Eliminating Single Points of Failure in
Software-Based Redundancy

Peter Ulbrich, Martin Hoffmann, Rudiger Kapitza, Daniel Lohmann,
Reiner Schmid and Wolfgang Schroder-Preikschat

oNGS
Diskussionskreis Fehlertoleranz iESl z
November 22) 201 2 Embidded Systems Initiiive

CHAIR IN DISTRIBUTED SYSTEMS
AND OPERATING SYSTEMS

SIEMENS =\

htto.//www4 .cs fau.de

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Transient Hardware Faults — A Growing Problem

1e+04 T T T T T T T /é

1e+02 -
o
5
E 1e+00 — =
w
(O]
T 1e-02 |- -
o
S,
L 1e-04 L latch, 6 FO4s |
= latch, 8 FO4s —ma—
c% latch, 12 FO4s —a— |

latch, 16 FO4s —&—
1e-06 | logic, 6 FO4s —e— _
logic, 8 FO4s —=&—
logic, 12 FO4s —<=—
Iolgic, 16 FC|)4S ——

(200z “sewnseays) [g]

19'08 | | | 1 1
600nm 350nm 250nm180nm 130nm 100nm 70nm 50nm
1992 1994 1997 1999 2002 2005 2008 2011

Technology Generation
m Transient hardware faults (Soft-Errors)

= |nduced by e.g., radiation, glitches, insufficient signal integrity
= |ncreasingly affecting microcontroller logic

= Future hardware designs:
Even more performance and parallelism

— On the price of being less and less reliable

O Peter Ulbrich — ulbrich@cs.fau.de

Countermeasures — Hardware Redundancy

Safety-Critical System

w—b Safety-Critical Application

O Peter Ulbrich — ulbrich@cs.fau.de 3

Countermeasures — Hardware Redundancy

Safety-Critical System

Safety-Critical Application

= Hardware-based redundancy
= Application-specific design or specialised hardware
= For example ECC, lock-step

O Peter Ulbrich — ulbrich@cs.fau.de 4

Countermeasures — Hardware Redundancy

Safety-Critical System

Safety-Critical Application

= Hardware-based redundancy
= Application-specific design or specialised hardware
= For example ECC, lock-step
v Pragmatic and safe (tackles problem right at source)

O Peter Ulbrich — ulbrich@cs.fau.de 5

Countermeasures — Hardware Redundancy

.....

e
Safety-Critical System v

Safety-Critical Application

= Hardware-based redundancy
= Application-specific design or specialised hardware
= For example ECC, lock-step
v Pragmatic and safe (tackles problem right at source)
X Hardware costs (e.g., core, checker, ...)
X Selectivity and adaptivity (e.g., multi-application systems)
X Development costs (diverse safety concepts and HW, (re-)certification)

O Peter Ulbrich — ulbrich@cs.fau.de 6

Countermeasures - Software

Safety-Critical System

—p Safety-Critical Application (1)é *

w—b Safety-Critical Application (2) M

—> Safety-Critical Application (3)

= Software-based redundancy

= For example Triple Modular Redundancy (TMR)
(e.g., recommended for ASIL D error handling)

v' Selective and adaptive (e.g., application or module level)
v Resource efficient (protects only what is really necessary)
and (RTOS support, input-output safety)
((re-)certification)

O Peter Ulbrich — ulbrich@cs.fau.de 7

Software-Based Redundancy in Detalil

Safety-Critical System

@— Interface —P

p=?
pP=>? h* p=?
—; —> Replica 1
Replica 2
—P Replica 3

[] Isolation domain

[] Sphere of replication (SOR)

. 1 AIms

= Singld ™ Eliminating single points of failure

= N = [nput-to-output protection

® Risk ¢

= Safety* as a system software service

*w.r.t. soft-errors

= Random error distribution? (Nightingale, 2011)

0 Peter Ulbrich — ulbrich@cs.fau.de

Majorityé
Voter

Agenda

m [ntroduction

= The Combined Redundancy Approach
m Eliminating Vulnerabilities
m High-Reliability Voters

= Example: UAV Flight Control
m CoRed Implementation
m TJarget System: [4Copter

= Evaluation

m Experimental Setup
m Results

= Conclusion

O Peter Ulbrich — ulbrich@cs.fau.de

CoRed Overview — Holistic Protection Approach

2

1

Encode

eplica

Decode

/N
:

Sensor ¥ |Encode

Actuator

Sensor|2 |Encode eplica

N
Decode
—
Encode
-

= =
4
Sensor 3 |Encode] W
J \ Network
N

REpllca 3 Interface

Remote Node

Decode
Encode

/ \

[] isolation domain [| Encoded operation [| Sphere of replication (SOR)

= The Combined Redundancy Approach (CoRed)
Data-flow encoding

TMR
¥ { High-reliability voters

= Holistic Protection Approach

= |nput to output protection
1 Reading inputs — 2 Processing — 3 Distributing outputs

= Composability — On application and system level

Peter Ulbrich — ulbrich@cs.fau.de 10

Eliminating Input and Output Vulnerabilities

SOR
Y Y
(Value) —> Encode Decode —>
Decode —p Z=X0Y
(V:i{le) —p Encode Decode —p» X
A B, D

(Prime) (Signature) (Timestamp)

= |nter-domain data-flow protection
m Checksum vs. Arithmetic code (AN code)
= AN Code — Encoded data operations
= Enabler for high-reliability voter

= CoRed: Extended AN code (EAN code)
= Based on VCP (Forin, 1989)

= Data integrity: Prime

= Address integrity: Per variable signature X' =X*xA+By+D
= Qutdated data: Timestamp

= Set of arithmetic operands (+, -, ¥, =, ...)

= Tailored for efficient encoded data voting

0 Peter Ulbrich — ulbrich@cs.fau.de

11

High-Reliability Voter — Basics (1)

Replical X—| Encode

Replica2 Y —| Encode Encoded Voter

Replica3 7 —| Encode

Encoded Voter

Provider

= CoRed Encoded Voter
= |nput: variants (X, Y, Z7)
= Qutput: Equality set (E) and winner (W)
= Based on EAN operations — No decoding necessary

= Branch decisions (equality) on encoded data

= |FF difference of encoded values equals difference of static signatures
X=Y & X-Y=B,-B,

= Each branch decision — Unique signature

0 Peter Ulbrich — ulbrich@cs.fau.de

High-Reliability Voter — Basics (2)

X’

Replical X—| Encode

X’
Replica2 Y — Encode Encoded Voter Check (Decode) }—}

Replica3 7 —| Encode e.g., X' is the winner

Provider Encoded Voter Consumer

= Correct control-flow
= Valid decision — Unique control-flow path
= Each path — Unique signature

= Control-flow signatures

m Static signature (expected value): Compile-time
— Used as return value E

= Dynamic signature (actual value): Runtime, computed from variants
— Applied to winner W

= Validation: Subsequent check (decode)

0 Peter Ulbrich — ulbrich@cs.fau.de

13

CoRed Encoded Voter — Example

()
true apply(Yl’ Sigdyn{Yl’Zl}) apply(xl’ Sigdyn{xlizl})
X return SiggiarictY'»Z'}) return SiggiaictX',Z'}
() ~
false apply(xl’ Sigdyn{XI’Yl}) return S|g . {}
| return sigguo{X',Y'} | statie

true

apply(X', sigdyn{X',Y',Z'})
return SiggictX',Y",Z'}

= Control-flow monitoring
= Finding quorum — Static signature
= Reapply path specific EAN operations — Sign winner with dynamic signature
s Check — Subsequent decode

0 Peter Ulbrich — ulbrich@cs.fau.de

CoRed Encoded Voter — Example

p
true apply(Y', sigg, {Y',Z'D| [apply(X', sigy,{X'.Z'})
L return siggic{Y',Z'} return Sigg.ictX',Z'}

p
false | @appIy(X', sigq,{X',Y'})
L return SiggictX',Y'}

true

[apply(xl’ Sigdyn{XI’Yl’Zl}q

A 4

@ [return Siggic{}]

return SiggictX',Y",Z'}

1. Improper branch decision: Y’ # Z’
= Voter elects Y’ as winner (which is incorrect)
= Returns E and W correctly
= Subsequent decode will fail! — sig;.;; # Sigy,,

2. Faulty jump
= Voter elects X’ and computes W correctly
= Returns incorrect E — Again subsequent decode will fail!

0 Peter Ulbrich — ulbrich@cs.fau.de

Implementation

Safety-Critical System

m—> Safety-Critical Application —Pm

CoRed Integration Layer

RTOS (CiAO/PXROS-HR)

= CoRed implementation
m Easy-to-use C++ templates and libraries
= Hardware independent: EAN Code and Encoded Voter

= Thin OS integration layer
= PXROS-HR (Industry-strength commercial RTOS)
= CIAO (AUTOSAR-OS compatible)

= CoRed artefacts — Real-time tasks and jobs
= Pragmatic
= Allows for implementing various redundancy patterns

O = TMR, PaS, CP, ...

Peter Ulbrich — ulbrich@cs.fau.de 16

CoRed Protected Flight Control

Redundant
Sensor Setting

TC1796

Infineon TriCore

= Target System: [4Copter quadrotor platform
= |ndustry-grade hardware and software
= Triple redundant sensor setting

= Multi-application system
= Flight control application
m Safety-critical
= Model-based: MATLAB Simulink
= Embedded Coder — C++ code

O Peter Ulbrich — ulbrich@cs.fau.de 17

Evaluation — Experimental Setup

[Rebaudengo, 1999] [W Sacse

Flight-Control Application

{
[

[& g S
s EE

Fault-Injection
Campaign Manager

A

Fault DB Results DB

[System Under Test H Hardware Debugger }4 P[Host Computer }

= Fault injection — Using hardware debugger
= |njection of arbitrary fault patterns
= Minimal-intrusive — Minimizing probe effects

= Fault list generation (Rebaudengo, 1999)
= Bits x registers x instructions — Potentially huge fault space
= Vast majority of faults are non-effective — Systematic elimination

Outcome: 401,592 experiments Categories: Fail Silent, Masked, Hardware Detected, EAN-Code,
Effective: 67,617 errors Control-Flow, Silent Data Corruption

Peter Ulbrich — ulbrich@cs.fau.de 18

Evaluation — Experimental Results (1)

—

Replica 1

Interface

_>

Replica 2

L

Replica 3

I Silent Data Corruptions
[Hardware Detected
T EAN-Code Detected
Il Masked

Distribution of Effective Faults

90 %

80 % -

70% +1-

60% +|-H-1-

50% W1

40% W1

30% |-

20 % + |-

=
T

Unprotected Plain TMR CoRed TMR

= Redundant execution campaign (Interface)

m Total: ~45,000 Errors
= Unprotected: Suffers from 3,622 corruptions!

TMR: Suffers from 71 corruptions!
CoRed: Remaining corruptions are covered — 0 corruptions

O Peter Ulbrich — ulbrich@cs.fau.de

19

Evaluation — Experimental Results (2)

i 90 %
Replica 1 ﬁ 77
SE
Replica2 p» Voter 80 9% ——-ooo- S =
Replica 3 g O IS S RO | H
60 % -
50 %
40 % -
BN Silent Data Corruptions 30 % -
[1 Hardware Detected
20 % -
[EAN-Code Detected
[1 Control-flow Monitoring 10% 1|
I Masked

0% -

=
T

Plain Voter

= Voter campaign
= Plain voter:

Total ~11,000 2,465 masked 7,245 retry 1,223 corruptions
= CoRed Encoded Voter:
Total ~26,000 1,228 masked 24,682 retry 0 corruptions

O Peter Ulbrich — ulbrich@cs.fau.de

20

Evaluation — Experimental Results (2)

Replica 1 90 % T T T T T T T T T

Replica 2 J_}l DR enoz | 2 I

repiica3| F\/g|uation — Overhead

= QOverhead Analysis

= |4Copter Flight-Control: 7.1% overhead
(compared to plain TMR)

. = Absolute numbers: 1,842us (application)
— il 10.2us (plain voter) vs. 77.6us (CoRed voter)
[Hg
s EA - SeleCtiVity
1 Cq = |4Copter system CPU utilisation: 41%
B M — Full replication impossible, CPU: 120%
= Mission-critical replication of flight control
— possible with CoRed, CPU: 60%
= Voter
= |

= CoRed Voter:
Total ~26,000 1,228 masked 24,682 retry 0 corruptions

0 Peter Ulbrich — ulbrich@cs.fau.de

Conclusion

Safety-Critical System

Replica 1
Encoded]
Interface Replica 2

Replica 3

= The Combined Software Redundancy Approach (CoRed)
= Eliminate Single Points of Failure in software-based TMR
= No specific application knowledge necessary
= Holistic approach: input-to-output protection

= Applicability: Flight control
= |4Copter MAV
m Selective and composable

= Experimental Results
= CoRed is effective — Silent data corruptions can be eliminated
= Only 7.1% overhead (flight control example)

O Peter Ulbrich — ulbrich@cs.fau.de 22

Outlook

= danceOS
Dependability Aspects in Configurable Embedded Operating Systems
= DFG SPP 1500, started Dec 2010

= Dependable Embedded Systems

= Vision: Software-based fault tolerance for cheap but unreliable many-
core hardware

Flight Control Comfort Functionality
[Signal Attitude H Motor] Video Acquisition Streaming
Processing tabilisatio Control & Encoding to Ground
Applications e e N e,
. .)
System Services uses relationship -
> 33
| =788
Alarms Events @
)
|) 5
e =
v . o
7]
. =}
Scheduling . o 39
| < —- L
| ES
@
______________________ N
Hardware] i
Timer RAM Registers

O Peter Ulbrich — ulbrich@cs.fau.de 23

Tha

SIEMENS

htto.//www4 .cs fau.de

you!

Embedded Systems Initiative

CHAIR IN DISTRIBUTED SYSTEMS
AND OPERATING SYSTEMS

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

References

(1) International Roadmap for Semiconductors, 2001
(2) Implications of microcontroller software on safety-critical automotive systems (Infineon 2008)
(3) P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modelling the effect of

technology trends on the soft error rate of combinational logic,” in DSN ’02: Proceedings of the
2002 International Conference on Dependable Systems and Networks

(4) Edmund B. Nightingale, John R Douceur, and Vince Orgovan, Cycles, Cells and Platters: An
Empirical Analysis of Hardware Failures on a Million Consumer PCs, in Proceedings of EuroSys

2011, Awarded "Best Paper", ACM, April 2011

(5) M. Rebaudengo and M. S. Reorda, “Evaluating the fault tolerance capabilities of embedded
systems via bdm,” VTS 1999

(6) Forin, “Vital coded microprocessor principles and application for various transit systems”, 1989

O Peter Ulbrich — ulbrich@cs.fau.de

25

