernel Instrumentation 162 0

Interrupt Synchronization 187 0

Total 1069 290

8.2.3 Dynamic Adaptation. The Mars Pathfinder mission launched in 1996 is
one of the most well-known space missions of the foregoing decade. On the one side,
because it was the first mission to Mars that included a rover (robotic exploration
vehicle). On the other side, because of the problems experienced during this mission
[35]. After a few days of successful operation the spacecraft experienced total system
resets and each of these resets caused a loss of valuable meteorological data.

The absence of the tracing facility on the spacecraft forced the engineers to spend
hours running the system on the exact spacecraft replica in their lab with tracing
turned on, in an attempt to replicate the precise conditions under which they believed
that the reset occurred. The traces finally revealed the priority inversion scenario.
The problem was that while a low and a high priority task were competing for the
same mutex, a middle priority task preempted the low priority task holding the mutex
and, thus, prevented it from unlocking the mutex. The high priority task, thereby,
was delayed too long and missed its deadline. This in turn, caused a watchdog to
go off and reset the whole system. While such a scenario does not cause too much
trouble in normal computing systems it is a serious problem in a real-time computing
systems and known as uncontrolled priority inversion. Mutexes in VXWorks (the
operating system used for this mission) could either be equipped with the priority
inheritance protocol or not. Initially the mutex entailing the priority inversion was
configured not to use the priority inheritance protocol. A C-interpreter, embedded
into the computing system on the spacecraft, helped to fix the problem by uploading
a C-program to the spacecraft with the purpose to enable the priority inheritance
protocol for the particular mutex. From this point on, no priority inversion occurred
any more. The problem was solved and the mission could be finished successfully.

8.2.4 Motivation. Both the tracing facility and the C-interpreter were absolutely
crucial to solve the problem. However, the absence of the tracing facility in the
actual system made it extremely hard and time consuming to locate the problem.
Additionally, the support for the priority inheritance protocol was statically embed-
ded in the computing system of the spacecraft, but what would have happened if
it was not? Or if the C-interpreter was not a part of the computing system due to
memory restrictions? The problem would have been unsolvable, the mission would
have failed!
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Furthermore, one should keep in mind that the scenario described above can not only
be caused by design faults, but also in the context of run-time adaptation. Consider
you want to extend the functionality of a running system. Therefore, it might be
necessary that additional threads have to be added which also have to lock a specific
mutex. In such a scenario the conditions that enable priority inversion can easily be
fulfilled by accident.

An alternative solution for such problems is provided by dynamic aspect weaving.
Tracing and the priority inheritance protocol, both implemented as dynamic aspects,
could then be uploaded to the spacecraft and woven into the running system. There is
no need to embed the priority inheritance protocol from the very beginning anymore;
it would be loadable on demand. It would not be necessary to have a fully developed
C-interpreter, only an infrastructure is needed that allows to weave aspects during
runtime. In a former case study [31] we have already shown that tracing could
be implemented by a dynamic aspect without suffering significant overhead in
comparison to a static tracing aspect. Here we demonstrate that the eCos’ priority
inheritance protocol could also be implemented as dynamic aspect without having
to put up with unacceptable overhead in comparison to static aspects.

8.2.5 Implementation. We already re-factored eCos’ priority inheritance proto-
col into a static aspect in previous work [21]. In the priority inheritance implementa-
tion of eCos the owner of a mutex inherits the priority of a thread trying to lock the
same mutex and, thus, blocks. The owner’s priority is set back to its original priority
when it has unlocked all mutexes it owns, therefore, the count of mutexes locked
by one thread has to be tracked. This variant of the priority inheritance protocol
induces slightly longer blocking times when a thread holds more than one mutex,
but simplifies the implementation a lot. The implementation as static aspect gives
advice on the construction of a thread to initialize the number of mutexes locked and
to the methods mutex_lock(), mutex_unlock() and mutex_trylock()
of the mutex class to update the count of locked mutexes. Call advice on the acti-
vation site of the scheduler within method mutex_lock() transfers the priority
of the blocking thread to the owner of the mutex while execution advice on the
method mutex_unlock() checks whether all mutexes are unlocked again and
the owner’s original priority has to be restored.

The conversion from the static aspect to a dynamic version was very straightforward
and demanded virtually no manual intervention. The dynamic advice transferring
the blocking thread’s priority to the owner of the mutex is shown below:
1 advice call("% Cyg_Scheduler::reschedule(...)")
2 && within("% Cyg_Mutex::lock_inner(...)")
3 : after() {
4 Cyg_Thread self = Cyg_Thread::self();
5 inherit_priority(tjp->that()->owner,self);
6 }
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Figure 5. Execution sequence without and with priority inheritance protocol.
system call description

a mutex_lock(&mutex) successfully lock mutex

b thread_resume(high_prio) activate thread high_prio, a context switch occurs

c thread_resume(mid_prio) activate thread mid_prio, no context switch occurs
as mid_prio’s priority is lower than high_prio’s
priority

d mutex_lock(&mutex) try to lock the mutex, as it has already been locked
by low_prio, high_prio blocks

e thread_exit() the current thread finishes execution, a context
switch occurs

f mutex_unlock(&mutex) thread low_prio unlocks the mutex, a context
switch occurs as a thread with a higher priority is
already awaiting the allocation of the mutex

g mutex_unlock(&mutex) thread high_prio unlocks the mutex
Table 1
System calls used in the test application

8.2.6 Evaluation . In order to evaluate our implementation we implemented a
small, synthetic eCos test application leading to a priority inversion scenario. At
first, this scenario was executed with no priority inheritance protocol present. Then,
the dynamic priority inheritance protocol aspect was woven into the system and the
same scenario was executed again. The exact execution sequence of both scenarios
is depicted in Figure 5, the system calls used at each step of the execution sequence
can be obtained from Table 1.

The test application was then linked against four different variants of eCos. Two
variants contained support for the weaving of dynamic aspects. In the first of those
two variants (variant dynamic (perfect)) only these join points needed to weave the
dynamic priority inheritance aspect are hooked. This variant illustrates the overhead
of the dynamic aspect itself. The second variant (variant dynamic (flexible)) hooks
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all methods of the classes Cyg_Thread and Cyg_Mutex for dynamic execution
join points and all call sites within these classes for dynamic call join points. This
variant also would allow to implement other synchronization mechanisms that affect
more join points and illustrates the price one has to pay for dynamic adaptation. The
other variants use static aspects (variant static), only, and either contain the priority
inheritance protocol or not.

The test application and the eCos operating system were compiled and linked
using the GNU compiler collection and the GNU bintutils 7 . The testcase scenario
was executed on a Pentium III (1 GHz) with caches turned on. The binary was
downloaded onto the target machine using eCos Redboot 8 and gdb via the serial
line and the gdb remote protocol. The memory consumption of the eCos kernel was
determined by analysing the memory map file generated by the GNU linker. For run
time measurements the test application was executed for 4000 times and the average
values of all these measurements obtained by the pentium’s rdtsc instruction were
computed.

The analysis of the memory consumption of the different variants of the test appli-
cation is mainly restricted to the eCos kernel, the priority inheritance aspect and
the dynamic weaver infrastructure. The results of the analysis are shown in Table 2.
Kernel subsumes the total memory consumption of the eCos kernel, Priority Inh.
and Weaver refer to the memory consumption of the dynamic or the static aspect
and the dynamic weaver infrastructure and are already contained in the kernel’s
memory demand. Column Total shows the memory consumption of the complete test
application. For a perfect hooking (variant dynamic (perfect)) the memory overhead
within the eCos kernel is very low, only 144 bytes of RAM and about 1.5 KB of
ROM plus 52 bytes of ROM for the dynamic weaver infrastructure are additionally
needed in comparison to the variant employing static aspects only (variant static
(priority inh.)). As soon as more join points are hooked (variant dynamic (flexible)),
the memory requirements are noticeably increased by the dynamic weaver infrastruc-
ture, extra 628 Bytes of RAM and about 8 KB of ROM are needed in comparison
to variant static (priority inh.). Keeping in mind that the complete test application
consumes about 26 KB of RAM and between 18 KB and 27 KB of ROM, this is still
a price that is affordable and should be definitely cheaper than embedding a fully
developed C-interpreter. There is no RAM and only very little ROM consumption
declared for the dynamic weaver infrastructure, because a direct consequence of
our dynamic weaver implementation is that the memory overhead caused by join
point monitors is spread over the whole system and is already contained by the
RAM and ROM demand of the kernel. The memory demand of the dynamic priority
inheritance aspect looks quite large in contrast to the static aspect. This is because
the static aspect uses introductions a lot, thus, this memory demand is assigned
to the kernel itself, while the memory demand for the introductions of a dynamic

7 gcc version 4.03, binutils version 2.16.1
8 the boot loader provided along with eCos
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Kernel Priority Inh. Weaver Total

RAM ROM RAM ROM ROM RAM ROM

dynamic (flexible) 2834 13478 168 2562 52 27177 27738

dynamic (perfect) 2350 6800 136 1554 52 26721 21130

static (priority inh.) 2206 5375 0 77 0 26495 18325

static (no priority inh.) 2194 4427 0 0 0 26445 17305

Table 2
Memory consumption of the different eCos variants measured in bytes.

aspects are fulfilled by the aspect itself.

For the assessment of the run-time overhead imposed by the dynamic aspect and the
dynamic weaver infrastructure we measured the execution time of the methods that
are affected most by the priority inheritance protocol: these are mutex_lock()
and mutex_unlock(), each with and without a subsequent context switch (refer
to a,d,f,g in Table 1 and Figure 5). The results of these measurements are shown
in Figure 6. These results confirm the results of the memory measurement. Variant
dynamic (perfect) only shows minimal decline of run-time performance in contrast
to variant static, that is, the run-time cost of one hook and the dynamic aspect is quite
small in comparison to the static aspect. As soon as more join points are hooked
(variant dynamic (flexible)) the run-time overhead increases and reaches a factor up
to about two (mutex_lock (d), priority inheritance protocol enabled). The only figure
not fostering this observation is the execution time of mutex_unlock() when
no context switch follows and the priority inheritance protocol is enabled. Here
the variant hooking more join points (dynamic (flexible), 391 clock cycles) is faster
than the variant that only hooks those join points that are really needed (dynamic
(perfect), 440 clock cycles). Actually, this system call even executes faster with the
dynamic aspect woven (with priority inheritance protocol) than without the dynamic
aspect (without priority inheritance protocol, 398 clock cylces). There are some
explanations possible: caching effects, code alignment, DRAM refresh cycles, etc.,
but it is nearly impossible to identify the one of them that really causes the different
execution times. The only thing that is almost sure is that there should be no relation
to the code of the dynamic weaver infrastructure. In variant dynamic (perfect) the
dynamic weaver infrastructure is activated twice during this system call, while it is
activated for six times in variant dynamic (flexible). The rest of this system call and
the code of the dynamic weaver infrastructure are identical for both versions.

9 Discussion

Our case studies show that for many concerns in both system software like network-
ing services and deeply embedded system software, aspect-oriented implementations
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Figure 6. Run-time performance comparison of different eCos variants.

and especially dynamically woven aspects are affordable. By the refactoring and
the integration of the dynamic weaver infrastructure into the proxy server Squid and
the operating system eCos we have shown that dynamic deployment of adaptation
modules is both affordable and feasible. These systems now offer both improved
static as well as dynamic run-time adaptability: Better static adaptability, because
crosscutting concerns and crosscutting optional features are now cleanly modular-
ized and encapsulated, and better run-time adaptability, because it is now possible to
adapt to changing requirements at run time. However, the case studies also illustrate
that dynamic adaptation is not for free, especially when many join points have to be
instrumented the overhead increases sensibly.

Our approach is conceptually and technically based on two fundamental observa-
tions:

• Modules in an AOP-based adaptable system constitute a knowledge hierarchy.
• Run time weaving of a dynamic aspect is required only upwards the knowledge

hierarchy. Downwards the hierarchy, static weaving can be used instead.

Because of these observations statically and dynamically woven aspects can use
static type information when accessing join-point–specific context. This is the pre-
requisite for the major advantages: the support for generic aspect implementations
by means of generic advice and the support of static crosscutting (structural modifi-
cations by means of introductions).

Generic Advice and Introductions. Important AOP features for generic aspect
implementations and static cross-cutting have not been available with dynamic aspect
weaving in statically typed and compiled languages before. Due to the combination
of static and dynamic weaving this is now possible with our approach.

Generic advice is supported, because the approach makes it possible to distribute
the instantiations of the context-dependent parts of the advice code. The advice
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instances for join-point shadows in already deployed modules are generated when
the aspect (module) is compiled. This is possible because of observation (1). Ad-
vice instantiation for join-point shadows from yet to know modules is postponed
until they are known – by generating them with the static weaver when the respec-
tive module is compiled. This is possible because of observation (2). As a result,
each aspect (module) carries the join-point–specific advice instantiations for all
previously deployed modules, while each module carries join-point–specific advice
instantiations from all previously deployed aspects.

Introductions are supported as they are only visible downwards the knowledge
hierarchy and, hence, can be applied by the static weaver. This is possible because
of observation (2). Static weaving provides the necessary means to replace dynamic
introductions that induced side effects in the machine code by semantically equiva-
lent proxies. Because of observation (1), it is furthermore possible to detect potential
language-level side effects with modules further up the knowledge hierarchy, hence,
reach safety.

A Single Language. The availability of introductions and generic advice further-
more closes the expressiveness gap between “static” and “dynamic” aspect languages
for this domain. Thereby a real single language approach becomes feasible. In our
implementation, the same AspectC++ aspect code now can be woven either dynami-
cally or statically. This increases the reusability of aspects and their applicability to
different adaptation scenarios.

Implicit Type Safety. The approach provides implicit type safety for dynamic
aspects. With respect to known modules, type problems are detected at compile-time
of the dynamic aspect. With respect to yet unknown modules from further down the
hierarchy, they are detected at compile-time of the respective module. In the first
case the issue has to be solved in the aspect, in the second case in the new module.

Resource-Optimal Weaving. In contrast to dynamic weaving, static weaving
is, in principle, overhead free [21]. By falling back to static weaving whenever
possible and using run-time weaving only when actually required, the approach is
resource-optimal with respect to an AOP-induced overhead.

9.1 Remaining Issues

Side-by-Side Development Restrictions. To ensure completeness of aspect ap-
plication, the knowledge hierarchy has to be in theory a knowledge chain; at the
time of deployment, unknown sister modules in the knowledge hierarchy may cause
problems. The reason is that for join-points in such sister modules, generic advice
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would not be instantiated at either side; hence, the dynamic aspect could miss some
some relevant join points.

It is, however, a matter of design rules if modules from different branches of the
knowlegde hierarchy should actually be able to influence each other. Note that even
in such cases it is nevertheless possible to develop adaptation modules independently
– only at the time of final compilation and deployment there has to be a total order
between them. The adaptation of the system is performed strictly incrementally:
system = (...(base+m0)+m1)+ ...+mn)

Introduction Side Effects. The (technical) problem that language level side effects
of introductions cannot be applied dynamically hampers the goal of a single language
approach. It can lead to situations where aspects that could have been applied
statically cannot be applied at run time; thus, we have a semantic difference between
static and dynamic weaving.

A possible solution would be to introduce new elements generally in a way that
they do not “pollute” the namespace of the target class, but have to be looked up via
their own namespace. As mentioned in Section 5, several Java-based approaches
follow this strategy by applying introductions as mixins. This automatically prevents
accidental side effects. However, it also hinders intended side effects: Especially in
combination with generic and generative programming in C++, the possibility to use
aspects for noninvasive overloading or overriding of identifiers in the namespace of
an existing class is quite handy. Furthermore, placing introduced elements into an
extra namespace would significantly change the current semantics of introductions
in AspectC++. Therefore we have refrained from such solution.

Advice Ordering. An unsolved problem is the ordering of static and dynamic
aspects that affect the same join point. Here AspectC++ provides a sophisticated
mechanism: programmers can specify a required partial order of aspects per join
point. In our current implementation, dynamic aspects can be ordered by the run-
time system, but all dynamic advice is executed indirectly by the static module
instrumentation aspect and, thus, inherits its precedence.

9.2 Applicability to Other Language Domains

While the approach is specifically suited to level the expressiveness gap between
“static” and “dynamic” aspect languages for binary-code languages such as Ada,
C, or C++, it is as well applicable for byte-code based languages such as Java or
C#. Many dynamic weavers in the Java domain already provide support for generic
aspect implementations and introductions; hence the “feature-question” is not that
pushing here. However, they generally seem to suffer from significant performance
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penalties [16]. On the static side of aspect weaving, approaches such as Spoon
AOP [27] have demonstrated that generic advice based on static type information is
possible and beneficial with Java as well – specifically with respect to performance.
Hence, it should be possible to build a dynamic weaving framework similar to our
dac++ on top of their static weaving framework, potentially resulting in a highly
efficient approach for static and dynamic weaving in Java.

10 Summary and Conclusions

We have described a novel approach for dynamic weaving based on static weaving
in adaptable systems. Our work focuses on statically typed and compiled languages
such as Ada, C or C++. The suggested approach makes it possible to use static join-
point context even for dynamically applied aspects, which in turn facilitates AOP
features for static cross-cutting and generic aspect implementations that had been
unavailable with dynamic weaving before. Our results furthermore show that there is
no reason for the current de facto distinction between “static” and “dynamic” aspect
languages. It is possible to provide the same amount of AOP features independent
of the intended aspect deployment time. Thereby, aspects follow a tradition of other
modularization entities from the domain of binary-code compiled languages such
as linker libraries, which were first available for static linking only. Today, the
decision between static or dynamic linking is transparent, merely just another linker
switch. Such deployment transparency is now possible with aspects as well. This
was demonstrated with the Squid web proxy example.

The aim of this work was also to show the limits of dynamic weaving in this language
domain. The most severe problems are caused by introductions with language-level
side effects and the lack of side-by-side development support. As our example shows,
many useful applications scenarios are possible regardless of these restrictions.
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