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Abstract—Creating a valid software configuration often in-
volves multiple configuration file types, such as feature models,
domain-specific languages, or C header files with preprocessor
defines. Enforcing constraints across file types boundaries already
at configuration is necessary to prevent inconsistencies, which
otherwise are costly to discover and resolve later on.

We present a pragmatic framework to specify and apply
inconsistency-resolving fixes on configuration files of arbitrary
types. The framework converts each configuration file to a model,
checks it for consistency, applies fixes, and serializes it back again.
We argue that conventionally programmed fixes and round-trip
mechanisms (i.e., converters and serializers) are indispensable for
practical applicability and can provide sufficient reliability when
following usual development practices. We have developed round-
trip mechanisms for seven different configuration file types and
two fixing mechanisms. One fixing mechanism extends previous
work by combining automatic detection of correct fix locations
with a marker mechanism that reduces the number of locations.

A tool-supported process for applying the fixes provides user
guidance and integrates additional semantic validity checks
on serialized configuration files of complex types (e.g., feature
models). Evaluations reveal a speed up in inconsistency fixing and
that the performance of the currently integrated round-tripping
and fixing mechanisms is competitive.

I. INTRODUCTION AND MOTIVATION

Creating a consistent configuration (e.g., of a software
product line) often affects various types of configuration files
with subtle dependencies. Whereas customer-visible variability
might be bound via selecting feature model options, the
deployment of software to physical nodes may reside in domain-
specific models or text files,while fine-tuning is done via
preprocessor variables in C header files. Choosing certain
feature model options may constrain choices in the domain-
specific model, while setting a preprocessor variable in turn
may presuppose a feature to be set. Configuration complexity
increases further when employing configurable off-the-shelf
components (e.g., Apache, Oracle) or when building combined
products including other product lines, which in turn expose
their variability via certain configuration file formats.

In previous work, we have developed an infrastructure
[1] that enables converting arbitrary configuration files to
models in order to define and check cross-configuration-file
constraints using model-based constraint languages (e.g., as
OCL expressions). Yet, our approach has required fixing each
reported inconsistency manually in the original configuration

file. We improve on that in this paper by contributing the design
of an extensible framework for (semi-)automatically applying
inconsistency fixes directly on model level and serialize the
changes back to the original configuration files.

The framework converts each configuration file to a model,
checks it for consistency, applies fixes, and serializes it back
again. Basically, this paper gives answers to three questions:
(1) How to develop reliable round-trip mechanisms (i.e., model
converters and serializers) both for simple (e.g., Java property
files) and more complex (e.g., feature models) configuration
file formats? (2) Which fix mechanisms can we provide for
simple (one element to change) and complex fixes (dozens of
elements to change)? (3) How can we support the user during
fix application in the best possible manner when dealing with
complex fixes and complex file formats?

After outlining the framework in Section II, we give answers
to this questions:

(1) In Section III, we will show that existing tooling and
common development practices enabled us to develop
reliable round-trip mechanisms for various configuration
file formats (Ecore DSMs, XText DSLs, XMLSchema
XML, Java property files and C header files with #defines)
with reasonable effort. For some complex file formats
(e.g., pure::variants1 feature models) we can, however,
not avoid that semantic inconsistencies are introduced
(e.g., that constraints defined in the feature model are
violated) when applying fixes on the model.

(2) In Section IV, we argue that, although imperatively
programmed fixes are unavoidable for complex fixes,
many simpler fixes can correctly be derived from the
constraint that checks for an inconsistency. Therefore
we integrate both an imperative mechanism and an
adapted version of a derivative fixing mechanism into
the framework.

(3) In Section V, we present a tool-supported process for
applying the fixes. It supports the user when dealing with
imperatively programmed fixes and complex file formats
by providing user control and guidance functionality and
by incorporating additionally semantic validity checks
on the serialized configuration files.

We implemented the framework, which currently incor-

1http://www.pure-systems.com/, visited 2011-05-22.
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Fig. 1. Product line engineer and configuration engineer using the inconsistency fixing framework.

porates seven round-trip and two fixing mechanisms, as an
Eclipse extension. We performed evaluations indicating that its
performance is competitive and that the fix application process
speeds up inconsistency fixing compared to manual adaptation
of configuration files (Section VI). Finally, we discuss and
conclude the paper (Sections VII and VIII).

II. OUTLINE OF THE FRAMEWORK

In this section, we give a general outline of the configuration
inconsistency fixing framework. It builds on the general assump-
tion that each artifact involved in product line configuration
can be mapped into the modeling world and back again (round
tripping). Hence, modeling serves as a pivot technology for
defining constraint checks across file type boundaries and for
applying fixes in case of constraint inconsistencies.

In the following, we will first introduce general modeling
terminology and its correspondence to product line configura-
tion. Then, we outline the framework, which reveals that the
round-trip and fixing mechanisms constitute its crucial parts.

A. Modeling Terminology

A model is a formal abstraction of a concept (e.g., a
physical system or software) describing its concrete entities
and relationships [2]. The formal rules, which specify the entity
and relationship types allowed in a certain model, are provided
by its metamodel. As an example, a simple metamodel for
modeling #defines in a C header file will comprise the root
entity type DefineList, which contains an arbitrary number
of Define elements, which in turn have a name and a value
element of type string. A model conforming to this metamodel,
for instance, defines a concrete DefineList comprising one
Define with name = "REDUNDANT_FC" and value =
"1". For specifying metamodels, a metamodeling technology
is used (e.g., Eclipse Ecore [3]).

Constraints and fixes on models usually are specified
using the elements defined in the metamodel. An expressive
metamodel providing meaningful construct names and types is
therefore essential for easy definition of constraints and fixes.

B. Product Line – Model Correspondence

For simplification, we merely regard a software product line
as a piece of configurable software. The configuration of a

concrete product of the product line is described by its current
set of configuration files (e.g., web-server configuration files,
C header files, or domain-specific models and text files). The
product line itself defines, either implicitly or explicitly, the
set of configuration file types it can deal with (the web-server
configuration language, a domain-specific grammar, etc.).

For the purpose of constraint checking and fixing, it is neces-
sary to map each artifact involved in product line configuration
to its corresponding representation in the modeling world. As
we also argued in [1], each configuration file can be mapped to
a model; the elements and the relations allowed in the certain
configuration file (i.e., the configuration file type, such as the
configuration file grammar) are converted to the metamodel
of this model. Summarizing, it is necessary to transform the
concrete configuration of a product line to a set of models, the
product line itself to a set of metamodels.

C. Usage Setup for the Framework
Given the previous assumptions, Figure 1 outlines the usage

setup of our inconsistency fixing framework for principally
arbitrary configuration file types. It involves two roles: product
line engineer and configuration engineer. The former specifies
the set of possible configuration file types a product line can
deal with (1). Our framework converts them to metamodels
using metamodel converters. Then, the product line engineer
implements the domain constraints and fixes (2), thereby using
the constructs and types defined in the metamodels. The
configuration engineer, in turn, creates the configuration files
of a concrete product (3), which our framework transforms to
models conforming to the metamodels using model converters.

The framework then constraint checks the generated models
(4) in the background. For each constraint that does not hold, the
configuration engineer may choose to apply fixes (5) associated
with the constraint. Finally, a model serializer component writes
the changes back to the original file.

The development of reliable round-trip mechanisms (i.e. the
(meta-)model converters and serializers) and practical checking
and fixing mechanisms constitute crucial parts of the framework.
We will discuss these issues in Section III and IV, respectively.

III. DEVELOPING ROUND TRIP MECHANISMS

In this section, we will first argue why metamodel converters
are a crucial feature for practical applicability of our fixing



approach. We then show how to pragmatically develop and
make use of tools in order to engineer round-trip mechanisms
of reasonable quality for seven different file types. Afterwards,
we address related work and discuss which future research is
needed in order to integrate two further promising approaches
of recent research: lenses [4] and M3-level bridges [5].

A. Metamodels for Efficient Fixing

As mentioned in Section II-A, constraints on a model
are defined using the constructs defined on metamodel level.
With a suitable metamodel, constraints become more concise
and editors can provide richer support. For example, for
feature models, we create a dedicated metamodel element
for each feature, together with properly-typed attributes. Thus,
we can leverage the type checking and tab completion of
the constraint editor—typing errors in features and attributes
become immediately evident. As we will see in the following
section, existing tools also follow this paradigm of having
dedicated metamodel converters. This helps us to create round-
trip mechanisms for various configuration file types by reusing
mature tools.

B. Round Tripping for Various File Types

We developed metamodel converters and model converters
and serializers for seven configuration file types (cf. Table I).
In the following, we address their implementation.

Source files for Converters and Serializers
MMs / Ms MM Conv. M Conv./Ser.

Specific file types
Ecore Models *.ecore/*.xmi Java (EMF) Java (EMF)
XMLSchema *.xsd/*.xml Java (EMF) Java (EMF)
XText Grammars *.xtext/*.mydsl Java (EMF) Java (EMF)
P::V Feature Models *.xfm/*.vdm Java (XML) Java (XML)
KConfig Language KConfig.*/*.config plain Java plain Java
Generic file types
CPP Header (none)/*.h (fixed MM) Java (+CPP)
Java Property Files (none)/*.prop (fixed MM) plain Java

KConfig: Configuration language used, e.g., for Linux kernel configuration
MM: Metamodel | M: Model | CPP: C preprocessor

EMF: Eclipse Modeling Framework API | P::V: pure::variants

TABLE I
CONVERSION AND SERIALIZATION STRATEGIES APPLIED TO SEVEN

CONFIGURATION FILE TYPES.

Source Files. We distinguish generic and specific file types (as
also done in [1]). For specific file types, a product line engineer
can provide a specification file (e.g., a pure::variants feature
model (*.xfm), an XMLSchema definition (*.xsd) or an XText2

grammar specification (*.xtext)), which a metamodel converter
will map to a specific metamodel. For other file types, which we
call “generic”, a product line does not formally specify which
constructs (e.g., Java properties, CPP defines) are considered as
valid. For those file types, we use a generic metamodel, which
is identical for all product lines. When deriving a product, the
configuration engineer creates concrete configuration files, (a
header file (*.h), a feature model configuration (*.vdm), or an
XML file (*.xml)). Our inconsistency fixing framework maps
each configuration file transparently (as an IDE background
process) to a model.

2http:://www.eclipse.org/Xtext/, visited 2011-05-22.

(Meta-)model Converters and model Serializers. The table
shows how we developed (meta-)model converters and model
serializers for various specific and generic file types.
Specific File Types. The converters that were easiest to develop
were those for Ecore domain-specific models, XMLSchema-
based XML files, and domain-specific languages adhering to
XText textual grammars. For each of the file types, we leverage
the EMF framework, which provides a metamodel converter,
which maps the specification of the configuration file type (in
*.ecore, *.xsd, or *.xtext format) to a corresponding metamodel.
EMF also provides an API for converting and serializing the
corresponding configuration files (*.xmi, *.xml, *.mydsl).

For feature models in pure::variants format, we drive a
pragmatic conversion approach. The feature model defines all
allowed constructs (features and attributes). The developed
metamodel converter simply maps each feature to a model
element type in the metamodel (cf. Figure 2, right). All
relationships between features (excludes, implies, etc.) are
ignored. We also developed appropriate model converters
and serializers that map the feature model configuration (an
“instance” of the feature model) to a model and vice versa. The
converter for KConfig works very similar: Each configuration
item in a KConfig specification file is mapped to a model
element type in the metamodel, each chosen configuration
option in the *.config configuration file is mapped to the
corresponding model element.
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Fig. 2. Mapping file types and files to metamodels and models for CPP files
and feature models.

As the file formats of pure::variants and KConfig are
rather complex, we implemented the converters and serializers
in plain Java. Although we can say, due to testing, that
the serializers create syntactically correct configuration files
(*.vdm, *.config), we cannot ensure that the configuration is
semantically valid in the sense that all constraints defined in
the respective specification files (such as, “FeatureA excludes
FeatureB”) are still met. As these constraints can become



very complex (pure::variants, for example, allows defining
constraints between features as arbitrary Prolog statements),
we currently refrain completely from trying to ensure them
on model level. This, however, means that these constraints
remain unnoticed unit serializing back to the original file type.
To detect and recover from such semantic inconsistencies, our
framework will check for semantical validity only after the
fixed models have been serialized back to their original file
format, thereby delegating the “tricky” part to the respective
original tool. More details will be provided in Section V.
Generic File Types. In contrast to the aforementioned file types,
CPP header files and Java property files are generic file types.
This is, each model representing the #defines in a header file
will have the same metamodel, as there is no specification file
determining all valid #define symbols including their value
types. The metamodel basically only defines a list of defines
with names and values of type string (cf. Figure 2, left). To
avoid complexity, we impose stringent restrictions on CPP
header files when used for configuration via #defines. In
particular, we do not allow multiple definitions of the same
symbol or #defines within #ifdef, such as “#ifdef A .. #define
B”. Existing code needs to be refactored appropriately. For
Java property files, which basically are lists of name-value
pairs, too, the metamodel has the same structure as for CPP
header files.3

C. Discussion of Round Trip Research

There are many research approaches for converting files of
principally arbitrary type into a processable format (“models”
in the wider sense), transforming them, and serializing them
back again. In particular we will consider those approaches that
provide bidirectional “views” on the original data, as well as so
called M3-level bridges. We argue that, while both approaches
provide techniques that may become useful in future versions
of our framework, no “killer feature” is missing that hampers
its current practicability.

Bidirectional approaches [6], such as the lenses approach [4]
or triple graph grammars (TGGs) [7], allow deriving both,
converters and serializers, from a complex to a more simple
“model” and vice versa using only one single expression
(a lens or a mapping graph, respectively). This eliminates
asymmetries between converters and serializers due to improper
implementation. However, a lens (or a mapping graph) is tightly
coupled with the metamodel it can map onto. While they
might be used to implement model converters for generic
configuration file types, where the metamodel is fixed, they
cannot be used to deal with specific configuration file types
(e.g., feature models), where we require metamodel converters
which create a different metamodel for each distinct feature
model. Although our current generic file types, CPP files and
Java property files, are sufficiently simple so that using such
techniques was not necessary, we consider integrating them in
later versions of the framework, as they might support more
complex generic file types.

3Content that cannot be parsed as a name-value pair is saved as plain text,
so that no information gets lost during round tripping.

On the other hand, there are approaches for explicitly
establishing an automated bridge between two “metamodels
of different metamodeling technologies”, so called M3-level
bridges (e.g., [5]). For instance, when we already consider
the original feature model to be a “metamodel”, which just
happens to be defined within another metamodeling technology
(the feature model language), what we need to build are
M3-level bridges from the feature modeling language to the
modeling technology of our fixing framework (Eclipse Ecore)
and vice versa. However, the current M3 approach is not yet
formalized and rather defines a methodology with mapping
guidelines. Therefore, it cannot guarantee symmetric model
converters and serializers, as lenses or TGGs can. Furthermore,
the M3 approach aims to match the concepts of two modeling
technologies as far as possible. As shown in [8], a one-to-one
mapping between feature modeling and metamodeling can only
be done by artificially introducing new, semantically unclear
constructs into feature modeling (e.g., feature inheritance).
What might be needed is an adaptation of the symmetric M3-
level approach that also supports semantic simplification, for
example, as done in Figure 2 (right) were we intentionally
refrain from mapping the constraints defined in the feature
model to the metamodel.

To sum up: Both approaches provide useful techniques,
view-based approaches for developing generic converters and
serializers guaranteed to be symmetric, M3-level bridges as
a method to engineer bridges between semantically similar
metamodeling technologies. Although both are highly relevant
and can become useful in future versions of our framework,
their current lack does not hamper its practicability.

IV. MODEL FIXING MECHANISM

In this section, we will present the fixing capabilities of
our framework. As model fixes repair inconsistencies, which
are detected by constraint checks, we first illustrate the
requirements for fixing by presenting some example constraints.
We argue that an imperative mechanism for specifying fixes is
crucial to deal with arbitrary complex fixes. Then, we discuss
the state of the art in model checking and fixing, from which we
adapt a further fixing mechanism [9] for automated derivation
of correct fix locations from a constraint. This makes it possible
to define simpler fixes declaratively instead of imperatively.

A. Example Constraint

Figure 3 shows three exemplary constraints in the Xpand
Check language [10], which is similar to OCL. The metamodels
and models are created from the configuration files of our
quadrotor helicopter evaluation platform [1] transparently to
the user in an IDE background process. For this purpose, the
converters for C headers (hwHeader and swHeader), feature
models (ciaoVDM), and XMLSchema (ciaoXML) presented
in Section III-B have been used.

All three constraints concern flight control redundancy. It
is activated when setting the #define REDUNDANT_FC in a
header file. The first constraint checks whether the #define
FC_TASKS_PERIOD (the total period of all flight control



Fig. 3. Three constraints regarding flight control redundancy
(REDUNDANT_FC).

tasks) is plausible in case REDUNDANT_FC is selected. The
second constraint ensures that the timer support is activated in
the feature model configuration. Finally, constraint three checks
whether three redundant flight control XML tasks structures
have been configured (plausibility check on task names).

The characteristics or the example are, to our experience,
quite representative. Many configuration option, such as those
in constraint one and two, work on simple data types (boolean,
integer). Fixing corresponding inconsistencies basically means
switching a boolean or integer value. Some fixes, however,
can become very complex. In order to fix inconsistency
three, it is necessary to create three task structures and set
various additional task properties. In particular to support such
complex fixes, we see the need to support arbitrary complex,
imperatively-defined fixes on model level.

B. Imperative Fixing Mechanism

For imperative fixes, we developed a mechanism to annotate
each Xpand Check constraint with an arbitrary number or
SUGGEST clauses. The SUGGEST annotation is parameter-
ized with a textual description and an Xtend [10] model-
transformation function:4

SUGGEST(String descr, XtendFunction action)

The implementation is based on a separate preprocessor step.
The preprocessor records the SUGGEST clauses (the fixes)
attached to each constraint and removes them before executing
the constraint via the unchanged constraint checking engine.

We implemented the constraint checking and fixing mecha-
nism to work incrementally using the technique presented
in [9]. All constraints are initially checked once and all
model elements each constraint accesses are recorded. When
a constraint evaluates to false, it is marked as inconsistent.
Then, any later time, the user may open a Fixing GUI in the
IDE. For each inconsistent constraint, the Fixing GUI presents
the textual descriptions of its attached SUGGEST clauses.
On selection, the desired fix (the Xtend action function) is
applied. By also recording which elements the fix changes, we
only need to incrementally reevalute those constraint that had
touched one of these elements in their last run.

4Xpand Check actually constitutes a subset of the Xtend language.

C. Inconsistency Fixing: Related Work

Several different approaches combine constraint checking
with fixing facilities, which can guarantee some desirable
properties. Xiong et al. [11], for example, designed the
constraint language Beanbag, which describes both constraints
and fixes in one single expression. Whereas they can guarantee
correctness of the fixes (i.e., the constraint will hold after
appliance of the fix), the language cannot express arbitrary
complex fixes and constraints, and the authors admit that it
might yet be very difficult to devise the actual constraint/fix
expression. Nentwich et al. [12] evaluate first order logic
constraints in order to derive the correct and complete set
of all possible fixes. Egyed’s “incremental inconsistency fixing”
[9], in contrast, is independent of the checking language used,
as it instruments the modeling infrastructure to trace all model
elements a constraint accesses. The approach leverages the fact
that the set of elements accessed by an inconsistent constraint
constitute the correct and complete set of locations that can
potentially fix the inconsistency [9].

Both Nentwich’s and Egyed’s approach are promising
candidates to be integrated into our framework. As the former
makes strict demands on the constraint checking language, we
decided to initially adapt and extend only Egyed’s approach
to our needs.

D. Declarative Fixing Mechanism

Our declarative approach is based on the approach of Egyed
[9]: As well, we use an instrumented modeling infrastructure to
traces all model accesses. However, Egyed’s approach has two
drawbacks when it comes to fixing. First, the complete set of fix
locations per constraint yet is rather large, in [13], for example,
it has more than 10 entries on average, which hampers usability
when having many constraints. Second, the approach does not
concern how to derive actual fixes (“fix operations”) from the
fix locations when a fix requires complex model changes or
additional user input.5

In order to relieve the user from too many automatically-
derived inconsistency fixes, we combine model access tracing
with a declarative marker mechanism integrated into the con-
straint language. This way, the constraint developer explicitly
can mark elements for which fixes shall be derived. (This
means that we dismiss the property of completeness in favor
of keeping track, while we still can guarantee the correctness
of each fix location suggested.)

The declarative marker mechanism is implemented via the
method suggest(). It can be called within a constraint on
any data type or object. It is an identity function with exactly
one side effect: it informs the tracing facility that the model
element last accessed is a candidate for fixing.6

Object obj.suggest(
[Object defaultValue [, String descr ]])

5In [13], the author shows how to performantly compute those fixes that
can be derived purely from the contents of the current model without other
user input.

6Therefore, the checking language must not reorder function execution for
optimization. For Xpand Check, this is the case.



Concrete fix actions are then derived automatically depending
on the object type and are also presented in the Fixing
GUI (cf. Section IV-B). For primitive data types (String,
double, int, boolean) either a user dialog is displayed or
the defaultValue is chosen. In case the object type is
a reference, a dialog can be displayed to change the reference
to another object of compatible type. As we base on the
incremental checking and fixing approach of [9], the complexity
of our approach is as well linear (both in memory and
computation cost). Most of the total overhead of only 6 percent
is caused by the instrumentation of our modeling infrastructure
(Eclipse Ecore) for tracing (cf. Section VI for details).

Fig. 4. The three exemplary constraints (already seen in Figure 3), each
comprising two suggestion fixes. Suggestion A1 (as well as B1 and C2) will
suggest to toggle the value of the REDUNDANT_FC define. Suggestions A2
sets the FC_TASKS_PERIOD define to a value queried interactively from
the user (default value: 9 ms). Suggestion B2 toggles the boolean feature
hal_Timer1, whereas C1, the only imperative fix, suggests a triplication of
the flight control tasks instantiated in the CiAO XML file calling an externally
defined Xtend function triplicateFcTask().

E. Example Constraint Fixes

Figure 4 shows the constraints of Figure 3 with suggestions
attached (using both suggest() functions and SUGGEST
annotations). For each constraint that does not hold, the user
will be presented the set of textual descriptions of the attached
suggestions (both declarative and imperative ones) in the Fixing
GUI. On selection, the corresponding fix action is performed.
SUGGEST annotation fixes are more complex to write,

as they require the implementation of a separate Xtend
function (e.g., 15 LOC in case of the triplicateFcTask()
function). However, the fix can be arbitrarily complex. Using
suggest() functions, in contrast, it is not possible to encode
complex domain knowledge. They are, however, very concise
and keep the effort for defining a fix minimal (only one function
call on the element which shall be fixed).

V. INCONSISTENCY FIXING PROCESS

Considering the round-trip and fixing mechanisms integrated,
a process for applying the fixes should consider two issues.
First, in particular when complex imperative fixes are applied
on a model, the user must keep in control and keep track of the
actual changes. Second, the process needs to deal with possible
semantic inconsistencies that our round-trip approach for
feature models and KConfig does not check for. As described

in Section III-B, our current converter approach ignores the
constraints defined within feature models or KConfig files.

A. Inconsistency Fixing Process

Figure 5 depicts the process for fixing inconsistencies. It
addresses the two mentioned issues by including explicit
steps at which the user can review the fixed models and by
implementing additional semantic checking after the fixed
model has been serialized to a file. The process splits up into
two major parts: applying fixes (1 to 3) and semantic checking
& resolving (4 to 7).
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Fig. 5. Process applied to fix inconsistencies.

Applying Fixes (1 to 3). In the beginning (1), the inconsistency
fixing framework uses the appropriate converters for each
configuration file to create a model from it (original models).
Then, the models are inconsistency checked and the user
may repeatedly apply fixes using the Fixing GUI to remove
configuration inconsistencies (2), resulting in the fixed models.
As the user might want to review how the applied, possibly
complex fixes have actually affected the original model (3),
the framework incorporates a facility to show the difference on
model level to the user (Section V-B will give further details).
Semantic Checking & Resolving (4 to 7). When finished
with fix application, the user may initiate semantic checking &
resolving for each model. First, the model is serialized (4) to
its original file format. Then, file-type–specific semantic checks
and resolvers may be applied on the generated configuration file
(5) (Section V-C will provide details). The result of resolving
is a resolved configuration file, which is converted back to a
model representation (6), called resolved model. Its differences
with respect to the previous manually resolved model can
again be reviewed by the user (7), who may decide to accept
or discard each change, resulting in a new version of the fixed
model. The cycle may be repeated until a semantically valid
configuration file is achieved or the user cancels resolving.



B. User Control and Guidance

In order to give the user control and guidance over the
applied fixes, we implemented two mechanisms. First, as
already described previously, the Fixing GUI presented to
the user shows the textual descriptions attached to each fix to
provide information about its impact. Second, we implemented
a Reviewing GUI. Similarly to a “diff”-viewer on text level,
it shows the differences between the original model and the
fixed model on model level and is also able to retract already
applied changes.7 This reviewing mechanism is particularly
useful when complex fixes have been applied, for which the
outcome does not become clear through its textual description.

C. Semantic Checking and Resolving

Even in case serialization succeeds, the resulting file can
be invalid with regard to the constraints imposed by the
specification file (e.g., the constraints defined in the feature
model, or in a KConfig file). In those cases, we semantically
validate the files generated from the fixed models using the
original tools, pure::variants and the KConfig command line
tool, respectively. Interestingly, both provide validation checkers
and autoresolvers: Pure::variants via a Java API working with
a Prolog engine, KConfig via hand-crafted algorithms. In case
a validation checker fails, the user can choose to apply the
respective autoresolvers. Although we cannot provide the user
with control over how an autoresolver reconstitutes validity,
we can present the user with the applied changes in a concise
format. Therefore, we again leverage the Reviewing GUI, which
shows the differences concisely on model level.

VI. EVALUATION

In this section we shortly describe a user study that
indicates a configuration time speedup when using our process.
Furthermore, we will report on the performance impact of our
constraint language extension for declarative fixing.

A. Process Evaluation

We performed an experimental user study to test whether
our user-guided fixing process speeds up inconsistency fixing
compared to manually adaptation of configuration files.

Eight participants had to fix inconsistencies in an ill-
configured quadrotor system, which, due to its configuration
complexity, constitutes a suitable evaluation subject.8 About 30
changes in two header files, a feature model configuration, and
an XML configuration file were required in order to restore
consistency. The participants were split up into two roughly
equally-skilled groups regarding the system’s software; none
had used our fixing framework before. Group 1 first performed
the changes by manually adapting configuration files using
the respective Eclipse editors for text, XML and pure::variants
feature model configurations (Task A). Therefore, detailed
textual hints what to edit to restore consistency were displayed

7This diff&merge dialog has been implemented using EMF Compare: http:
//www.eclipse.org/emft/projects/compare/.

8The instructions given to the to participants can be downloaded from
http://www4.cs.fau.de/∼elsner/instr.pdf.

in the Eclipse problems view for each constraint evaluating to
false, to avoid pauses for reflection. Then, Group 1 performed
the adaptations by using our process for user-guided fixing of
inconsistencies (Task B). Group 2 performed the same two
tasks, but in the reverse order, to sort out learning effects.

Pt. Config. Effort in minutes
Know-how Task A Task B

Manual Tool-supported
Copter OS Total Total Apply Serialize

Group 1
1 o o 17:07 4:33 2:20 2:13
2 + o 15:33 4:10 2:08 2:02
3 o + 14:06 5:13 2:51 2:22
4 + + 15:26 4:39 2:30 2:09

Group 2
5 o o 18:00 6:47 4:11 2:36
6 + o 12:12 6:09 3:59 2:10
7 o + 9:30 6:00 3:36 2:24
8 + + 10:15 5:25 3:15 2:10
Average (total) 14:01 5:21 3:06 2:15
Median (total) 14:46 5:19 3:03 2:11

Pt.: Participant | Config.: Configuration
Apply: Time spent in “applying fixes” phase

Serialize: Time spent in “semantic checking & resolving” phase
+: Configuration experience | o : No configuration experience

TABLE II
TIME EFFORT FOR FIXING INCONSISTENCIES.

Table II shows the results of the study performed. The
medial participant was able to perform the configuration task
in only 5 minutes and 19 seconds when using our fixing tooling,
compared to 14 minutes and 46 seconds when performing the
task manually. This corresponds to a relative time saving of 64
percent. All participants considerably profited from our tooling.

Our fixing tooling works in two phases. In the first phase,
the user chooses the fixes from the GUI, possibly entering
some integer or string values (Apply phase in Table II). The
participants performed this task in about three minutes. After
applying the changes, each participant spent another two
minutes and eleven seconds in the semantic checking &
resolving phase (Serialize phase in Table II). Most of this
time has been consumed for validating and autoresolving
the feature model configuration; about one minute was spent
in the corresponding validation and autoresolving Java API
functions. Overall, we say that the evaluation gives evidence
that automatic support for fixing inconsistencies by encoding
configuration knowledge as constraints and fixes, as provided
by our process, can achieve considerable time savings.
Threats to Validity. The experimental setup examined a
nontrivial configuration problem of a system (80 person months)
and the participants had a strong computer science background
with varying experience (0 to 5 years) with the involved systems,
so that relevant industrial setups are covered. The editors used
for manual adaptation were the IDE’s standard editors for the
respective file types, how they are likely to be used during
usual configuration tasks. By observation, we could affirm
that the textual hints given for manual adaptations were clear
enough, so that understanding problems did not derogate the
results. However, as a drawback, the measured improvements
are only transferable to inconsistencies for which a definite set
of change operations fixes can be specified in advance.



Furthermore, the presented figures were produced before
we integrated incremental consistency checking and fixing; all
constraints (not only those that could possibly change) were
checked after each fixing cycle (Figure 1, step 2). However,
as both the absolute and relative performance impact of
instrumentation is moderate—and mostly even beneficiary, as
the set of constraints to reevaluate after a fix is minimized
(cf. subsequent section)—the prospective speed up will not be
significantly different.

B. Fixing Extension Performance Impact

Although our constraint language extension relies on a
modeling infrastructure instrumentation that traces all accesses
to model elements, its performance impact is very moderate.
We executed the full set of constraints used for flight control
redundancy (≈ 30) on a laptop with Core 2 Duo 2.4 GHz a
hundred times without and with tracing enabled. The average
execution time increased only 6 percent, from 513 ms (min:
425 ms, max: 853 ms) to 544 ms (min: 433 ms, max: 938 ms),
to log the 3,000 involved model elements. However, when
incremental consistency checking is activated, checking the
full set of constraint is only necessary once. Afterwards, only
constraints actually affected by a fix are reevaluated. In our
quadrotor helicopter case study, for example, the average fix
affects the reevaluation of less than three constraints, which
then takes only around 150 ms in the average case (min: 109
ms, max: 255 ms), which is only 29 percent of the average
execution time for all constraints.

VII. DISCUSSION

In the following, we discuss the reliability of the developed
round-trip mechanisms and fixing process termination.

Developing bidirectional transformation is not without
pitfalls. Nevertheless, the use of mature frameworks and
common development practices very much lowers the problems
usually associated with it. For the round-trip mechanisms of
Ecore DSMs, XText DSLs, and XMLSchema XML, we could
leverage the widely-used and mature EMF framework. Due to
the restrictions we impose on CPP header files, and the simple
structure of Java property files, the implementation of their
converters and serializers has been decently simple as well. For
complex file types, such as for feature models and KConfig
files, finally, we use a pragmatic approach that only aims at
syntactical correctness; we shift the heavy lifting of semantic
checking to the respective original tooling.

Our approach supports imperatively programmed fixes on
models of arbitrary metamodels. This has the drawback that
we cannot determine the impact of a fix until it is actually
applied. Hence, we are not able to guarantee that a fix will
not invalidate other constraints, nor can we guarantee that a
totally consistent state can be reached at all. A way to solve
this problem would be to limit the allowed models (e.g., only
finite number of states) and/or the constraint language (e.g., to
boolean or first order logic), so that SAT solvers or CSP could
be used. This, however, is a step we did not want to take in
order not to limit the applicability of our approach.

VIII. CONCLUSION

In this paper, we have presented the design of a framework
that enables to specify and to apply inconsistency fixes on
configuration files of various types. Modeling has proven to
be a very suitable pivot technology; by leveraging existing
model-based frameworks and common development techniques,
if was feasible to develop reliable round-trip mechanisms
of reasonable quality for various file types with reasonable
effort. Furthermore, it enabled us to adapt and extend previous
research in model-based inconsistency fixing by adding a
marker mechanism that limits the number of suggested fix
locations. Finally, our framework incorporates a process to
deal with complex fixes and semantic inconsistencies: For the
former, we provide the user with a GUI mechanism to review
and control the actually applied changes on model level, for the
latter, we shift the heavy lifting of checking file–type-internal
constraints (e.g., constraints in feature models) to the respective
original tool, which is best suited for this purpose.
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