
Automated Application of Fault Tolerance Mechanisms
in a Component-Based System

Isabella Thomm Michael Stilkerich Rüdiger Kapitza Daniel Lohmann
Wolfgang Schröder-Preikschat

{ithomm,stilkerich,rrkapitz,lohmann,wosch}@cs.fau.de
Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT
Due to the reduction of structure sizes in modern embedded
systems, tolerating soft errors presenting itself as bit flips
becomes a mandatory task even for moderate critical appli-
cations. Accordingly, software-based fault tolerance mecha-
nisms recently gained in popularity and a multitude of ap-
proaches that differ in the number and frequency of tolerated
errors as well as their associated overhead have been proposed.
As a consequence, an application- and environment-tailored
selection of mechanisms is required to balance protection and
costs.

Accounting the diverse solution space, we propose to make
software-based fault tolerance a matter of configuration that
should be transparent to the applications. While this would
be cumbersome when using an unsafe programming language,
we show that in the context of KESO, a JVM for deeply
embedded systems, this can be achieved by utilizing the
Java type system and static code analysis. As an initial
technique we decided to add redundant execution to KESO,
which enables us to selectively and transparently replicate
an application. This essentially builds a first step to a JVM,
which offers reliable execution of components as demanded
by the system configuration. 1

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and objects; D.4.5 [Operating
Systems]: Reliability—Fault-tolerance; D.4.7 [Operating
Systems]: Organization and Design—Real-time systems and
embedded systems

General Terms
Reliability, Design, Languages

1This work was partly supported by the German Research
Foundation (DFG) under grants no. KA 3171/2-1 and LO
1719/1-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2011 September 26-28, 2011, York, UK
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

Keywords
KESO, Java, embedded systems

1. INTRODUCTION
The ability to tolerate soft errors has become an important

aspect in safety-critical embedded systems. Such errors occur
randomly and have – in contrast to hard errors – only a
temporary effect on logical circuits or memory. Soft errors
are a result of hardware failures that are becoming more
likely to happen as a consequence of shrinking structure
sizes. Also, they can be caused by extreme environmental
conditions such as radiation [12] or current supply problems.

The developers of safety-critical systems are aware of these
dependability issues as can be seen by the release of standards
such as IEC 61508 or ISO 26262, which is widely spread in
the automotive sector. These standards outline hardware-
based redundancy and the employment of specialized error-
correcting hardware components – such as ECC for memory
devices or hardware watchdogs to recognize bogus behavior
of components – as a possible solution.

However, this approach is often not feasible due to an
immense cost pressure in this field, which manifests in the
consolidation of the count of microcontrollers and the inte-
gration of mixed-criticality applications on a single electronic
control unit (ECU). Besides the cost factor, hardware redun-
dancy is also often impractical due to physical size, weight,
and power constraints, which are eventually an essential
requirement in unmanned flight, for example.

Software-based fault tolerance techniques such as repli-
cated execution of code in space and time or monitoring
software components pose a cheaper alternative to hardware-
based techniques to increase system dependability and a com-
bination of both approaches might also be sensible. Software-
based approaches have already been employed in a wide range
of safety-critical embedded systems, where the dominating
programming language is C or Assembler. Due to the lack
of type safety of C, application software has to be especially
prepared for the use of many fault tolerance mechanisms –
that are profoundly application-specific – such as control flow
monitoring [4] or replicated execution. In case of replication,
data distribution, voting and recovery mechanisms have to be
manually inserted into the code base, since an identification
of the data to be compared as well as the state of a replica is
not possible in unsafe languages without additional support.
By means of static analysis of the application – which is
implemented in a type-safe language – and the support for
software component isolation, fault tolerance mechanisms
can automatically be applied as demanded by the safety

description without the need to change the application. This
is particularly important, since reliability is a non-functional
property that affects the entire software system and it is still
an open question, which fault tolerance mechanisms are most
suitable to mask certain hardware failures. Therefore, the
kind of fault tolerance techniques and the location where
to apply them should be a matter of configuration that is
based on the safety requirements. These requirements are
usually derived from test executions, where hardware faults
to be tolerated are simulated. Also, the fault tolerance mech-
anisms themselves have to be tailored to the actual hardware
platform and the application to be deployed by static code
analysis to balance protection and costs.

We address these challenges by extending the KESO Java
Virtual Machine (JVM) [27] – an ahead-of-time Java-to-C
compiler for static software modules – to automatically weave
fault tolerance measures into the C code as described in the
system configuration. So far, KESO supports transparent
N-redundant execution of application modules. This is a first
step towards a JVM, that offers configurable fault tolerance
for application software and is itself reliable.

The approach of providing redundant execution by KESO
gains several benefits over a manual implementation in safety-
critical control software in unsafe languages:

• Software-based spatial isolation in combination with
hardware-based memory protection of replicas inhibits
transient errors to affect code outside the replicated
component.

• Fault tolerance at option: Configurable number of repli-
cas, since this is depends on the number of transient
faults that need to be tolerated, which is in turn related
to the safety requirements of the application. Generally,
the choice for a particular fault tolerance technique as
well as how and the location where this technique is
applied should be a configurable property. Initializa-
tion, activation (i.e., including data replication) and
synchronization of replicas are performed by the KESO
runtime system.

• Automated fault tolerant replication: Generation and
invocation of application-specific voting functions as
well as state recovery of replicas in case of the presence
of transient errors due to type-safety of Java and ahead-
of-time analysis of the application.

• Enforcement of replica determinism: Static analysis,
to determine if code to be replicated satisfies certain
criteria such as use of deterministic functions.

In the following sections, the system and fault model of a
safety-critical control application, which shall be safeguarded
by replicated execution, is described. Afterwards, we present
the KESO JVM and how replicated execution can be inte-
grated into this system including a discussion on possible
solutions. In addition, the partially implemented approach
is evaluated on a safety-critical control algorithm. This pre-
liminary evaluation is followed by a discussion of related
work in this field. To conclude this paper, we present our
contributions and future work.

2. FAULT AND SYSTEM MODEL
Our fault model comprises transient hardware faults, that

is, the focus is on bit flips in memory and logical circuits.

The number of faults to be successfully recognized and cor-
rected per processing interval is dependent on the respective
fault detection and fault tolerance mechanisms. In case of
software-based redundant execution, triple modular redun-
dancy (TMR), for example, can tolerate a single affecting
fault, that is, a 2n+1 replica system can tolerate n faults
per processing interval. As single-bit flips account for over
90 percent of the soft error rate [11, 12], we concentrate on
the occurrence of this fault type, though the extension to a
multi-bit flip failure model is not restricted by our design.
To assure a correct application of the redundant execution
technique, several preconditions on the application and exe-
cution environment have to be satisfied, which are discussed
in the remainder of this section.

2.1 Spatial and Temporal Isolation
The idea of the replication concept to gain fault tolerance

is based on the supposition, that replicas are affected by
faults independently and therefore requires replicated mod-
ules to be spatially isolated [19] by hardware components
such as a memory protection unit. Replicas must not share
common data and may only exchange information through
safe communication channels. A faulty component must not
corrupt the memory of other components and spread the
error, which may result in failure of the entire system. It
should be noted that purely software-based spatial isolation
based on the type-safety of the programming language is
not sufficient in this matter, since a bit flip may occur in a
reference value and break the soundness of the type system.

Another essential requirement is temporal isolation, which
is usually achieved by the employment of a real-time oper-
ating system that provides deadline monitoring. The OS
monitors the execution time of a task and terminates the
job signalling an error if the job exceeds its programmed
worst-case execution time. A replica that is terminated in
that way is considered as failed in the same way as a replica
that returns a result different from the majority of replicas.

2.2 Application Model
The first assumption on the application components that

we consider for replication is that the component has run-
to-completion semantics, that is, it does not block during
its cyclic execution interval. The second assumption in our
current implementation is that replicated application com-
ponents do not read from indeterministic sources (e.g., read
input from hardware devices) or cause side effects outside
the domain (e.g., by using certain operating system services).
In case of replicated execution of the component to be safe-
guarded, the general activity flow of such a component starts
at the acquisition of a well-defined data input (i.e., from
sensors), which must be equal for each replica to ensure a
deterministic computing. Thus, each replica maintains its
own copied instance of that data. There are also redundant
execution approaches, which are able to cope with slightly
varying input data, but they are currently not in our focus.
The replicated data is then used by all redundant modules
and after the processing interval, the results of replicas are
compared against each other by voters. Voters can be imple-
mented in a variety of ways. Some implementations process
primitive data types, where the values of the primitive input
parameters are compared against each other, while others
generate checksums to speed up the voting procedure. Trust-
ing on result voting presumes that bit flips have an effect

Peripheral
Device Access

(KNI)

Domain A

Static Fields

Heap

System Objects

TaskA1 TaskA2 Alarm1 Resource

Microcontroller

OSEK / AUTOSAR OS

Domain BServicePortal

OSEK API
(KNI)

Control Flows

TaskA1 ISR1TaskA2

Heap

Static Fields

Figure 1: The KESO Architecture

on the result data. If, however, this precondition on the
application does not apply, a replica can fail silently and
affect the control procedure in a subsequent interval. For this
scenario, voting procedures have to compare the entire state
of the replicas. In case of a deviation in the result data or the
replica states, the voters have to select a correctly processed
replica, pick up its results, restore the failed replicas and
propagate the correct values to the actuators. As can be seen,
the manner in which the redundant execution mechanism
shall be applied is highly application-specific.

In unsafe languages, programmers have to take care of the
application of fault tolerance techniques on their software
components by themselves. Therefore, we show in which
way a static analysis on the application code and Java’s type
safety can be leveraged to identify the data to be compared
as well as the entire state of the replicas.

3. DESIGN AND PROPOSAL
In this section, we introduce the KESO JVM, which is

used as infrastructure software for the automated application
of fault tolerance mechanisms. This is followed by a proposal,
how replicated execution can be integrated into KESO as
well as a presentation of possible solutions.

3.1 The KESO JVM
KESO [27] is an ahead-of-time Java compiler that gen-

erates ANSI C code from Java bytecode. The main goal
of KESO is to provide software-based memory protection
tailored towards the domain of embedded systems. KESO
does not support all aspects of the Java language and the
Java virtual machine and does not provide the full Java
standard class library. In particular, KESO requires static
applications and does neither support dynamic class loading
nor Java reflection. The class library provided by KESO
provides access to the system services of an OSEK/VDX [18]
or AUTOSAR OS [2], which is currently presumed as sys-
tem software; however, KESO is not limited to automotive
applications.

There is also a safe and lightweight mechanism to access
device registers from Java code without affecting the type-
safety of the program. KESO supports optional garbage
collection for applications that want to use dynamic memory
allocation.

KESO is a Multi-JVM, that is, it allows tasks to be spa-
tially isolated in different protection domains, each of which

appears as a JVM of its own from the application’s point of
view, as is depicted in Figure 1. A detailed description of
KESO’s memory protection mechanism and a discussion on
how it compares to Java Isolates [8] can be found in a previous
paper [27]. Isolation is constructively ensured by preventing
any shared data among the different domains. This isolation
is established based on the logical separation of the object
heaps and by maintaining a separate set of the static fields
in each domain. Each control flow (i.e., task or ISR) and all
other system objects, such as events or locks, are statically
assigned to a domain. A system object can only be accessed
from other domains if explicitly permitted by the KESO
system configuration. Java’s type-safety guarantees, that
an application can only access memory to that it has been
given an explicit reference and the type of the reference also
determines, how an application can access the memory area
pointed to by the reference. To maintain the isolation, all
inter-domain communication (IDC) mechanisms (i.e., portals
and shared memory) must ensure that no reference values
can be propagated to another domain. In addition to the
software-based spatial isolation, KESO can actively support
an AUTOSAR OS to provide hardware-based memory pro-
tection based on the use of a memory protection unit. KESO
supports the OS by physically grouping the domain data (i.e.,
the physically separated heaps and static fields) in separate
memory regions to recognize addressing errors and so to
additionally harden the system [26].

Portals, a synchronous remote method invocation mecha-
nism, form the primary IDC mechanism in KESO. A domain
can export a service with a system-wide unique name that can
be imported and used by other domains. The relationships
between client and service domains are statically specified in
the configuration file. Only domains that explicitly import
the service in the configuration file are able to use the service
at runtime. A service export consists of a Java interface
and an implementation of that interface. An instance of
the implementation class, the service object, will be stati-
cally allocated by the compiler in the service domain. The
compiler will create an anonymous proxy class that contains
implementations of the interface’s methods that perform a
domain context switch and invoke the respective method on
the service object in the domain that exports the service.
A portal is an instance of this proxy class. The execution
takes place in the context of the service domain, however,
the control flow is the one that issued the portal call, which
is migrated to the service domain for the duration of the
portal call. Parameters and return values to a portal call
are strictly passed by value to retain the heap separation
property on which the spatial isolation is based. Primitive
values are passed by value anyway. For reference parameters,
a deep-copy of the referenced object graph is performed upon
the portal call. The same happens when an object is returned
as the result of a portal call. KESO provides a class-based
mechanism to limit the amount of objects that are deep-
copied. We elaborate on portals in detail in Section 4, as
we have extended this IDC mechanism to support replicated
services.

3.2 Replication
The first fault tolerance mechanism to be added to KESO

is redundant execution, as this is a well-understood method
to improve the dependability of a system. The sphere of
replication in our approach is the domain, which provides

Domain A

InputData
Portal

Domain Srv_R2

Service process

(a) Single Execution

Domain A

Domain Srv_R1

VoterInputData
Portal

Domain Srv_R2

Service process

Service process

Domain Srv_R3

Service process

(b) Replicated Execution

Figure 2: Replication Approach: The interface is
identical in both cases.

many of the properties necessary for replication. We use
KESO’s portal mechanism as a transition point between
the single and replicated execution. From the programmer’s
point of view, the replicated execution is transparently hidden
beyond the interface of an exported service. In the following,
we will step through the building blocks of our design.

3.2.1 Spatial Isolation
The occurrence of a soft error in a replica must not affect

the execution of other replicas or software modules that
run on the same microcontroller. Therefore, they must be
isolated from each other. By replicating software components
in a domain granularity, this spatial isolation is already
provided. The runtime system inhibits a control flow inside a
domain to leave the protection context or to reference memory
locations outside the domain due to a bit flip that affects
the application data only. Originally, the domain mechanism
was intended to detect software bugs and a violation of the
protection context led to a fatal exception, for example as a
consequence of a failed null reference or array bounds checks.

For replicated execution, this approach has to be slightly
modified to eventually induce a recovery of the domain state.
In a mixed criticality system, KESO determines if an ap-
plication is operating in normal or redundancy mode. In
the latter mode, we have to check, if the same protection
violation occurs in all replicated domains, which is a sign for
a programming error in the software module. In such a case,
we retain KESO’s original behavior that leads to an abort of
the respective application. Otherwise, the safety violation is
caused by a soft error, which must result in a recovery of the
faulty domain. However, reference values can also be affected
by a fault. For this case, we apply hardware-based memory
protection to the replicas in KESO domains to contain such
a fault in the affected domain.

3.2.2 Fault Tolerance at Option
A software component to be safeguarded is replicated via

the KESO configuration file by multiple instantiation of that
component in own domains. Resulting from the Multi-JVM

architecture, it is easily possible to create multiple instances
of a domain, since all the state belonging to a domain will
be re-instantiated. Creating multiple instances of a domain
is only a matter of adapting the system configuration file.
The KESO runtime system calls the constructors of the
defined replica classes and initializes the respective heaps
and static fields in each domain separately. In Figure 2, we
have exemplified the setup of a TMR system.

3.2.3 Automated Fault Tolerant Replication
The portal mechanism is deployed for the data transfer

between domains, that is, the domains Srv R1, Srv R2 and
Srv R3 are configured to export the processing function to
be replicated as a named service, while the activating domain
A imports this service. Since service names are unique in
a KESO system, KESO’s compiler can recognize replicated
services by definitions of a service of the same name within
multiple domains. In order to support service replication, the
portal mechanism has to be modified to trigger an invocation
of the service in all replicas. We will elaborate on that in
more detail in Section 4.

The portal parameters represent the input data to the
replicas, while the return value delivers the correct output
data, which are further processed by domain A after having
been processed by a majority voter. Due to the by-value
semantics on portal parameters, each domain is provided
with an own copy of the input data.

As soon as all replicas have finished, a voting function has
to decide over their correct execution. Several alternatives
for such a function exist and can easily be integrated into
KESO. Generally, there are two approaches, how voting can
be performed:

• Voting over the output data of replicas is sufficient for
many control applications. The precondition on this
variant is that a bit flip in a replica has to directly
affect the results of the computation, that is it needs
to become visible in the return value of the service
method or has to trigger a memory or timing protection
violation that is trapped by the OS. The advantage
of that variant is the fast operation of the voters. A
drawback is that replicas can fail silently, if the bit flip
does not corrupt the output data and can have an effect
in a later interval. This can be true for domains using a
GC, where a bit flip occurs during the collection phase.
A GC, which can cope with transient errors, might be
used for this approach.

• Voting over the entire domain state. This technique
seems inappropriate at a first glance, however, em-
bedded control applications usually have a relatively
small state, outlining this approach as another possible
solution, which we will evaluate in the future.

A static analysis of the application can also help to iden-
tify which voting variant is more sensible to the respective
application.

According to the selected approach, the appropriate voting
functions are generated by the compiler, fitting the return
type of the service and the number of replicas. In case of
a voting error, the faulty component is reset (i.e., clearing
the heap) and reinitialized by transferring the complete state
of a healthy domain (copying the objects reachable in the
healthy domain). For this, we leverage Java’s type-safety

and copy all static and non-static class fields as well as the
heap. The amount of time, which is necessary to recover a
domain has to be considered in the system schedule, so that
no replica misses its deadline. Some transient errors – such
as a manipulation of the break condition in a loop – may
also cause the application to exceed its time slice. Usually,
the incorporated RTOS terminates that application. If the
time for domain recovery is considered in the schedule, the
RTOS can trigger the KESO runtime system to induce the
state recovery.

3.2.4 Enforcement of Replica Determinism
Safety-critical control components often exhibit the run-to-

completion model to eliminate any source of unpredictable
behavior as discussed in Section 2. In KESO, we can enforce
replica determinism by static analysis of the application
code to identify certain points of indeterminism, which are
manifold. Replicas are synchronously activated by portal
calls and are synchronously terminated by voting to deliver
a correct output when the portal returns. While using a
service in non-replicated mode in more than one domain
is not an issue, care must be taken in case of redundant
execution. A precondition on code replication techniques
is that replica invocations must be ordered if invoked from
multiple control flows. Our current prototype evades this
issue by limiting calls to replicated services to a single client
control flow only. Allowing for multiple activation sources
may cause indeterministic behavior of the replica. We leave
an investigation of this issue and possible solutions as future
work.

Another major source of non-determinism poses commu-
nication with other components outside the sphere of repli-
cation. The issues of communication are two-fold. On the
one hand, a transient error must be contained in the repli-
cated domain. A critical use of the portal service in case
of replicated mode is, for example, the transfer of a value
into another domain, where the application in that domain
depends on that value. If a bit flip happens to the portal
parameter, the error is spread beyond domain boundaries.
On the other hand, any data from outside the sphere of
replication can cause diversity in the redundant execution.
These code locations within the replica can be identified due
to well-known interfaces and comprise

• native interface function calls, use of system services
and peripheral device access through KESO’s raw mem-
ory abstractions

• shared memory usage, which must be manually synchro-
nized using resources (i.e., by means of the immediate
priority ceiling protocol)

• Inter-domain communication with replicated as well as
non-replicated domains via portals

At the current state, KESO’s compiler will signal an error
if the reachability analysis detects use of any of the above
mechanisms that are known to cause side-effect by a repli-
cated service. This supports replication of applications as
suggested by [19].

We plan, however, to extend this mechanism for replicated
applications, which explicitly want to communicate with
other components. With respect to the schedule, the replica-
tion threads must be merged at the identified synchronization
points to assure a correct execution of replicas by

• Voting: Data that is transferred to other components
must be compared, so that faults are contained in the
domain.

• Replication: Data input (further read of sensor values
or return values of native calls, for example) must be
copied, so that it is equal for all replicas.

In related fault tolerance projects, using indeterministic
functions is a known issue. The Replicant [20] system, for
instance, introduced relaxed determinism, that is, it loosely
replicates the order of events in replicas. The system uses
annotations from the application developer to mark certain
points of indeterminism and synchronize syscall hints to
suppress this relaxed determinism, if necessary.

Another example is the AUTOSAR platform, which in-
corporates the Virtual Function Bus (VFB) [3] concept. It
facilitates communication of applications independent from
the underlying ECU and network setup. The VFB does nei-
ther support fault tolerant redundant execution nor spatial
isolation. However, due to the VFB specification, an imple-
mentation of the VFB – the so-called Runtime Environment
(RTE) – has to provide implicit read and write operations,
so that runnable entities (i.e., schedulable functions within
applications) do not have to directly access message buffers.
Some legacy control algorithms are not able to cope with
multiple explicit access of those buffers and it might corrupt
the computation. The solution for this issue is related to
the indeterministic read of sensor values. Basically, implicit
VFB functions copy a specific value from a message buffer,
which is valid for one processing interval of the runnable.
Any implicit read or write to a data item is applied to a copy,
which is written once the interval has finished. However, the
VFB specification does neither tell when nor how to apply
implicit operations.

In KESO, each replica holds a proxy object for the data
input at synchronization points, which are identified during
static analysis. A single replica then invokes the native call.
Such a replica is selected due to a voting over the current
domain state data. A data flow examination might eventually
help to restrict the set of data to be compared in order to
speed up synchronization point handling. The result of the
native call invoked by the chosen replica is then copied to all
proxy objects so that the redundant execution of all replicas
can continue.

In general, start and end locations of replicated services as
well as synchronization points in services that communicate
with other components outside their domain pose single
points of failure (SPOF). A technique that can handle those
SPOFs by means of coded computing has been developed at
our research group and is currently under review.

4. IMPLEMENTATION
Control software can be split into parts that are controlled

by replication and those which are not. This is the same
approach as preparing software for software-based memory
protection without any replication. The parts of the applica-
tion to be executed in non-replicated mode as well as those
parts to be safeguarded are configured to reside in different
domains in the KESO system configuration. The domains
Srv R1, Srv R2 and Srv R3 export the service process,
which shall be processed redundantly, whereas the activating
client application in domain A statically imports this service.

Domain Srv_R3

Service
name: ProcessDataSrv
interface: ProcessDataSrvIF
class: ProcessDataSrv

ProcessDataSrvIF

+process(InputData): ResData

ProcessDataSrv

+process(InputData): ResData

«anonymous»

+process(InputData):ResData

«auto-generated»

Portal Object «instance»

Service Object_3 «instance»

Domain Srv_R1

Domain A

Portal

Domain Srv_R2

imports

SO_2

SO_1

«instance»

context
vote

recovery

S

S

Figure 3: Service replication via portals

public void bar (InputData sensorData) {
// s e r v i c e r e t r i e v a l
ProcessDataSrvIF srv = (ProcessDataSrvIF)

P o r t a l S e r v i c e . lookup (”ProcessDataSrv ”) ;
// r e p l i c a t e d e x e c u t i o n
ResData r e s u l t = srv . p roce s s (sensorData) ;
// r e p l i c a t e d e x e c u t i o n f i n i s h e d
r e s u l t . actuate () ;

}

Figure 4: Using the portal service for replication

The KESO runtime system automatically creates multiple
instances of the service object, one in each of the replica
domains. Each replicated domain is initialized by KESO and
has its own static fields and heap.

For service replication, we leverage the portal mechanism
of KESO, which is depicted in Figure 3. A service is defined
by a unique name, which is used by the client domain to refer
to that service, a Java interface, and the implementation of
that interface. If the software already uses software-based
isolation to protect the important part from other less critical
code sections, the application does not need to be touched at
all. In the other case, the regular method call that usually
starts the control procedure has to be replaced by a portal
call. If neither replication nor isolation is required, the portal
call is optimized to a regular call by jino, thus erasing any
overhead.

4.1 Service Replication
A service is replicated by means of a portal call as shown

in Figure 4. The starting point is the auto-generated anony-
mous class, that is used by the client domain through the
portal object, which is returned by the PortalService’s
lookup() function. The generated class implements the ser-
vice interface and stub functions that perform the protection
context switch. Replicated and non-replicated services need
to be distinguished from each other, which can be determined
by the number of domains, the same service (identified by
its unique name) is defined in. For replicated services, we
extend the generation of the stub functions to invoke the
service of all replicas and to vote on the returned values. The
result of the voting process is then returned as the result of
the portal call.

4.2 Service Synchronization
For a fault tolerant prototype, we have chosen a simple

voting variant, which votes only on the returned result of a
service method in the replica domains. The advantages and

disadvantages of that approach were discussed in Section
3.2.1 and we consider them as sufficient for our evaluation
scenario. The return value of the portal services denotes the
output value, so jino analyzes the return types and creates
the appropriate voting functions. The voters operate on
primitive data types, where the values of the primitive input
parameters are compared against each other and the voter
function signals whether there is a conflict or not. In case of
a primitive return value of the portal call, the determination
of the voter type is straight-forward. For complex data
types, the building tool retrieves the necessary information
by traversing the class fields of the return type, which can
either be primitive, an array or another complex data type.
To avoid cyclic dependencies, we have to memorize which
objects have already been analyzed. The process is similar to
the scanning phase of the garbage collector. In this way, all
needed types of voters can be determined and invoked. An
execution of the voter function picks a successfully processed
replica and returns the output value to the portal call. If the
voter detects a difference in a replica in contrast to the other
ones, it triggers the recovery for the faulty replica and selects
an output value from the succeeded remaining replicas to be
returned to the caller.

5. PRELIMINARY EVALUATION
In our first experiments, we evaluate the overhead added

by our replication mechanism. As an example applica-
tion, we use the flight-attitude controller component of the
I4Copter [28] framework, a control application for a quadro-
tor helicopter. The flight-attitude controller component is
responsible for keeping the aircraft at a certain angle with
respect to a reference point by appropriately adjusting the
thrust levels of the four rotors. The controller is input with
values from various sensors such as gyroscopes and accelerom-
eters. The output of the controller is four engine thrust levels.
This component is part of a real-world safety-critical system.

We run our experiments on an Infineon TriCore TC1796
microcontroller clocked at 150 MHz. Our board is equipped
with 2 MiB of Flash ROM and 1 MiB of SRAM. We use
CiAO [9] as OS, an own AUTOSAR OS implementation.
CiAO supports hardware-based memory protection using a
region-oriented memory protection unit and deadline moni-
toring for tasks. To measure the runtimes, we read the value
of the TC1796’s free-running 75 MHz system timer before
and after the measured code section.

The component exhibits the properties required by our
current prototype: It has run-to-completion semantics and
performs internal computation only, that is the execution of
the component has no side effects outside the domain. In a
flying configuration, the controller is periodically executed
each 9 ms. The component exports a service that is provided
with the sensor values of the current period and returns an
object containing the thrust-levels ready to be actuated. To
provide reproducible behavior, we feed the controller with
compiled-in sensor data taken from a flight data log.

Figure 5(a) shows the execution time for a single execution
and a three-times replicated execution of the controller for
350 iterations. As depicted the controller has an almost con-
stant execution time. The single execution variant uses an
unreplicated portal service for the controller, which imposes
that the input data are copied when the portal is invoked.
The replicated variant comprises three instances of the con-
troller component. The generated proxy method of the portal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350

ex
ec

ut
io

n
tim

e
(m

s)

data set

Replicated Execution

Single Execution

(a) Execution Times

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Single Execution Replicated Execution

ex
ec

ut
io

n
tim

e
(m

s)

Replica 1

Replica 2

Replica 3

Voter

(b) Execution Time Breakdown

Figure 5: Replicated Flight-Attitude Controller

object creates three copies of the input data, one in each
replica, and sequentially invokes the portal service in each
replica using the corresponding set of input data. Finally
a voting on the returned result is performed. As copying
the input data is also part of an unreplicated portal service
execution, the overhead added by the replicated execution is
the cost of voting.

Figure 5(a) shows that the replicated variant requires 3x
the time of the unreplicated variant, which is the expected
result. We investigated the execution times for each of the
replicas separately and additionally the cost of the voting
process. The result is shown in Figure 5(b). The three
replicas have a runtime identical within the accuracy of the
measurement of 413 µs. The single execution has a slightly
higher runtime of 416 µs. The voting process itself takes 1.6
µs.

The execution time overhead for the initial creation of
the replicas is negligible. The replica are statically created
by the compiler and initialized in the startup phase. The
initialization consists only of few operations, most notably
the initialization of the heap management data structures.

6. RELATED WORK
Traditionally, handling of soft errors is addressed by safety

critical applications that are executed in harsh environments
such as found in the aerospace domain. Here, the high costs
of hardware-centric approaches like double or triple hardware
redundancy [10, 25, 30, 31] can be tolerated.

To reduce costs and make soft error tolerance available to
a wider range of application scenarios, software-based fault

handling methods for control flow [15, 16, 14, 17, 29, 22, 6] or
memory protection [23] were developed over the recent years.
Lately, Chang et al. [21] proposed SWIFT-R, an approach
that triplicates machine instructions and uses a majority
voter in combination with encoding techniques.

Unlike these approaches that operate at the level of ma-
chine instructions we propose tolerating soft errors at the
level of components. This avoids dependence on a custom
compiler for the target platform and enables to selectively
protect critical parts of applications.

There are several approaches that apply replication at a
higher level of abstraction. In case of Shye et al. an approach
is presented that replicates processes in a standard operating
system [24]. While transparent application of software-fault
tolerance is possible this way it is rather coarse grained and
only a single technique is used.

More in line with our vision of a soft error hardening of
applications is the work of Afonso et al. [1], that selectively
enhances an embedded real-time system with fault tolerance
mechanisms by using aspect-oriented programming (AOP).
In contrary to Afonso who addresses a typical C++ applica-
tion on an embedded system and therefore requires extensive
knowledge about the application when applying fault toler-
ance mechanisms our approach strongly benefits from the
modular design of KESO applications.

At the level of Java virtual machines the work of Napper
et. al [13] and Friedman et. al [7] focus on the replication
of a virtual machine as a whole. Their work is dedicated
towards tolerating fail stop faults in a distributed setting but
does not address soft errors on a single system.

7. CONCLUSION
In this paper, we presented how the N-redundant execu-

tion technique can be integrated into a Java ahead-of-time
compiler. Currently, a full support of the proposed repli-
cated execution and variants – such as the pair-and-spare
technique – is in progress. Fault tolerance methods impose
more overhead in space and time to improve the system
reliability by their nature. However, a KESO application –
which can also be a device driver, for example – can select
these methods according to the safety requirements and only
pays for the fault tolerance features that it actually needs.
Functional safety is a non-functional property that should
be transparent to the applications and the required level of
safety should be a matter of configuration. Static analysis on
software components that are implemented in any type-safe
language and the support for spatial isolation facilitate to
automatically apply configurable fault tolerance techniques
that are tailored to the application’s requirements. As fu-
ture multicore embedded systems will become less reliable
due to shrinking structure sizes, the available parallelism of
these platforms can also be used to compensate the overhead
imposed by the application of fault tolerance techniques.

8. FUTURE WORK
Our next steps will be to integrate more fault tolerance

measures into KESO to be applied automatically as de-
manded by the safety configuration and to evaluate them
with respect to performance and footprint on the characteris-
tics of static embedded applications. We also have to test the
effectiveness of our approach with respect to tolerated and
undetected errors by means of fault injection. This comprises

an evaluation on several voting techniques including the con-
sideration of application-specific SPOFs, automated control
flow monitoring – as control flow errors make up 33%-77% of
all runtime errors depending on the application [5] – and the
use of checksums. We will also analyze the use of a more fine-
grained level of redundancy, that is, a software component
does not have to be replicated as a whole, but only certain
parts of it. This helps to determine the best possible rate
between memory and execution time costs with its effects
on dependability in mind. Transient errors can affect user
applications as well as system services, that is, also the OS
or the KESO runtime system can be compromised by bit
flips. For this, fault tolerance techniques have also to be
applied to the virtual machine itself, which comprises the
use of a fault tolerant GC, for example. As we want to rely
on existing software standards and since there is currently
no implementation of a type-safe AUTOSAR OS, which can
benefit from KESO directly, the OS itself has to take care of
soft errors.

9. REFERENCES
[1] F. Afonso, C. Silva, N. Brito, S. Montenegro, and

A. Tavares. Aspect-oriented fault tolerance for real-time
embedded systems. In Proceedings of the 2008 AOSD
workshop on Aspects, components, and patterns for
infrastructure software (ACP4IS ’08), pages 1–8, 2008.

[2] AUTOSAR. Specification of operating system (version
3.0.2). Technical report, Automotive Open System
Architecture GbR, June 2008.

[3] AUTOSAR. Specification of the virtual functional bus
(version 3.0.7). Technical report, Automotive Open
System Architecture GbR, July 2010.

[4] AUTOSAR. Specification of watchdog manager
(version 2.1.0). Technical report, Automotive Open
System Architecture GbR, Oct. 2010.

[5] S. Chen, X. Hu, B. Liu, and J. Chen. An on-line
control flow checking method for vliw processor. In
Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing, pages 248–255,
Washington, DC, USA, 2007. IEEE Computer Society.

[6] C. Fetzer, U. Schiffel, and M. Suesskraut. AN-Encoding
compiler: Building safety-critical systems with
commodity hardware. In Computer Safety, Reliability,
and Security, volume 5775 of Lecture Notes in
Computer Science, pages 283–296. Springer Berlin /
Heidelberg, 2009.

[7] R. Friedman and A. Kama. Transparent fault-tolerant
java virtual machine, 2003.

[8] JSR 121: Application Isolation API Specification. Sun
Microsystems JCP, June 2006.

[9] D. Lohmann, W. Hofer, W. Schröder-Preikschat,
J. Streicher, and O. Spinczyk. CiAO: An
aspect-oriented operating-system family for
resource-constrained embedded systems. In 2009
USENIX ATC, pages 215–228, Berkeley, CA, USA,
June 2009. USENIX.

[10] A. Mahmood and E. J. McCluskey. Concurrent error
detection using watchdog processors-a survey. IEEE
Transactions on Computers, 37:160–174, February 1988.

[11] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong.
Characterization of multi-bit soft error events in
advanced srams. In Electron Devices Meeting, 2003.

IEDM ’03 Technical Digest. IEEE International, pages
21.4.1 – 21.4.4, Dec. 2003.

[12] D. Makowski. The Impact of Radiation on Electronic
Devices with the Special Consideration of Neutron and
Gamma Radiation Monitoring. Dissertation, Technical
University of Lodz, 2006.

[13] J. Napper, L. Alvisi, and H. Vin. A fault-tolerant java
virtual machine. In In Proceedings of the International
Conference on Dependable Systems and Networks (DSN
2003), DCC Symposium, pages 425–434, 2002.

[14] N. Oh, S. Mitra, and E. McCluskey. Ed4i: Error
detection by diverse data and duplicated instructions.
Computers, IEEE Transactions on, 51(2):180–199,
2002.

[15] N. Oh, N. Shirvani, and E. P.P. McCluskey. Error
detection by duplicated instructions in super-scalar
processors. Reliability, IEEE Transactions on, 51:63–75,
2002.

[16] N. Oh, P. Shirvani, and E. McCluskey. Control-flow
checking by software signatures. Reliability, IEEE
Transactions on, 51(1):111 –122, Mar. 2002.

[17] J. Ohlsson and M. Rimen. Implicit signature checking.
Fault-Tolerant Computing, International Symposium on,
0:0218, 1995.

[18] OSEK/VDX Group. Operating system specification
2.2.3. Technical report, OSEK/VDX Group, Feb. 2005.
http://portal.osek-vdx.org/files/pdf/specs/

os223.pdf, visited 2011-08-17.

[19] S. Poledna. Replica determinism in distributed
real-time systems: a brief survey. Real-Time Systems
Journal, 6(3):289–316, 1994.

[20] J. Pool, I. Sin, K. Wong, and D. Lie. Relaxed
determinism: Making redundant execution on
multiprocessors practical. In In Proceedings of the 11th
Workshop on Hot Topics in Operating Systems
(HotOS), 2007.

[21] G. A. Reis, J. Chang, and D. I. August. Automatic
instruction-level software-only recovery. IEEE Micro,
27(1):36–47, 2007.

[22] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. I. August. Swift: Software implemented fault
tolerance. In In Proceedings of the 3rd International
Symposium on Code Generation and Optimization,
pages 243–254, 2005.

[23] P. P. Shirvani, N. Saxena, S. M. Ieee, E. J. Mccluskey,
and L. F. Ieee. Software-implemented edac protection
against seus. Reliability, IEEE Transactions on,
49:273–284, 2000.

[24] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and
D. A. Connors. Plr: A software approach to transient
fault tolerance for multicore architectures. IEEE Trans.
Dependable Secur. Comput., 6:135–148, April 2009.

[25] T. J. Slegel, R. M. Averill III, M. A. Check, B. C.
Giamei, B. W. Krumm, C. A. Krygowski, W. H. Li,
J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A.
Navarro, E. M. Schwarz, K. Shum, and C. F. Webb.
Ibm’s s/390 g5 microprocessor design. IEEE Micro,
19:12–23, March 1999.

[26] M. Stilkerich, J. Schedel, P. Ulbrich,
W. Schröder-Preikschat, and D. Lohmann. Escaping
the bonds of the legacy: Step-wise migration to a
type-safe language in safety-critical embedded systems.

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

In G. Karsai, A. Polze, D.-H. Kim, and W. Steiner,
editors, 14th IEEE Int. Symp. on OO Real-Time
Distributed Computing (ISORC ’11), pages 163–170,
Washington, DC, USA, Mar. 2011. IEEE.

[27] M. Stilkerich, I. Thomm, C. Wawersich, and
W. Schröder-Preikschat. Tailor-made JVMs for
statically configured embedded systems. Concurrency
and Computation: Practice and Experience, 2011. To
appear. http://dx.doi.org/10.1002/cpe.1755.

[28] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and
W. Schröder-Preikschat. I4Copter: An adaptable and
modular quadrotor platform. In Proceedings of the 26th
ACM Symposium on Applied Computing (SAC ’11),
pages 380–396, New York, NY, USA, 2011. ACM.

[29] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray.
Low-cost on-line fault detection using control flow
assertions. IEEE International On-Line Testing
Symposium, 0:137, 2003.

[30] Y. Yeh. Triple-triple redundant 777 primary flight
computer. In Proceedings of the IEEE Aerospace
Applications Conference, volume 1, pages 293 –307
vol.1. IEEE, Feb. 1996.

[31] Y. C. B. Yeh. Design considerations in boeing 777
fly-by-wire computers. In The 3rd IEEE International
Symposium on High-Assurance Systems Engineering
(HASE ’98), 1998.

	1 Introduction
	2 Fault and System Model
	2.1 Spatial and Temporal Isolation
	2.2 Application Model

	3 Design and Proposal
	3.1 The KESO JVM
	3.2 Replication
	3.2.1 Spatial Isolation
	3.2.2 Fault Tolerance at Option
	3.2.3 Automated Fault Tolerant Replication
	3.2.4 Enforcement of Replica Determinism

	4 Implementation
	4.1 Service Replication
	4.2 Service Synchronization

	5 Preliminary Evaluation
	6 Related Work
	7 Conclusion
	8 Future Work
	9 References

