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Abstract. Number, variety, and organization of the on-chip processing
elements of many-core processors demand a radical rethink in operating
systems design. One may come from a multitude of allocatable units
that bestows every execution thread its own core: single-threaded cores
will be usual, multi-threaded cores will be unusual. The paper presents
a scalability-aware kernel executive, SAKE, that is currently designed
against such background targeting at large-scale heterogeneous many-
core systems. Benchmarks on a 48-core machine motivate custom system
software and special purpose systems for such modern machines.

1 Introduction

Multi-core architectures with a fistful (2-8) of processing elements are actually
yesterday’s news in the parallel systems community, many-core architectures
with 10% and more processors on a chip arise on the horizon. Based on [10] an
annual increase of 40% for the number of cores per processor has been pro-
jected [5] that would bring chips of about 5 x 103 cores by the year 2020. Given
the full configuration of Kepler GK110 (i.e., 15 SMX units of 192 cores each [15]),
the promise of this projection, namely to have processors with up to 480 cores
in 2013, has been already overachieved fivefold at the time being. However, it
appears that assembly and operation of several thousands of cores on a single
chip must be differentiated. Because of power constraints, the number of per-
chip transistors that can switch at full frequency drops exponentially (utilization
wall): large portions of chip area have to be left passive (dark silicon) in order
to stay within the power budget of the chip [20]. Nevertheless, compared to the
current state, the number of cores being plugged into future (general purpose)
processors will increase significantly.

These sorts of parallel processors will be heterogeneous in terms of on-chip
processing elements, communication facilities, and memory organization. But
heterogeneity will also concern non-functional features such as (clock) speed and
energy (demand), to enable overall system operation in ecological means. Shared
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and distributed memory will coexist on a single chip. Analog with Intel’s single-
chip cloud computer (SCC[9]), at a certain level, cache coherence is no longer
implemented in hardware. Despite dark silicon, with future many-core systems
there will be so many cores available on a chip that every single thread will be
able to run on its own private core. Single-threaded cores will be the common
case, multi-threaded ones the exceptional case. All this calls for a radical change
in the way operating systems manage processors; it also calls for programming
and system paradigms suited for very fine-grained parallelism [18,11].

The most important aspect is to tackle scalability issues in particular by, but
not limited to, the operating systems for these machines. In addition to analyt-
ical approaches, constructive methods are much-needed that decrease number
and length of sequential program sections—ideally to zero. In particular, this
means the continuous/exclusive use of non-blocking synchronization to prevent
race conditions in cases where critical sections cannot be removed constructional
by a clever arrangement of kernel-level data structures and program sections [14].
In addition to this fundamental design decision, a further measure is to rely on
application-level control of sharing kernel-level data structures amongst concur-
rent processes [3]. Another option is to treat, at some higher level of abstraction,
a many-core processor as a network of independent processing elements, assum-
ing no inter-core sharing of in-memory data structures at the lowest level but
rather bank on message passing for communicating processes even in case of
an underlying shared-memory system [1]. Notwithstanding these commendable
examples (Synthesis, Corey, Multikernel), they actually break new ground only
rudimentary as the traditional view of processor multiplexing is still the domi-
nating aspect when operating a single processing element (i.e., core)—and this
is the primary challenge our approach tackles.

Scalable operating systems for many-core processors have to focus on abso-
lute parallelism as a mandatory feature and consider pseudo-parallelism as an
optional feature that might come into play for other reasons. The former is given
only by means of real (i.e., physical) processing elements, whereas the latter im-
plies their virtualization (e.g., in terms of a conventional threading concept).
With this view, however, conventional threads do not constitute the adequate
minimal subset of operating-system functions to implement concurrency. Rather,
an event-based approach that especially suggests a single-stack kernel as basis
for the many execution “threads” promises a much more efficiently operating
parallel-computing platform [11].

Operating systems may employ cores in a functionally dedicated manner to
hide latencies, reduce background noise, speed up system operations, but also for
energy savings and heat abstraction. This encompasses system-call dispatching
to idle or derated cores|[21], offloading of interrupt and event handling, asyn-
chronous I/O completion, or messaging assist [6], or even the serialized execu-
tion of critical sections in case of high contention [17,12]. Such a use of cores
may be organized statically or dynamically in analogy to remote execution fa-
cilities developed for distributed systems in order to temporarily confiscate idle
workstations [19].



A SAKE for Many-Core Operating Systems 825

This present paper is on a Scalability-Aware Kernel Ezecutive (SAKE) for
many-core processors that has an interrupt model at the basis of the design
and ends in an event-based, single-stack implementation. In this model, which
organizes related designs into members of an operating-system family, kernel
functions (released due to system calls or traps) always run to completion, but
may be overlapped by concurrent activities of the same core (due to interrupt
requests) or caused by other cores. The run-to-completion principle particu-
larly implies non-blocking synchronization of concurrent processes competing
for (write access to) shared data structures, which happens lock-free [14, p. 2-3]
in the present implementation variant of SAKE. The single-stack concept pro-
vides the basis for strong process locality while executing within the kernel and,
thus, prevents stressing of the caches.

The remainder of this paper is structured as follows. Section 2 motivates
the need for scalability-aware operating systems to meet the requirements for
(future) heterogeneous many-core processors. This motivation is based on mea-
surements of SAKE prototypes taken on a 48-core machine and their comparison
to Linux. Section 3 presents our approach building on these prototypes. First,
we describe how to statically analyze hot spots in the prospected energy demand
of non-sequential programs in order to emit thread migration hints and recom-
mendations for energy saving and heat abstraction purposes. In a second step
we show how to exploit this information at run-time. For this we present the
concepts and preliminary design of a scalable application run-time executive in
terms of energy and heat demands. Finally, Section 3 draws some conclusions
and briefly refers to future work.

2 Know Where the Shoe Pinches

A key issue of parallel programs destined for many-core processors is scalability.
This is particularly true for operating systems. Utilizing today’s parallel process-
ing power is one of the recent challenges in computer science worldwide and the
impact of the underlying operating system became increasingly apparent. Ex-
periments with Linux 2.6 on a 16-core processor revealed a tremendous decline
in performance by a factor of 40 once a second core was in charge of application
processing [3]. Even worse, absolutely no performance increase was encountered
when the number of cores increased gradually up to 16.

In order to support the SAKE approach we prototyped LAOS! to evaluate
new system designs regarding performance and scalability on many-core ma-
chines. Our primary focus is on thread scheduling and synchronization on mod-
ern x86-64 machines. Two different operating-system kernels were implemented
as members of the LAOS family. Both provide basic services such as dynamic
creation of threads, thread scheduling and common synchronization primitives
like semaphores, mutexes, condition variables and barriers. The members mainly
differ in architectural matters: LAKE represents a novel multi-core event-based
design [7] in terms of a latency-aware kernel executive and MAOS follows a rather

! https://www4.cs.fau.de/Research/LA0S/
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conventional process-based design [13] of a many-core operating system kernel.
To provide the operating system services in an inherently parallel environment,
all kernel-internal synchronization is performed in a non-blocking fashion by
employing atomic instructions of the processor such as compare-and-swap and
atomic arithmetic instructions. No spinlocks or similar blocking primitives were
used for intra-kernel synchronization. In a similar way deferred interrupt han-
dling is established without blocking synchronization.

Both LAKE and MAOS implement the same core functionality. Hence, from a
user’s point of view, there are no functional differences observable at the system
call layer. The strong argument for such an implementation kicks in with the non-
functional property of parallel scalability. Performance measurements revealed
a huge benefit in performance when compared to recent Linux/Glibc versions.
Parallel application benchmarks were carried out, comparing LAKE, MAOS and
Linux on the same machine executing an identical program. In the following,
three benchmarks are described as well as the hard- and software environment.

All benchmarks were carried out on a 48-core system with AMD 6180SE pro-
cessors that run at 2.6 GHz. The system comprises eight cache-coherent NUMA
nodes and has an overall amount of 64 GB of RAM. The benchmarks for Linux
were taken using kernel version 3.8.0 and the GNU C library 2.17. All benchmark
programs were compiled with GCC 4.7.3, as were our two custom kernels.
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Fig. 1. Parallel iterative Jacobi benchmark, CPU cycles vs. number of threads

The Jacobi test uses the correspondent iterative method to solve a boundary
value problem in parallel. The problem domain is geometrically split up into
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Table 1. Maximum speedup in bench- Table 2. Number of cores where per-
marks formance saturates

Linux MAOS LAKE Linux MAOS LAKE
Jacobi 8.18 10.52  9.75 Jacobi 16 20 20
Dijkstra 5.16 6.88 6.27 Dijkstra 12 16 20
ServerClient 12.42 33.69  15.39 ServerClient 16 40 48

stripes. Threads work in parallel on these stripes and blocking synchronization
is used to communicate whether common values between neighboring threads
and stripes are ready for access. In the Dijkstra benchmark the shortest paths
between nodes in a weighted graph are computed. Each iteration of the algorithm
is carried out in parallel and a synchronization barrier is needed to separate the
iteration rounds. Performance in high contention scenarios on synchronization
primitives is measured in the ServerClient test. Threads contend on mutex and
semaphore operations that guard access to shared buffers. The number of buffers,
number of threads, and ratio of producers and consumers is adjustable. Here,
four producers and one consumer are created per CPU core and two global
buffers are accessed by turns. All problem sizes are chosen to fit in the processor
caches to eliminate main memory bottlenecks. Clearly, the benchmarks could be
made more efficient with regards to synchronization, but our main focus here is
on kernel level scalability. The results are comparable, since exactly the same
benchmarks were performed on all systems.

All benchmarks show similar results and scaling behavior as observable in Ta-
ble 1 and 2. Therefore, we only discuss the Jacobi benchmark in greater detail.
In Figure 1 two observations can be made: First, the amount of system time
with up to eight threads is negligible compared to the computation carried out
by the user threads, regardless whether a fully featured Linux system or one of
our systems is used. Second, increasing the number of threads reveals the scaling
characteristics of the OS kernels themselves and the overall performance of the
system is affected. The thread management overhead in Linux quickly leads to a
performance drop, In contrast to this, both our kernels are able to push the max-
imum speedup of the algorithms forward and show a much slower performance
degradation when the management overhead becomes prevalent (see Table 1 and
Table 2).

These advantages support the aim to design and implement custom system
software, or even special purpose systems, where exceptional performance or
other superior non-functional properties are crucial. Such scalable kernels can
serve as a basis for our application run-time executive as described in Section 3.2.
This executive then provides an execution model for applications that in turn can
be tuned towards optimizing for non-function properties like energy consumption
by employing techniques covered in Section 3.1.
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3 The SAKE Approach

In the following we describe the SAKE approach and its benefits for future oper-
ating system design. We outline the advantages of our approach over traditional
commodity operating system designs, especially for special purpose operation
scenarios in which parallel computing tasks are performed on many-core plat-
forms featuring heterogeneous computing cores.

The SAKE architecture consists of two main components: A static code
analysis component which exploits symbolic execution to determine prospective
run-time behavior of program code and a scalability-aware run-time execution
component that efficiently executes these program code snippets by evaluating
the run-time hints previously deposited by the static code analysis component.

At the example of the ARM big.LITTLE [4] platform we demonstrate how to
exploit unique characteristics of upcoming many-core processors most efficiently.

3.1 Proactive Hot-Spot Analysis of Energy Needs

Modern processors designs provide novel features to decrease the energy con-
sumption most effectively. The introduction of new energy saving features has a
significant impact on system software as they demand for sophisticated control
mechanisms. This task is implemented at operating system level. Software-driven
hardware features which are essential to increase energy-efficiency are lying fal-
low without such low-level support of the system software.

However, semiconductor companies choose different approaches to turn this
endeavor into reality. Intel, for example, introduces new sleep states (C-states C6
and C7) for their latest generation of x86 processors (codename Haswell) which
allows to reduce the energy consumption during idle periods to a tenth compared
to the previous generation of Intel chips. In contrast to this, ARM currently
works on multi-core chip designs (ARM big.LITTLE [4]) which feature hetero-
geneous processing cores that vary significantly with regards to their computing
speed and energy demand. Compared to other multi- or many-core processors
which have heterogeneous computing cores, the ARM big. LITTLE features het-
erogeneous computing cores that share the same architecture (ARMv7) but dif-
fer in various other aspects. The chip offers powerful Cortex-A15 cores (pipeline
with 15 to 24 stages, out-of-order execution) as well as energy-efficient low-
performance Cortex-A7 cores (pipeline with 8 to 10 stages, in-order execution).
As the Cortex-A7 cores operate 2.3x to 3.8x more energy-efficient than the
Cortex-A1b cores, operating systems need to ensure tasks are assigned prop-
erly depending on their performance requirements.

To support the operating system at correctly assigning tasks to CPU cores,
we are analyzing program code proactively ahead of run-time to determine
performance- and energy-hotspots of program code. For this procedure we use
the SEEP framework [8] which exploits symbolic execution techniques in order
to automatically extract possible program paths and their expected run-time
behavior. During this code analysis we extract both, performance and energy
requirements of program code at function level. To determine energy estimates
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for program code, platform-specific energy profiles are being used. These energy
profiles allow offline analysis (no manual energy measurements are required)
which makes it possible to automate the energy analysis process. In parallel
to the energy estimation analysis we are recording performance counter events
to extract run-time characteristics. This information reveals the resource and
performance demand of each individual code snippet.

The results of the analysis are deposited by means of run-time hints that are
later on used by the run-time executive to assign tasks to the most suitable CPU
core. Further, the task scheduler can merge these hints with run-time information
to improve the task migration strategies during execution.

3.2 Concepts of a Scalability-Aware Run-Time Executive

The application-level execution model of SAKE running on top of the low-level OS-
kernel is derived from OctoPOS [16]. It focuses on leveraging micro-parallelism
in applications, hence, the run-time system has to deal with a potentially large
number of possibly short execution snippets that in principal can be executed in
parallel. This leads to the following requirements:

To cope with the large amount of entities, the representation of the individual
pieces of a program has to be slim and efficient to both keep the size of the
individual item in memory and its initialization time low. As execution snippets
can be short, the overhead for switching from one snippet to the next also has
to be kept low. Otherwise it would not pay off to split the application into small
snippets, as switching overhead would start to dominate the overall run-time of
the application program.
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Therefore, execution snippets are represented as function pointers with an
associated data pointer used to store the arguments. In contrast to traditional
threads, however, snippets should have run-to-completion semantics. This en-
ables an implementation where there is no run-time state in form of a stack



830 G. Drescher et al.

associated with each snippet. Instead, as can be seen in Fig. 2, execution snip-
pets one after another can be executed atop of execution contexts. Once a snippet
finishes, which means its function returns, no state is left within the execution
context. So the next item can be executed on the same context just by calling
its function pointer without involving a rather costly context switch.

This scheme somewhat resembles Cilk [2] whose execution model enforces
strict run-to-completion semantics for its procedures. It works fine as long as
execution snippets have run-to-completion semantics and the application pro-
grammer takes care of ensuring this property. However, to ease programmability
and to provide support for typical parallel design patterns like fork-join exe-
cution models, SAKE’s run-time executive, however, allows blocking operations.
As can be seen in Fig. 3 in the case an execution snippet performs a blocking
call, for example to wait for other snippets to complete their execution, the as-
sociated execution stack cannot be used to execute the following snippet, as the
execution state is still needed on resumption. In this case the executive provides
a new stack to execute the following snippets and saves the context of the block-
ing snippet to the stack of the old context. Consequently, the cost for context
switching only has to be paid when the application program really needs it.

The whole model can be implemented in a cooperative fashion, as all par-
ticipants are entities of the same application. Hence, timing isolation between
single execution snippets by employing techniques like time slicing is not neces-
sary. This further contributes to an efficient implementation.

The granularity of execution snippets is application defined and generally pro-
vides more control to the programmer than a traditional threaded approach. Apart
from exploiting micro-parallelism by massive parallelization, this also can be used
to optimize for other, non-functional properties like energy awareness. To lever-
age the energy efficiency benefits provided by the big. LITTLE hardware platform
energy properties for execution snippets can be precalculated by employing the
techniques described in Section 3.1. and then attached to the description of the
single execution snippets. At run-time, this data can then be used as hints to se-
lect a proper core for each single execution snippet. This enables the application
programmer to optimize for energy efficiency on a per-function level.

During program execution there is no need for explicitly migrating a program
to another core, as this is done implicitly by distributing the annotated snippets
to the core best matching the energy profile considering the current condition of
the hardware. When there are no snippets left for a core, it automatically enters
a sleep state until new execution snippets are available.

4 Conclusion

With future many-core systems, single-threaded cores will be the rule and multi-
threaded ones the exception. This calls for a radical change in the way operating
systems manage processors respectively processor cores. A key issue of parallel
programs destined for many-core processors is scalability, and this is particularly
true for operating systems. Constructive methods are much-needed that decrease
the portion of sequential program sections ideally down to zero.
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The SAKE approach presented in the paper has its focus on constructive
measures that mainly concern architectural features of operating-system kernels
designated to run (massively-parallel) many-core processors. Confirmed by ex-
periments on a 48-core machine with prototyped event-based and process-based
operating-system kernels, specialization is the preferred way to go in order to best
exploit hardware features in favor of excellent application performance. Linux,
by way of example of a prominent representative of an operating system that
transforms a many-core processor into a general-purpose (abstract) machine,
easily becomes second quality as far as scalability is concerned.

We aim at improving performance of operating-system kernels in strictly
application-oriented manner. Particularly this includes measures for energy-
efficient execution of software to enable overall system operation in ecological
means. SAKE bases on static program analysis to automatically extract run-time
hints for energy-aware parallel processing by the kernel. In addition, the kernel
complements this with a straw-weight processing model of run-to-completion ex-
ecution snippets of blocking capabilities to efficiently support fork-join patterns
of standard parallel programs—“SAKE wa hyaku-yaku no cho.”
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