
SLOTH ON TIME: Efficient Hardware-Based
Scheduling for Time-Triggered RTOS∗

Wanja Hofer, Daniel Danner, Rainer Müller,
Fabian Scheler, Wolfgang Schröder-Preikschat, Daniel Lohmann

Friedrich–Alexander University Erlangen–Nuremberg, Germany
E-Mail: {hofer,danner,raimue,scheler,wosch,lohmann}@cs.fau.de

Appeared in: Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS ’12),
pages 237–247, IEEE Computer Society, 2012, ISBN 978-0-7695-4869-2

Abstract—Traditional time-triggered operating systems are
implemented by multiplexing a single hardware timer—the sys-
tem timer—in software, having the kernel maintain dispatcher
tables at run time. Our SLOTH ON TIME approach proposes to
make use of multiple timer cells as available on modern micro-
controller platforms to encapsulate dispatcher tables in the timer
configuration, yielding low scheduling and dispatching latencies
at run time. SLOTH ON TIME instruments available timer cells
in different roles to implement time-triggered task activation,
deadline monitoring, and time synchronization, amongst others.

By comparing the SLOTH ON TIME kernel implementation to
two commercial kernels, we show that our concept significantly
reduces the overhead of time-triggered operating systems. The
speed-ups in task dispatching that it achieves range up to a
factor of 171 x, and its dispatch latencies go as low as 14
clock cycles. Additionally, we demonstrate that SLOTH ON TIME
minimizes jitter and increases schedulability for its real-time
applications, and that it avoids situations of priority inversion
where traditional kernels fail by design.

I. INTRODUCTION AND MOTIVATION

In operating system engineering, the overhead induced by
the kernel is a crucial property since operating system kernels
do not provide a business value of their own. This is especially
true in embedded real-time systems, where superfluous bytes
in RAM and ROM as well as unnecessary event latencies
can decide whether a kernel is used for the implementation
of an embedded device or not. In previous work on the
SLOTH approach, we have shown that by using commodity
microcontroller hardware in a more sophisticated manner in
the kernel, we can achieve lower footprints in RAM and
ROM as well as very low system call overheads [7]. To
achieve this, the SLOTH kernel maps run-to-completion tasks to
interrupt handlers and lets the interrupt hardware schedule them,
eliminating the need for a software task scheduler completely.
Additionally, we have been able to show that implementing
a full thread abstraction with blocking functionality in the
SLEEPY SLOTH kernel still yields a significant performance
boost over traditional, software-based embedded kernels [8].

However, both the SLOTH and the SLEEPY SLOTH kernels
target event-triggered real-time systems with event-driven
task dispatching. In this paper, we discuss how the SLOTH
principle of making better use of hardware facilities in the
implementation of embedded kernels can be applied to time-
triggered operating systems. The resulting SLOTH ON TIME
kernel uses the fundamental task dispatching mechanisms as

∗This work was partly supported by the German Research Foundation (DFG)
under grants no. SCHR 603/8-1, SCHR 603/9-1, and SFB/TR 89 (project C1).

introduced in the SLOTH kernel and makes better use of the
central hardware part of any time-triggered kernel: the hardware
timer facility.

This paper provides the following contributions:
• We develop a comprehensive design for mapping time-

triggered tasks and kernel timing services to hardware
timer cells and present SLOTH ON TIME, the first real-
time kernel that utilizes arrays of hardware timers (see
Section IV).

• By evaluating our SLOTH ON TIME kernel and comparing
it to traditional time-triggered kernel implementations, we
show that our design minimizes the number of interrupts
and the kernel-induced overhead at run time, yielding
lower latencies, reduced jitter, increased schedulability,
and better energy efficiency for real-time applications (see
Section V).

• We discuss the implications of the SLOTH ON TIME
approach on the design of time-triggered kernels and
time-triggered applications (see Section VI).

Before explaining the SLOTH ON TIME design and system,
we first describe the time-triggered system model that we use
in this paper in Section II and provide necessary background
information on the original SLOTH and SLEEPY SLOTH kernels
and the microcontroller hardware model that we use as a basis
for our description in Section III.

II. SYSTEM MODEL FOR TIME-TRIGGERED
TASK ACTIVATION

In this section, we describe the system model that we use for
time-triggered task scheduling throughout this paper. Since our
model is motivated by the kernel point of view on time-triggered
tasks, we take the terminology and semantics from publicly
available embedded operating system specifications. Those
include the specification for the time-triggered OSEKtime
kernel [13] and the AUTOSAR OS specification, which
targets an event-triggered kernel that features a schedule table
abstraction and timing protection facilities [2]. Both of those
standards were developed by leading automotive manufacturers
and suppliers based on their experiences with requirements
on real-time kernels; this is why they are widely used in the
automotive industry. Additionally, since the standards are also
implemented by commercially available kernels, we are able
to directly compare kernel properties between our SLOTH
ON TIME operating system and those kernels by writing
benchmarking applications against the respective OS interfaces.

t
0 200 400 600 800 1000 1200

idle

Task1

Task2

dispatcher round length

Fig. 1: The model for time-triggered activation and deadlines
used in this paper, based on the OSEKtime specification [13].
In this example of a dispatcher table, task activations are
depicted by circles, their deadlines by crosses. Later task
activations preempt currently running tasks, yielding a stack-
based execution pattern.

A. Time-Triggered OSEKtime

The central component of OSEKtime is a preplanned
dispatcher table of fixed round length that cyclically activates
tasks at given offsets (see example in Figure 1). An activated
task always preempts the currently running task until its
termination, resulting in a stack-based scheduling policy.
Additional OSEKtime features include synchronization with a
global time source and task deadline monitoring for detecting
misbehaving tasks. The latter is done by checking whether a
task is neither running nor preempted at given points in time
within a dispatcher round (see crosses in Figure 1).

B. AUTOSAR OS Schedule Tables and Execution Budgets

In contrast to OSEKtime, AUTOSAR OS approaches time-
triggered activations in a more complex way and offers seamless
integration with the event-triggered model specified by the
same system. Although the basic structure of statically defined
dispatcher tables (called schedule tables) is the same as in
OSEKtime, a time-triggered activation in AUTOSAR OS will
not inevitably result in preempting any running task, but instead
the activated task will be scheduled according to its own static
priority and the priorities of other active tasks. In an AUTOSAR
system, a distinction between time-triggered and event-triggered
tasks does not exist, and both types of activations share the
same priority space. Further extensions consist in the possibility
to have multiple schedule tables run simultaneously and to
have non-cyclic tables, which are executed only once.

AUTOSAR OS also specifies the ability to restrict the
execution budget available to individual tasks. Although this is
not related to time-triggered scheduling in particular, we will
show that the mechanisms developed in SLOTH ON TIME are
suitable for an efficient implementation of this feature as well.

III. BACKGROUND

In order to understand the concept and design principles
behind SLOTH ON TIME, we first provide background infor-
mation about the original event-triggered SLOTH kernel that
SLOTH ON TIME is based on, and we describe the requirements
on the underlying microcontroller hardware, introducing the
abstract terminology used throughout the rest of the paper.

A. SLOTH Revisited

The main idea in the original event-triggered SLOTH ker-
nel [7] is to have application tasks run as interrupt handlers
internally in the system. Each task is statically mapped to a
dedicated interrupt source of the underlying hardware platform
at compile time; the IRQ source’s priority is configured to
the task priority and the corresponding interrupt handler is
set to the user-provided task function. SLOTH task system
calls are implemented by modifying the state of the hardware
IRQ controller: The activation of a task, for instance, is
implemented by setting the pending bit of the corresponding
IRQ source. This way, the interrupt controller automatically
schedules and dispatches SLOTH tasks depending on the current
system priority. By these means, SLOTH is able to achieve
low overheads in its system calls, both in terms of execution
latency and in terms of binary code size and lines of source
code.

The original SLOTH kernel can only schedule and dispatch
basic run-to-completion tasks as mandated by the OSEK BCC1
conformance class, in which the execution of control flows
is strictly nested—which means that a task preempted by
higher-priority tasks can only resume after those have run
to completion. Thus, all tasks are executed on the same stack—
the interrupt stack—which is used both for the execution of
the current task and for storing the contexts of preempted tasks.
The enhanced SLEEPY SLOTH kernel [8] additionally handles
extended tasks that can block in their execution and resume at
a later point in time (specified by OSEK’s ECC1 conformance
class). SLEEPY SLOTH implements these extended tasks by
providing a full task context including a stack of its own for
each of them; additionally, a short task prologue is executed
at the beginning of each task’s interrupt handler every time
that a task is being dispatched. The prologue is responsible
for switching to the corresponding task stack and then either
initializes or restores the task context depending on whether
the task was unblocked or whether it is being run for the first
time.

B. Microcontroller Hardware Model and Requirements

With SLOTH ON TIME, we describe a hardware-centric
and efficient way to design time-triggered services in a real-
time kernel. Our concept makes use of timer arrays with
multiple timer cells, which are available on many modern
microcontroller platforms such as the Freescale MPC55xx and
MPC56xx embedded PowerPC families (64 timer cells) or
the Infineon TriCore TC1796 (256 timer cells)—the reference
platform for SLOTH ON TIME. As shown in the following
section on its design, SLOTH ON TIME requires one timer
cell per task activation and deadline in a dispatcher round in
its base implementation; the SLOTH approach is to leverage
available hardware features (in this case, an abundance of timer
cells) to improve non-functional properties of the kernel. For
platforms with fewer timer cells than activation and deadline
points, however, we describe a slightly less efficient alternative
design that uses partial multiplexing in Section IV-F.

Clock Source

Control Cell

Timer Cell

Timer Cell

Counter

Cell Enable

Compare Value

Request Enable

IRQ Source

Counter

Cell Enable

Compare Value

Request Enable

IRQ SourceFig. 2: The abstract model for available timer components on
modern microcontroller platforms, introducing the terminology
used in this paper.

If the hardware offers hierarchical timer cells for controlling
lower-order cells, SLOTH ON TIME can optionally make use
of that feature, too. Additionally, as in the original SLOTH
kernel, we require the hardware platform to offer as many IRQ
sources and IRQ priorities as there are tasks in the system; the
platforms mentioned before offer plenty of those connected to
their timer arrays.

In the rest of the paper, we use the following terminology
for the timer array in use (see Figure 2). We call an individual
timer of the array a timer cell, which features a counter register;
it is driven by a connected clock signal, which increments or
decrements the counter depending on the cell configuration. If
the counter value matches the value of the compare register or
has run down in decrement mode, it triggers the pending bit
in the attached IRQ source, but only if the request enable bit
is set. The whole cell can be deactivated by clearing the cell
enable bit, which stops the internal counter.

IV. SLOTH ON TIME

The main design idea in SLOTH ON TIME is to map the
application timing requirements to hardware timer arrays with
multiple timer cells—pursuing efficient execution at run time.
SLOTH ON TIME tailors those timer cells for different purposes
within a time-triggered operating system, introducing different
roles of timer cells (see overview in Figure 3)—including
task activation cells, table control cells, deadline monitoring
cells, execution budget cells, and time synchronization cells,
as described in this section. Additionally, we show how time-
triggered and event-triggered systems can be integrated in
SLOTH ON TIME, and we highlight the design of multiplexed
timer cells for hardware platforms with fewer available timer
cells.

A. Time-Triggered SLOTH

Traditional time-triggered kernels implement task activations
by instrumenting a single hardware timer, which then serves
as the system timer. The system timer is programmed and
reprogrammed by the kernel at run time whenever a scheduling
decision has to be performed; the next system timer expiry
point is usually looked up in a static table representing the
application schedule.

Dispatcher Table 0 Sync Cell 0

C
on

tro
lC

el
l0 Task 0

Activation Cell 0 Deadline Cell 0

Activation Cell 1 Deadline Cell 1

Task 1
Activation Cell 5 Deadline Cell 3

Dispatcher Table 1 Sync Cell 1

C
on

tro
lC

el
l1 Task 2

Activation Cell 8 Deadline Cell 5

Activation Cell x Deadline Cell x

Task x
Activation Cell x Deadline Cell x

Execution Budgeting
Task 0
Budget Cell 0

Task 1
Budget Cell 1

Task 2
Budget Cell 2

Fig. 3: The different roles that SLOTH ON TIME uses avail-
able hardware timer cells for. Some roles are only used in
OSEKtime-like systems, others are only used in AUTOSAR-
OS-like systems.

SLOTH ON TIME tries to avoid dynamic decisions—and,
therefore, run time overhead—as far as possible by instrument-
ing multiple timer cells. This way, programming the timers can
mostly be limited to the initialization phase; during the system’s
productive execution phase, the overhead for time-triggered
task execution is kept to a minimum.

1) Static Design: SLOTH ON TIME not only comprises the
actual time-triggered kernel, but also consists of a static analysis
and generation component (see Figure 4). As its input, the
analysis tool takes the task activation schedule as provided by
the application programmer (see Artifact A in Figure 4) and
the platform description of the timer hardware (Artifact B),
and, in an intermediate step, outputs a mapping of the included
expiry points to individual activation cells (Artifact C), which
are subject to platform-specific mapping constraints due to the
way the individual timer cells are interconnected1. The timer
cells for SLOTH ON TIME to use are taken from a pool of cells
marked as available by the application; this information is also
provided by the application configuration. If the number of
available timer cells is not sufficient, SLOTH ON TIME uses
partial multiplexing, which we describe in Section IV-F.

In the next step, the calculated mapping is used to generate
initialization code for the involved timer cells (Artifact D).
The compare values for all cells are set to the length of
the dispatcher round so that the cell generates an interrupt
and resets the counter to zero after one full round has been
completed. The initial counter value of a cell is set to the
round length minus the expiry point offset in the dispatcher
round. This way, once the cell is enabled, it generates its first
interrupt after its offset is reached, and then each time a full
dispatcher round has elapsed.

Additionally, code for starting the dispatcher is generated

1The mapping algorithm is work in progress; currently, the timer cells still
have to be assigned manually to respect platform restrictions.

Static Application Configuration:
roundLength = 1000;
expiryPoints = {
100 => Task1,
200 => Task2,
600 => Task1

};
deadlines = {
450 => Task1,
350 => Task2,
950 => Task1

};
availableTimerCells =
{Cell7, ..., Cell12, Cell42};

Cell and IRQ Map:
100 => Cell7 // Activation
200 => Cell8 // Activation
600 => Cell9 // Activation
450 => Cell10 // Deadline
350 => Cell11 // Deadline
950 => Cell12 // Deadline
Cell7 => IRQTask1
Cell8 => IRQTask2
Cell9 => IRQTask1

Analysis and Cell Mapping
Timer Hardware Description:
TimerArray0 = {
Cell0 = {
irqSource => 128,
isMaster => false,
controls => {},
...

},
...
Cell42 = {
irqSource => 170,
isMaster => true,
controls => {7, ..., 12},
...

},
...

Cell Initialization Code:
void initCells(void) {
Cell7.compare = 1000;
...
Cell7.value = 1000 - 100;
...

}
void startDispatcher(void) {
#ifndef CONTROLCELLS
Cell7.enable = 1;
...

#else
// Control Cell 42 for Cells 7-12
Cell42.output = 1;

#endif
}

IRQ Initialization Code:
void initIRQs(void) {
Cell7.irqPrio =
triggerPrio;

...
Cell7.handler =
&handlerTask1;

...
Cell10.handler =
&deadlineViolationHandler;

...
}

Code Generation Task Handler Code:
void handlerTask1(void) {
// Prologue
savePreemptedContext();
setCPUPrio(execPrio);
Cell10.reqEnable = 1;
Cell12.reqEnable = 1;

userTask1();

// Epilogue
Cell10.reqEnable = 0;
Cell12.reqEnable = 0;
restorePreemptedContext();
iret();

}

A BC

D E F

Input Input

Intermediate

Output

Output

Output

Fig. 4: Static analysis and generation in SLOTH ON TIME, producing the mapping of expiry points and deadlines to timer cells
and IRQ sources, the corresponding timer and interrupt initialization code, and task handler code with prologues and epilogues.
The example values correspond to the sample application schedule depicted in Figure 1.

that enables all involved activation cells consecutively (Artifact
D). If the underlying hardware platform features hierarchically
connected cascading timer cells, then a higher-order cell is used
as a so-called control cell to switch all connected lower-order
timer cells on or off simultaneously. If such a control cell is
available, enabling it will enable all connected activation cells of
a dispatcher round (see also the timer model in Figure 2). This
mechanism enables completely accurate and atomic starting
and stopping of dispatcher rounds by setting a single bit in the
respective control cell (see also evaluation in Section V-B3).

Furthermore, since tasks are bound to interrupt handlers for
automatic execution by the hardware, the interrupt system needs
to be configured appropriately (Artifact E). This entails setting
the IRQ priorities of the involved cells to the system trigger
priority (see explanation in Section IV-A2) and registering the
corresponding interrupt handler for the cell’s task.

2) Run Time Behavior: At run time, no expiry points and
dispatcher tables need to be managed by SLOTH ON TIME,
since all required information is encapsulated in the timer
cells that are preconfigured during the system initialization.
Once the dispatcher is started by enabling the control cell
or the individual timer cells, the interrupts corresponding to
task dispatches will automatically be triggered at the specified
expiry points by the timer system. The hardware interrupt
system will then interrupt the current execution, which will

either be the system’s idle loop or a task about to be preempted,
and dispatch the associated interrupt handler, which in SLOTH
ON TIME basically corresponds to the task function as specified
by the user, surrounded by a small wrapper.

The only functions that are not performed automatically by
the hardware in SLOTH ON TIME are saving the full preempted
task context when a new time-triggered task is dispatched and
lowering the CPU priority from the interrupt trigger priority
to the execution priority (see generated code in Artifact F in
Figure 4). This lowering is needed to achieve the stack-based
preemption behavior of tasks in the system, such as mandated
by the OSEKtime specification [13], for instance (see also
Figure 1). By configuring all interrupts to be triggered at a
high trigger priority and lowering interrupt handler execution
to a lower execution priority, every task can be preempted
by any task that is triggered at a later point in time, yielding
the desired stack-based behavior. Thus, a task activation with
a later expiry point implicitly has a higher priority than any
preceding task activation.

B. Deadline Monitoring

Deadlines to be monitored for violation are implemented in
SLOTH ON TIME much in the same way that task activation
expiry points are (see Figure 4). Every deadline specified
in the application configuration is assigned to a deadline

cell (see also Figure 3), which is a timer cell configured
to be triggered after the deadline offset, and then after one
dispatcher round has elapsed (Artifacts C and D in Figure 4).
The interrupt handler that is registered for such deadline cells
is an exception handler for deadline violations that calls an
application-provided handler to take action (Artifact E).

In contrast to traditional implementations, SLOTH ON TIME
disables the interrupt requests for a deadline cell once the
corresponding task has run to completion, and re-enables them
once the task has started to run. This way, deadlines that are
not violated do not lead to unnecessary IRQs, which would
disturb the execution of other real-time tasks in the system (see
also evaluation in Section V-B). In the system, this behavior
is implemented by enhancing the generated prologues and
epilogues of the time-triggered tasks; here, the request enable
bits of the associated deadline cells are enabled and disabled,
respectively (see generated Artifact F in Figure 4).

C. Combination of Time-Triggered and Event-Triggered Sys-
tems

In the OSEK and AUTOSAR automotive standards that we
use as a basis for our investigations, there are two approaches to
combine event-triggered elements with a time-triggered system
as implemented by SLOTH ON TIME. The OSEK specifications
describe the possibility of a mixed-mode system running an
event-triggered OSEK system during the idle time of the
time-triggered OSEKtime system running on top, whereas the
AUTOSAR OS standard specifies a system with event-triggered
tasks that can optionally be activated at certain points in time
using the schedule table abstraction. In this section, we show
how we implement both approaches in the SLOTH ON TIME
system.

1) Mixed-Mode System: Since the original SLOTH kernel im-
plements the event-triggered OSEK OS interface [14], whereas
SLOTH ON TIME implements the time-triggered OSEKtime
interface, we combine both systems by separating their priority
spaces by means of configuration. By assigning all event-
triggered tasks priorities that are lower than the time-triggered
execution and trigger priorities, the event-triggered system is
only executed when there are no time-triggered tasks running;
it can be preempted by a time-triggered interrupt at any time.
Additionally, we make sure that the event-triggered SLOTH
kernel synchronization priority, which is used to synchronize
access to kernel state against asynchronous task activations, is
set to the highest priority of all event-triggered tasks but lower
than the time-triggered priorities. Thus, the integration of both
kinds of systems can easily be achieved without jeopardizing
the timely execution of the time-triggered tasks.

2) Event-Triggered System with Time-Triggered Elements:
In contrast to the mixed-mode approach, AUTOSAR OS defines
an event-triggered operating system with static task priorities;
its schedule table abstraction only provides means to activate
the event-triggered tasks at certain points in time, which does
not necessarily lead to dispatching them as in purely time-
triggered systems (in case a higher-priority task is currently
running). AUTOSAR tasks have application-configured and

potentially distinct priorities; at run time, they can raise their
execution priority by acquiring resources for synchronization
or even block while waiting for an event.

The schedule table abstraction therefore does not strictly
follow the time-triggered paradigm, but it is implemented in
SLOTH ON TIME in a way that is very similar to the time-
triggered dispatcher table. Instead of configuring the priorities
of the IRQ sources attached to the timer system to the system
trigger priority, however (see Artifact E in Figure 4), they
are set to the priority of the task they activate. This way, the
time-dependent activation of tasks is seamlessly integrated into
the execution of the rest of the SLOTH system, since after the
IRQ pending bit has been set, it does not matter whether this
was due to a timer expiry or by synchronously issuing a task
activation system call.

To fully implement AUTOSAR OS schedule tables, the
SLOTH ON TIME timer facility is enhanced in three ways. First,
AUTOSAR allows multiple schedule tables to be executed
simultaneously and starting and stopping them at any time.
Thus, SLOTH ON TIME introduces the corresponding system
calls to enable and disable the control cell for the corresponding
schedule table (see also Section IV-A1). Second, AUTOSAR
defines non-repeating schedule tables, which encapsulate expiry
points for a single dispatcher round, executed only once when
that schedule table is started. SLOTH ON TIME implements this
kind of schedule table by preconfiguring the corresponding
timer cells to one-shot mode; this way, they do not need
to be manually deactivated at the end of the schedule table.
Third, schedule tables can be started with a global time offset
specified dynamically at run time. In that case, SLOTH ON
TIME reconfigures the statically configured timer cells for that
schedule table to include the run time parameter in its offset
calculation before starting it by enabling its control cell.

D. Execution Time Protection

In contrast to deadline monitoring, which is used in time-
triggered systems like OSEKtime (see Section IV-B), AU-
TOSAR prescribes timing protection facilities using execution
time budgeting for fault isolation. Each task is assigned a max-
imum execution budget per activation, which is decremented
while that task is running, yielding an exception when the
budget is exhausted. In its design, SLOTH ON TIME employs
the same mechanisms used for expiry points and deadlines
to implement those task budgets. It assigns one budget cell
to each task to be monitored (see also Figure 3), initializes
its counter with the execution time budget provided by the
application configuration, and configures it to run down once
started. The associated IRQ source is configured to execute a
user-defined protection hook as an exception handler in case
the budget cell timer should expire.

Furthermore, the dispatch points in the system are in-
strumented to pause, resume, and reset the budget timers
appropriately. First, this entails enhancing the task prologues,
which pause the budget timer of the preempted task and start
the budget timer of the task that is about to run. Second,
the task epilogues executed after task termination are added

instructions to reset the budget to the initial value configured
for this task, as suggested by the AUTOSAR specification, and
to resume the budget timer of the previously preempted task
about to be restored.

This design allows for light-weight monitoring of task
execution budgets at run time without the need to maintain and
calculate using software counters; this information is implicitly
encapsulated and automatically updated by the timer hardware
in the counter registers.

E. Synchronization with a Global Time Base

Real-time systems are rarely deployed stand-alone but often
act together as a distributed system. Therefore, in time-triggered
systems, synchronization of the system nodes with a global time
base needs to be maintained. This feature has to be supported
by the time-triggered kernel by adjusting the execution of
dispatcher rounds depending on the detected clock drift.

If support for synchronization is enabled, SLOTH ON TIME
allocates a dedicated sync cell (see also Figure 3) and configures
its offset to the point after the last deadline in a dispatcher round
(e.g., 950 in the example schedule in Figure 1). This point has to
be specified in the configuration by the application programmer
and can be used to apply a limited amount of negative drift
depending on the remaining length of the dispatcher round (50
in the example). Positive drifts are, of course, not restricted in
this way.

The interrupt handler attached to the sync cell then checks
at run time whether a drift occurred. If so, it simply modifies
the counter values of all activation, deadline, and sync cells
that belong to the dispatcher table, corrected by the drift
value (see Figure 5). Since the cell counters are modified
sequentially, the last counter is changed later than the first
counter of a table. However, since the read–modify–write cycle
of the counter registers always takes the same amount of time
and the modification value is the same for all counters, in
effect it does not matter when exactly the counter registers are
modified. In case the synchronization handler is not able to
reprogram all affected cell counters by the next task activation
point in the schedule, it resumes execution at the next cell to
be reprogrammed once it becomes active again in the next
round.

F. Timer Cell Multiplexing

If the hardware platform does not have enough timer cells
to allocate one cell per time-triggered event, SLOTH ON TIME
also allows to partially fall back to multiplexing—allocating
only one timer cell for each role (activation and deadline) per
task and partly reconfiguring it at run time.

For multiplexed deadline monitoring, if the current deadline
has not been violated, the task epilogue reconfigures the
expiration point of the deadline cell to the next deadline instead
of disabling it. The deltas between the deadline points are
retrieved from a small offset array held in ROM.

For multiplexed activations of the same task, another offset
array contains the deltas between the activation points of that
task. The enhanced task prologue then reconfigures the compare

value of the activation cell to the next activation point every
time that task is dispatched.

V. EVALUATION

In order to assess the effects of our proposed timer-centric
architecture on the non-functional properties of a time-triggered
kernel, we have implemented SLOTH ON TIME with all the
kernel features described in Section IV on the Infineon TriCore
TC1796 microcontroller, which is widely used for control
units in the automotive domain. Since from a functional point
of view, SLOTH ON TIME implements the OSEKtime and
AUTOSAR OS standards, we can directly compare our kernel to
a commercial OSEKtime system and a commercial AUTOSAR
OS system, both of which are available for the TC1796. This
way, we can take benchmarking applications written against
the respective OS interface and run them unaltered on both
SLOTH ON TIME and the commercial kernels.

A. The Infineon TriCore TC1796 Microcontroller

The TC1796, which serves as a reference platform for SLOTH
ON TIME, is a 32-bit microcontroller that features a RISC
load/store architecture, a Harvard memory model, and 256
interrupt priority levels. The TC1796’s timer system is called its
general-purpose timer array and includes 256 timer cells, which
can be configured to form a cascading hierarchy if needed. The
cells can be routed to 92 different interrupt sources, whose
requests can be configured in their priorities and the interrupt
handlers that they trigger. The timer and interrupt configuration
is performed by manipulating memory-mapped registers.

For the evaluation, we clocked the chip at 50 MHz (corre-
sponding to a cycle time of 20 ns); however, we state the results
of our latency and performance measurements in numbers
of clock cycles to be frequency-independent. We performed
all measurements from internal no-wait-state RAM (both for
code and data), so caching effects did not apply. The actual
measurements were carried out using a hardware trace unit
by Lauterbach. All of the quantitative evaluation results were
obtained by measuring the number of cycles spent between two
given instructions (e.g., from the first instruction of the interrupt
handler to the first user code instruction of the associated task)
repeatedly for at least 1,000 times and then averaging these
samples. In some situations, the distribution of the samples
exhibits two distinct peaks of similar height, which are located
exactly 4 cycles apart and presumably related to unstableness
in measuring conditional jumps. Aside from this effect, the
deviations from the average have shown to be negligible in all
measurements of SLOTH ON TIME.

B. Qualitative Evaluation

While running our test applications on SLOTH ON TIME and
both commercial kernels, we could observe several effects of
our design on the qualitative execution properties by examining
the execution traces from the hardware tracing unit.

global
time

local
time

1000 2000 3000

1000 2000 3000

Act. Act. Sync Act. Act. SyncAct. Act. Sync

dispatcher round adjustment dispatcher round

detected drift

Fig. 5: Synchronization to a global time is implemented in SLOTH ON TIME by adjusting the current counter values of the cells
involved in a dispatcher round one after the other, requiring only one read–modify–write cycle per cell.

(a) SLOTH ON TIME

(b) Commercial OSEKtime system

Fig. 6: Comparison of execution traces of an OSEKtime
application with two deadlines in (a) SLOTH ON TIME and
(b) a commercial OSEKtime system. Non-violated deadlines
of Task1 and Task2 interrupt the execution of Task3 in the
commercial system, but not in SLOTH ON TIME.

1) Avoiding Unnecessary IRQs: For one, both commercial
kernels exhibit unnecessary interrupts with unnecessary inter-
rupt handlers executing, possibly interrupting and disturbing
application control flows. All of those interrupts are not needed
by the application semantics, and the SLOTH ON TIME design
can avoid all of them in its running implementation.

Figure 6 shows the execution traces for an application
with three tasks and three deadlines per dispatcher round,
running on SLOTH ON TIME and the commercial OSEKtime
implementation. The commercial OSEKtime issues an interrupt
for every deadline to be monitored, since it then checks if the
corresponding task is still running (see interruptions of Task3
in Figure 6b). These interrupts take 95 clock cycles each,
possibly interrupting application tasks for the violation check;
this number multiplies by the number of deadlines stated in the
application configuration to yield the overhead per dispatcher
round. Those unnecessary IRQs in the commercial OSEKtime
kernel are especially problematic since they also occur for
non-violated deadlines—which are, after all, the normal case
and not the exception.

SLOTH ON TIME can avoid those unnecessary IRQs com-
pletely (see continuous execution of Task3 in Figure 6a). It
uses dedicated deadline timer cells, which are turned off using a
single memory-mapped store instruction when the task has run
to completion in its task epilogue (see Section IV-B); this takes

(a) SLOTH ON TIME

(b) Commercial AUTOSAR OS system

Fig. 7: Execution trace revealing rate-monotonic priority
inversion in a commercial AUTOSAR OS system occurring
on time-triggered activation of lower-priority tasks Task1 and
Task2. The trace of the same dispatcher table in SLOTH ON
TIME shows no interruption of Task3.

10 clock cycles per deadline (see also Section V-C1). SLOTH
ON TIME effectively trades the overhead introduced by interrupt
handlers in the schedule as in traditional systems for overhead
introduced when a task terminates; this trade-off decision has
the advantage that it does not interrupt the execution of other
tasks, facilitating real-time analyses on the schedule. Note that
the commercial kernel could be implemented in a way similar
to SLOTH ON TIME to avoid additional interrupts; however,
the overhead for its software logic would probably exceed the
overhead that SLOTH ON TIME introduces (compare 10 cycles
per deadline in SLOTH ON TIME to 95 cycles per deadline
check interrupt in the commercial kernel).

2) Avoiding Priority Inversion: Second, in the commercial
AUTOSAR OS system, we could observe a certain kind of
priority inversion, which occurs when a low-priority task is
activated by the timer while a high-priority task is running (see
gaps in the execution of Task3 in Figure 7b). The high-priority
task is interrupted by the timer interrupt, whose handler then
checks which task is to be activated, and inserts this low-priority
task into the ready queue. Thus, code is executed on behalf of a
low-priority task while a high-priority task is running or ready
to run; Leyva del Foyo et al. coined the term rate-monotonic
priority inversion for that phenomenon [5]. The priority
inversion interruptions exhibited by the commercial AUTOSAR
OS kernel are really heavy-weight: The corresponding handlers
execute for 2,075 clock cycles each. This can lead to serious

deviations between the statically calculated WCET for a task
and its actual run time, which is potentially prolonged by
several of those low-priority interrupts.

In SLOTH ON TIME, those interrupts do not occur at all since
the corresponding timer cell activates the task not by executing
code on the main CPU but by setting the pending bit of the
associated IRQ source, configured with the task priority. Since
the high-priority task that is currently running runs at high
interrupt priority, the activation does not lead to an interruption
until the high-priority task blocks or terminates (see continuous
execution of Task3 in Figure 7a).

Thus, the SLOTH approach of running tasks as interrupt
service routines in combination with the SLOTH ON TIME
concept of using dedicated timer cells for time-dependent
activations minimizes the number of interrupts in the system,
facilitating real-time analyses. Interrupts only occur if an action
needs to be taken by the kernel on behalf of the application.
Traditional kernels with a single system timer cannot avoid
the described kind of priority inversion since they have to put
the activated task into the ready queue (even if it has a low
priority) and reconfigure the timer to the next expiry point; this
is an inherent design issue that SLOTH ON TIME overcomes.
In SLOTH ON TIME, those problems are avoided by design;
the timer hardware runs concurrently to the main CPU and
activates a task by setting the corresponding IRQ pending bit
without having to interrupt the CPU.

Furthermore, in traditional systems, the timer interrupt
handler needs to be synchronized with the kernel since it
accesses the kernel ready queue; this leads to jitter in the
task dispatch times since the timer interrupt handler might
additionally be delayed by a task executing a system call. The
SLOTH ON TIME approach eliminates that jitter source since
explicit kernel synchronization is not necessary—the ready
queue is implemented implicitly in the hardware IRQ state and
does not need to be synchronized in software.

3) Preciseness: We also investigated the preciseness of task
dispatch times as specified by the static schedule and the drift
between several consecutive dispatcher rounds. Both in our
SLOTH ON TIME kernel and the two commercial kernels, we
could not observe any drift since all of them rely on hardware
timers and static execution overhead in their timer interrupt
handlers.

Additionally, we could show that by using control cells as
proposed in Section IV-A1, all activation cells of the dispatcher
round or schedule table can be started simultaneously. This
way, the additional overhead introduced by starting all timer
cells in sequential machine instructions does not need to be
respected in the offset calculation for the individual activation
cells.

C. Quantitative Evaluation

Since non-functional properties such as kernel execution
times, latencies, and memory footprint are crucial to real-time
kernels, we also took comprehensive measurements to be able
to state the quantitative effects of our SLOTH ON TIME design
on these important properties.

<handlerTask2>:
mov %d0,2944
mtcr $psw,%d0 // enable global address registers
isync // synchronize previous instruction
st.a [+%a9]-4,%a8 // save preempted task ID on stack
mov.a %a8,2 // set new task ID
st.t <GPTA0_LTCCTR11>,3,1 // enable deadline cell
bisr 2 // set exec prio 2, save context, enable IRQs
call userTask2 // enter user code
disable // suspend IRQs for synchronization
st.t <GPTA0_LTCCTR11>,3,0 // disable deadline cell
rslcx // restore context
ld.a %a8,[%a9+] // restore preempted task ID from stack
rfe // return from interrupt handler (re-enables IRQs)

Fig. 8: Compiled time-triggered task interrupt handler in SLOTH
ON TIME on the TC1796 for Task2 with one deadline.

1) OSEKtime Evaluation: Since SLOTH ON TIME encapsu-
lates the expiry points of a dispatcher round in its timer cell
configuration and traditional implementations need a look-up
table to multiplex the system timer at run time, we expect
differences in the overhead of time-triggered task dispatch and
termination in SLOTH ON TIME and the commercial OSEKtime
kernel. The top of Table I shows our measurements, which
confirm that our approach yields very low latencies at run time
compared to traditional implementations like the commercial
OSEKtime, yielding speed-up numbers of 8.6 and 2.7 for task
dispatch and termination, respectively. This reduced overhead in
SLOTH ON TIME leads to additional slack time in a dispatcher
round, which can be used to include additional application
functionality (compare the idle times in Figure 6).

Note that the number of 14 clock cycles for the time-triggered
task dispatch includes all costs between the preemption of the
running task or the idle loop to the first user instruction in the
dispatched task (see assembly instructions in Figure 8). Thus,
the number reflects the complete SLOTH ON TIME prologue
wrapper, which itself entails saving the context of the preempted
task on the stack; since the system is strictly stack-based, all
tasks run on the same stack, so the stack pointer does not have
to be switched. The overhead numbers of 60–74 cycles for a
task activation in an event-triggered SLOTH system (presented
in [7]) exactly correspond to the 14 cycles for the context save
prologue plus the activation system call issued by the calling
task. Since SLOTH ON TIME activations are time-triggered,
the overhead for the system call is not applicable, yielding
the very low total number of 14 cycles. Enabling activation
cell multiplexing (see Section IV-F) adds 18 cycles to the
activation overhead for any task that benefits from this feature
due to multiple activations in a single dispatcher round. Tasks
activated only once per dispatcher round are not affected by
this and retain the usual overhead.

If deadline monitoring is used in the application, both
overhead numbers in SLOTH ON TIME increase by about 10
cycles for every deadline associated with a given task (see
bottom of Table I). This stems from the fact that SLOTH ON
TIME activates and deactivates the deadline cells for that task,
which compiles to a single memory-mapped store instruction
per cell (see also Figure 8); due to memory bus synchronization,

SLOTH ON TIME OSEKtime Speed-Up

Time-triggered (TT) dispatch 14 120 8.6
Terminate 14 38 2.7

TT dispatch w/ 1 deadline 26 120 4.6
TT dispatch w/ 2 deadlines 34 120 3.5
Terminate w/ 1 deadline 24 38 1.6
Terminate w/ 2 deadlines 34 38 1.1

TABLE I: Run time overhead of time-triggered task dispatch
and termination with deadline monitoring enabled, comparing
SLOTH ON TIME with a commercial OSEKtime implementation
(in number of clock cycles).

this instruction needs 10 clock cycles. If multiplexing of
deadline cells as described in Section IV-F is used instead,
no additional overhead is incurred during dispatch, but an
increase of 18 cycles is measured for the task termination,
representing the cost of maintaining the state of the offset array
and reconfiguring the deadline cell. However, this increased
overhead does not increase further with additional deadlines
to be monitored for the same task; starting with two deadlines
per task, multiplexing yields a performance advantage. This
advantage is traded for a slight increase in memory footprint
for the offset array and the associated index variable.

The dispatch overhead in the commercial OSEKtime system
remains the same independent of the number of deadlines;
however, as discussed in Section V-B1, it introduces additional
IRQs to a dispatcher round, executing for 95 cycles per
deadline.

In the mixed-system case, when an event-triggered OSEK
system runs in the idle time of the time-triggered OSEKtime
system, the commercial implementation exhibits the same
latency as in the time-triggered-only case (120 cycles). SLOTH’s
latency depends on the conformance class of the underlying
event-triggered system: If the application only includes basic
run-to-completion tasks (class BCC1), then its latencies remain
the same as in the time-triggered-only case (14 cycles for task
activation and 14 cycles for task termination). If it also includes
extended tasks that can block at run time (class ECC1), then the
latencies rise the same way as described in SLEEPY SLOTH [8].
Since extended tasks have to run on stacks of their own because
they potentially block, an additional stack switch is needed
when a time-triggered task preempts an extended task of the
underlying event-triggered system. With the raised latency
being 28 cycles, even in that case SLOTH is still considerably
faster than the commercial kernel (speed-up of 4.3).

2) AUTOSAR OS Evaluation: We also evaluated the laten-
cies of event-triggered systems featuring time-triggered task
activation; the measurements use the AUTOSAR interface of
both SLOTH ON TIME and the commercial AUTOSAR OS
kernel.

First, we show the measurement numbers for the two relevant
system calls: StartScheduleTableRel(), which starts a
schedule table dispatcher round relative to the current time, and
StopScheduleTable(), which stops the execution of further
expiry points of a given table. The results are shown in Table II.
Due to the preconfiguration of corresponding timer cells during

SLOTH ON TIME AUTOSAR OS Speed-Up

StartScheduleTableRel() 108 1,104 10.2
StopScheduleTable() 20 752 37.6

TABLE II: Overhead of time-triggered system services in
event-triggered AUTOSAR OS systems, comparing SLOTH ON
TIME with a commercial implementation of the AUTOSAR
standard (in number of clock cycles).

the initialization, the system call latencies in SLOTH ON TIME
compared to the commercial implementation reach speed-up
numbers of 10.2 and 37.6 for starting and stopping a schedule
table at run time, respectively.

Second, we measured the latencies for activating a task at
certain points in time as specified by an AUTOSAR schedule
table; the results are shown in Table III. In SLOTH ON TIME,
activating a task using preconfigured timer cells and user task
functions connected to an interrupt source totals to between 14
and 77 clock cycles, depending on the types of the involved
tasks. If full stack switches are needed (since extended tasks
are able to block), the latency is higher compared to when
only basic tasks are involved, which run to completion and can
therefore run on the same stack. Again, those numbers reflect
the execution of the whole wrapper prologue, measuring the
time from the timer interrupt to the first user task instruction;
thus, they include the whole context switch, including the
stack switch if an extended task is involved. The commercial
AUTOSAR system needs 2,344 to 2,400 clock cycles to
achieve this, resulting in speed-up numbers for SLOTH ON
TIME between 31.2 and 171.4. Dispatches resulting from
task termination amount to 14 to 88 cycles, again depending
on the involved task types. The commercial AUTOSAR
implementation takes 382 to 532 clock cycles for those test
cases, yielding speed-up numbers of 6.0 to 38.0 for SLOTH
ON TIME.

3) Memory Footprint: Since SLOTH ON TIME is highly
configurable, its memory footprint depends on factors such as
the selected set of features and the configured number of tasks,
activation points, deadlines, et cetera. As a ballpark figure for
the memory usage of SLOTH ON TIME, we created a minimal
time-triggered application with one task and one deadline but
no actual user code and measured a total of 8 bytes of RAM
usage and 1,480 bytes of ROM (of which 624 bytes are claimed
by the platform start-up code). In comparison, equivalent setups
in the commercial implementations allocate 52 bytes of RAM
and 2,600 bytes of ROM (OSEKtime) and 900 bytes of RAM
and 34,514 bytes of ROM (AUTOSAR OS).

D. Overall Benefit for the Application

By using SLOTH ON TIME instead of one of the commercial
kernels, a time-triggered application will be executed more
predictably, since unnecessary interrupts and priority inversion
can be avoided in SLOTH ON TIME. The gained slack time per
dispatcher round depends on the degree that the application
makes use of the operating system—on its number of activation
points, deadline monitoring points, and executed system calls.

SLOTH ON TIME AUTOSAR OS Speed-Up

Time-triggered task activation with dispatch idle loop to basic task 14 2,344 167.4
Time-triggered task activation with dispatch basic task to basic task 14 2,400 171.4
Time-triggered task activation with dispatch extended task to extended task 77 2,400 31.2

Task termination with dispatch basic task to idle loop 14 382 27.3
Task termination with dispatch basic task to basic task 14 532 38.0
Task termination with dispatch extended task to extended task 88 532 6.0

TABLE III: Latencies of time-triggered task activation and dispatching in event-triggered AUTOSAR OS systems, comparing
SLOTH ON TIME with a commercial AUTOSAR OS implementation (in number of clock cycles).

However, since SLOTH ON TIME has a lower overhead in all
microbenchmarks, the application will always experience a
benefit.

For OSEKtime systems, the number of additionally available
clock cycles per dispatcher round is 130 per task activation
point without a deadline, plus 114 per task activation with one
or more associated deadlines, plus 95 per monitored deadline.
For AUTOSAR OS systems, the total benefit in clock cycles is
at least 2,767 per task activation, plus 996 per schedule table
start system call, plus 732 per schedule table stop system call,
plus the SLOTH and SLEEPY SLOTH benefit for the regular
event-triggered operation (see [7] and [8]). The gained slack
time allows the application to include additional functionality.

VI. DISCUSSION

In this section, we discuss the general applicability of our
SLOTH ON TIME approach and the impact it has on applications
running on top of the kernel.

A. Applicability

The applicability of the proposed SLOTH ON TIME design
depends on the timer architecture of the underlying hardware
platform. Due to the instrumentation of timer cells in different
role types, an appropriate number of timer cells that are not
otherwise used by the application needs to be available for the
kernel to use, specified in the configuration (see Artifact A
in Figure 4). Many modern microcontrollers, especially those
that are used in control systems, offer plenty of configurable
timers—like the Freescale MPC55xx and MPC56xx embedded
PowerPC families and the Infineon TriCore TC1796, the
reference platform for SLOTH ON TIME.

Since timer cells and connected interrupt sources are usually
not freely configurable, the mapping of scheduling points
to timer cells can be challenging for the developer of the
hardware model (see Artifact B in Figure 4). On the TC1796,
for instance, restrictions apply that make it necessary to use
two adjacent cells per activation; additionally, four cells are
connected to a single interrupt source. Thus, on that platform,
a second activation of the same task in a dispatcher round can
be accommodated with minimal additional hardware resources.
More than two activations will be subject to a trade-off
decision, probably favoring a multiplexing implementation
if cells become scarce (see Section IV-F).

In theory, SLOTH ON TIME competes with the application for
the timer cells, which may limit their availability for the kernel.
In practice, however, timer arrays are only used for control

algorithms that bear latency and activation rate requirements
so tight that traditional RTOS cannot fulfill them; by using
the timer hardware directly, the application also becomes less
portable. SLOTH ON TIME, on the other hand, offers very low
latencies, but hides its implementation beneath a platform-
independent OSEKtime API and configuration, shielding the
developer from porting the application from one hardware
timer API to another. We are convinced that, given an RTOS
that offers hardware-comparable latencies for task activations
such as SLOTH ON TIME, application developers would happily
migrate from using timer arrays directly to using time-triggered
task abstractions.

By using platform-specific timer hardware extensively, the
SLOTH ON TIME kernel itself is less portable than a traditional
time-triggered kernel with software multiplexing. Our reference
implementation runs on the Infineon TriCore TC1796; from our
experiences in porting the event-triggered SLOTH and SLEEPY
SLOTH kernels, however, we can state that the additional
porting effort can be contained by using a clear internal
abstraction boundary.

Since multi-core processors are used mainly for consolidation
purposes in the automotive market, the AUTOSAR standard
recently introduced hard task partitioning for multi-core appli-
cations. Schedule tables, which encapsulate task activations,
are therefore also bound to specific cores; thus, the SLOTH
ON TIME approach can be applied to each schedule table
separately by statically initializing the task interrupt sources
to route interrupt requests to the configured core.

B. Impact on Schedulability, Predictability, and Efficiency

The benefits of improved latency and system call perfor-
mance introduced by the SLOTH ON TIME concept have a
positive impact on the schedulability of tasks in the application.
As directly perceivable by comparing the idle times in the
execution traces in SLOTH ON TIME and the commercial
kernels (see Figures 6 and 7), the increased slack time can be
used to include additional application functionality by either
extending existing tasks or by introducing additional time-
triggered tasks. In application scenarios with highly loaded
schedules, an implementation using traditional kernels might
not even be possible, whereas the reduced overhead in SLOTH
ON TIME might make it feasible.

Schedules with activation points that are very close together
in time will cause problems in traditional kernels, since the
software scheduler will delay the second activation through
its overhead for the first task activation. By activating and

dispatching in hardware, the minimal overhead caused by
SLOTH ON TIME can accommodate close activation points—
as they occur when scheduling tasks with high activation
frequencies, for instance. Taking into account the dispatching
overheads caused by the kernels, SLOTH ON TIME supports a
maximum dispatch frequency of 1.7 MHz of a single minimal
task, whereas the commercial AUTOSAR kernel only supports
17 kHz, for example.

The fact that SLOTH ON TIME has very few data structures
in the software part of the kernel not only reduces its footprint
in RAM, but also in the platform’s data cache. This reduced
kernel-induced cache load increases application performance
by letting it execute out of the cache more often, and, more
importantly, reduces caching effects caused by the kernel—
thereby increasing the predictability of the application. This
facilitates the development of the real-time schedule with
tightened WCETs.

Additionally, the reduced kernel-induced load in SLOTH ON
TIME systems positively influences the energy consumption of
embedded devices. Since most of those systems spend the
majority of their time in sleep mode, the lower overhead
introduced by the operating system has a significant impact on
energy efficiency—and, therefore, battery life, which is crucial
in mobile embedded systems.

VII. RELATED WORK

The idea of hardware-based and hardware-assisted real-
time scheduling is not new. Existing approaches, like Ata-
lanta [17], cs2 [11], HW-RTOS [3], FASTCHART [9], and
Silicon TRON [12], but also the work presented in [16], [4],
however, focus on event-triggered real-time systems and employ
customized hardware synthesized on an FPGA or a similar
component. SLOTH ON TIME, in contrast, employs commodity
hardware to implement scheduling with focus on time-triggered
systems; the seamless integration of mixed-mode systems is
possible by employing the techniques presented in our previous
papers [7], [8].

The fact that only little work so far has focused on hardware
assistance for time-triggered schedulers might be rooted in the
generally simple and straight-forward software implementations
of such schedulers [10]. On the other hand, aiming for efficient
software-based timer abstractions has a long tradition in the
operating systems community, including concepts such as timer
wheels [42], soft timers [1], and adaptive timers [15]. These
concepts, however, are all based on the assumptions that 1)
hardware timers are sparse and that 2) they are costly to
reprogram [6]. The first assumption is no longer valid with
current 32-bit microcontroller platforms; the second still is, but
SLOTH ON TIME can avoid the reprogramming costs by using
dedicated timer cells for each task and deadline.

VIII. CONCLUSION

We have presented our SLOTH ON TIME RTOS design, which
exploits standard timer array hardware available on modern
microcontrollers to efficiently offload schedules in a time-
triggered or mixed-mode real-time system to the hardware.

With our design, tasks are scheduled and dispatched with
low latency by the platform’s timer and interrupt controller.
SLOTH ON TIME instruments the available timer cells not
only for task activation, but also for schedule table control,
deadline monitoring, and time synchronization; thereby it
entirely prevents issues of rate-monotonic priority inversion.

The resulting performance boost is convincing: We have
evaluated our approach by implementing the OSEKtime OS
standard and the AUTOSAR OS schedule table facility, both
of which are omnipresent in the automotive industry. With a
dispatch latency of 14 cycles, SLOTH ON TIME outperforms
leading commercial implementations of these standards by a
factor of up to 171 x. Our results show that it is time (sic!)
to exploit the capabilities of modern microcontrollers in time-
triggered real-time kernels.

REFERENCES

[1] Mohit Aron and Peter Druschel. Soft timers: Efficient microsecond
software timer support for network processing. ACM TOCS, 18(3):197–
228, 2000.

[2] AUTOSAR. Specification of operating system (version 4.0.0). Technical
report, Automotive Open System Architecture GbR, 2009. http://autosar.
org/download/R4.0/AUTOSAR_SWS_OS.pdf.

[3] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. Hard-
ware/software partitioning of operating systems: A behavioral synthesis
approach. In GLSVLSI ’06, pages 324–329, 2006.

[4] Uwe Dannowski and Hermann Härtig. Policing offloaded. In RTAS ’00,
pages 218–228, 2000.

[5] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In RTAS ’06, pages 14–23, 2006.

[6] Antônio Augusto Fröhlich, Giovani Gracioli, and João Felipe Santos.
Periodic timers revisited: The real-time embedded system perspective.
Computers & Electrical Engineering, 37(3):365–375, 2011.

[7] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In RTSS ’09, pages 204–213,
2009.

[8] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Sleepy Sloth: Threads as interrupts as threads. In RTSS ’11, pages
67–77, 2011.

[9] Lennart Lindh and Frank Stanischewski. FASTCHART – A fast time
deterministic CPU and hardware based real-time-kernel. In Euromicro
Workshop on Real-Time Systems, pages 36–40, 1991.

[10] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[11] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In SAC ’04, pages 869–875, 2004.

[12] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operating
system. In 12th TRON Project International Symposium (TRON ’95),
pages 34–42, 1995.

[13] OSEK/VDX Group. Time triggered operating system specification 1.0.
Technical report, OSEK/VDX Group, 2001. http://portal.osek-vdx.org/
files/pdf/specs/ttos10.pdf.

[14] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, 2005. http://portal.osek-vdx.org/files/pdf/
specs/os223.pdf.

[15] Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, and
Rebecca Isaacs. 30 seconds is not enough! A study of operating system
timer usage. In EuroSys ’08, pages 205–218, 2008.

[16] John Regehr and Usit Duongsaa. Preventing interrupt overload. In
LCTES ’05, pages 50–58, 2005.

[17] Di-Shi Sun, Douglas M. Blough, and Vincent John Mooney III. Atalanta:
A new multiprocessor RTOS kernel for system-on-a-chip applications.
Technical report, Georgia Institute of Technology, 2002.

[42] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: Data
structures for the efficient implementation of a timer facility. In SOSP

’87, pages 25–38, 1987.

http://autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

	Introduction and Motivation
	System Model for Time-TriggeredTask Activation
	Time-Triggered OSEKtime
	AUTOSAR OS Schedule Tables and Execution Budgets

	Background
	Sloth Revisited
	Microcontroller Hardware Model and Requirements

	Sloth on Time
	Time-Triggered Sloth
	Static Design
	Run Time Behavior

	Deadline Monitoring
	Combination of Time-Triggered and Event-Triggered Systems
	Mixed-Mode System
	Event-Triggered System with Time-Triggered Elements

	Execution Time Protection
	Synchronization with a Global Time Base
	Timer Cell Multiplexing

	Evaluation
	The Infineon TriCore TC1796 Microcontroller
	Qualitative Evaluation
	Avoiding Unnecessary IRQs
	Avoiding Priority Inversion
	Preciseness

	Quantitative Evaluation
	OSEKtime Evaluation
	AUTOSAR OS Evaluation
	Memory Footprint

	Overall Benefit for the Application

	Discussion
	Applicability
	Impact on Schedulability, Predictability, and Efficiency

	Related Work
	Conclusion
	References

