
The final Frontier: Coping With Immutable Data in a JVM
for Embedded Real-Time Systems

Christoph Erhardt Simon Kuhnle Isabella Stilkerich
Wolfgang Schröder-Preikschat

{erhardt, simon.kuhnle, isa, wosch}@cs.fau.de
Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT
Managed, type-safe languages such as Java are becoming an
increasingly competitive alternative for programming real-
time and embedded applications, a field which has tradi-
tionally been dominated by C. However, one peculiar issue
in the use of Java is the insufficient way immutable data is
handled. There are some important cases, such as primitive
arrays, where the final keyword is not expressive enough to
declare data as truly constant. This leads to an unnecessary
increase in both code size and runtime memory footprint.
Moreover, it prevents the compiler from applying its opti-
misations as aggressively as would be possible. In this pa-
per, we propose a set of compiler techniques to improve the
handling of immutable data in embedded Java applications.
Our approach includes (a) detecting constant program data
that could not be declared as such by the programmer, (b)
eliminating the overhead associated with it, and (c) provid-
ing an automated way to allocate that data in flash memory
in order to save RAM.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and Objects; D.4.7 [Operating
Systems]: Organization and Design—Real-time Systems and
Embedded Systems

General Terms
Design, Languages, Performance

Keywords
Java, embedded systems, real-time systems, KESO

1. INTRODUCTION
Even though C is still the vastly dominating programming

language in the field of embedded and real-time systems due

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
JTRES ’14, October 13–14 2014, Niagara Falls, NY, USA
Copyright 2014 ACM 978-1-4503-2813-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2661020.2661024

to its low-level semantics and its “closeness to metal”, an in-
terest in alternative, higher-level languages is on the rise.
This shift is particularly motivated by a need for safety
and reliability in such systems. Java, being a managed lan-
guage built on type safety, prevents buffer overflows, dan-
gling pointers and other severe faults by design. Faults are
detected at once instead of possibly going unnoticed indefi-
nitely. Multiple applications can run side by side while the
runtime environment guarantees software-based isolation.

Previous work [14, 17] has demonstrated ways to access
raw memory and memory-mapped registers, and ways to im-
plement interrupt service routines in Java. Moreover, it has
been shown that an optimising ahead-of-time (AOT) com-
piler can translate Java bytecode into low-level or machine
code that is competitive with native C code, eliminating
the bulk of the overhead inherent in Java’s programming
model [13, 6]. In terms of runtime performance, this in-
cludes omitting redundant type-safety checks such as null-
and array-bounds checks, but also devirtualising and possi-
bly inlining indirect calls to virtual methods. Through tai-
loring, the runtime system can be reduced to the minimal
set of features actually required by the concrete applica-
tion. In combination with a suitable memory-management
mechanism such as scoped memory [12] or real-time-capable
garbage collection, Java can meet all the basic requirements
for developing embedded real-time applications.

However, two closely related issues arise when implement-
ing such applications in Java. The first issue is that Java
lacks the expressiveness to declare data as truly constant.
Compared with the const qualifier of C and C++, Java’s
final keyword does not provide adequately strong seman-
tics. For instance, it is plain impossible to declare the con-
tents of a primitive array as constant. The second problem
is that Java offers no way to explicitly control the place-
ment of a piece of data – objects are always allocated on
the heap1. As a consequence, the programmer has no way
to tell the toolchain that a certain piece of data should be
placed into flash memory rather than into RAM.

We examine and discuss the implications of these circum-
stances in Section 2. We then propose a set of compiler tech-
niques aimed at alleviating these shortcomings. In Section 3,
we give a brief overview of the KESO JVM, into whose AOT
compiler we implemented these techniques. Our approach
is described in Section 4 and evaluated in Section 5. We
present and compare related work in Section 6, before con-

1This is true from a high-level point of view. If the compiler
determines that an object does not escape its method of
creation, it may implicitly allocate it on the stack [5].

cluding the paper and providing an outlook in Section 7.

2. PROBLEM ANALYSIS: IMMUTABLE
DATA IN JAVA

As stated above, Java’s way of handling immutable data is
inconsequent to say the least and misses one important use
case. This becomes obvious when examining the semantics
of the final keyword.

2.1 The final Keyword
With simplicity being one of its primary design goals, Java

attempts to ease the programmer’s mental burden by omit-
ting language concepts that could be considered too com-
plex. One instance of such a concept is the const qualifier
in C++, along with the notion of const-correctness. Using
const, it is possible to qualify pointers, the data a pointer
points to, the destination of references and the contents of
arrays in a very fine-grained manner. Even methods can be
declared as const: The compiler ensures that such a method
does not modify the internal state of the associated object,
and prevents constant objects from being accessed via a non-
const method. While this concept of const-correctness is a
powerful asset, it also requires a skilled and mindful pro-
grammer and is at times cumbersome to handle.

Java deliberately abstains from the const qualifier2 and
instead specifies a keyword final with vastly simpler se-
mantics. Methods declared as final cannot be overridden;
final classes cannot be inherited from. In the context of
variables, final has the following semantics:

• The variable must be initialised exactly once and can-
not be written to again afterwards. A use before the
initialisation is illegal.

• For object field variables, every constructor must per-
form an explicit initialisation (or call another construc-
tor that does). Static class fields must be explicitly
initialised by the class constructor.

• For primitive variables, final means that their value
is indeed immutable after initialisation. For references,
it only means that the reference itself cannot be mod-
ified – but the contents of the referenced object can
be touched in arbitrary ways provided they are not
declared as final themselves.

Fields that are declared as final allow an AOT com-
piler to optimise the code more aggressively because it can
make more precise assumptions about their contents. For
instance, null-checks on a reference field can be elided be-
cause the field is known to be initialised.

A field which fulfils all of the above characteristics, but
was not explicitly declared final, is called effectively fi-

nal [7]. This may be simply caused by programmer oblivi-
ousness, but it can also be due to other reasons:

• The codebase of a configurable application may con-
tain a module where an initialised field is overwritten,
but that module may be disabled in some variants of
the application.

2On a curious side note, const is actually a reserved keyword
in Java, but has no function.

• The piece of code that overwrites an initialised field
may be optimised away by the AOT compiler’s dead-
code elimination.

In either case, it is beneficial for the compiler to find such
effectively final fields. We present an algorithm to achieve
this in Section 4.1.

2.2 Array Constness and Initialisation
Arrays containing initialised data can be frequently found

in embedded systems. For instance, a DSP application may
contain lookup tables, a device control may keep encoded
state-transfer information in arrays or a DECT-phone ap-
plication may include ringtone data. In the following, we
highlight how such arrays are handled differently in Java
than in C, and explain why this behaviour is problematic
for embedded systems.

const int ARRAY[] = {10, 2};

Listing 1: A constant integer array in C.

In C, constant arrays are typically defined as shown in
Listing 1. The compiler will reject any attempts to write into
the array (not considering type-punning casts). It will place
the contents of the array in the .rodata section of the binary,
so the data will be initialised at load time. Depending on
the target architecture and the linker settings, the .rodata

section will be mapped into either RAM or flash memory.

public class ConstArray {

public static final int[] ARRAY = {10, 2};

}

Listing 2: The closest equivalent of the above code in Java.

In Java, initialised arrays are typically defined in a very
similar manner (see Listing 2), but their semantics are dif-
ferent. Firstly, arrays are modelled as objects with a fi-

nal length field and a number of non-final members. The
static field holding the reference is usually also declared as
final, so the reference cannot be overwritten. However, the
contents of the array remain writable – there is no way to
prevent it from being overwritten in arbitrary manners.

Secondly, Java does not have a notion of a pre-initialised
data section like C does. There is a weakly related concept
called constant pool, but the latter can hold only strings and
numerical values, not complex objects like arrays. As a re-
sult, array contents are always heap-based – that is, mutable
– and have to be allocated and initialised at runtime.

Listing 3 shows the bytecode that is produced by the Java
compiler for the above source code. The generated class con-
structor first allocates the array on the heap, then explicitly
initialises every element one by one, and finally stores a ref-
erence to the object into the static field. Each element takes
four bytecode instructions to initialise. When translated
into machine code, these instructions consume memory. As
an example, on the 32-bit TriCore microcontroller architec-
ture, writing one member of an int array takes between
4 bytes in the best case3 (index ≤ 13; −8 ≤ value ≤ 255)
and 14 bytes in the worst case (index > 16381; value <

3Compared to other RISC architectures, TriCore instruc-
tions can be encoded rather efficiently.

static {};

Code:

0: iconst_2

1: newarray int

3: dup

4: iconst_0

5: bipush 10

7: iastore

8: dup

9: iconst_1

10: iconst_2

11: iastore

12: putstatic #2 // Field ARRAY:[I

15: return

Listing 3: Class-initialisation bytecode generated from the
source code in Listing 2.

−32768 ∨ value > 32767). Hence, every array not only con-
sumes regular heap memory, but its initialisation code takes
up an additional multiple of that size, wasting considerable
space when compared to C. Also, the explicit initialisation
increases startup times.

This scheme comes with an additional undesirable effect:
Since Java methods compiled to bytecode cannot be larger
than 64 KiB, the size of an array initialised in that manner
is effectively limited to a maximum of about 9,000–11,000
elements, depending on the concrete element values. In
classes containing multiple static array fields, the sum of
their lengths cannot exceed that limit because all of them
are initialised within the static class constructor. Small ap-
plications for 8-bit microcontrollers will never hit this limi-
tation, but more complex programs running on 32-bit plat-
forms may be affected.

public class UnpackedArray {

public static final int[] ARRAY

= unpack("\u0000\u000a\u0000\u0002");

private static int[] unpack(String s) {

int[] array = new int[s.length() / 2];

for (int i = 0; i < s.length(); i += 2) {

array[i / 2] = (s.charAt(i) << 16)

| s.charAt(i + 1);

}

return array;

}

}

Listing 4: The same example as in Listing 2, but with the
integer array being unpacked from a constant string.

A common workaround for this problem, as seen in List-
ing 4, is to encode the array values into a constant string
(which will be put into the constant pool) and then to de-
code that string when the class is initialised. The footprint
of the initialisation code is much lower in this case, at an
additional cost of higher startup times. On the other hand,
the same data will still reside in memory twice – once as a
string and once as the unpacked array.

In Section 4.2, we propose a compiler analysis to find ini-
tialised singleton arrays whose contents are not modified.

Futhermore, we present a mechanism to give such arrays a
simplified allocation and initialisation behaviour equivalent
to that of constant arrays in C.

2.3 Data Placement
As mentioned above, Java gives no control to the pro-

grammer to specify where a piece of data should be allo-
cated. Since RAM is an expensive and scarce resource in
embedded microcontrollers, it makes sense to place constant
data into flash memory, which is usually available in higher
quantities. This includes a number of runtime-system data
structures on the one hand. On the other hand, it includes
the contents of previously found immutable array objects.

The effort required to place data into flash memory de-
pends on the concrete target architecture. It is trivial on a
platform where flash memory is mapped into the physical
address space and can be accessed using regular load/store
instructions. On systems where flash memory and RAM
are accessed via separate buses, extra work is needed and
caution is required in case of aliasing. We describe the re-
spective steps taken by the AOT compiler in Section 4.4.

In summary, this paper covers three compiler techniques
related to immutable data in embedded Java applications:

1. Finding effectively final fields with the aim of aiding
existing compiler optimisations.

2. Finding constant singleton arrays and purging their
expensive initialisation code.

3. Automatically placing constant data into flash.

We have implemented these techniques into the AOT com-
piler of the KESO JVM4.

3. OVERVIEW OF THE KESO JVM
KESO is a Java Virtual Machine designed for statically

configured embedded applications running on top of an AU-
TOSAR OS [1]. In statically configured systems, all relevant
entities of the application as well as the system software –
that is, the program code and all OS objects such as tasks
and alarms – are known at compile time. KESO does not
permit dynamically loading code at runtime or modifying
existing code via reflection. This allows its AOT compiler
jino to produce efficient code and to create a slim runtime
system tailored to the needs of the application. Programs
pay only for the features they actually use.

The architecture of a KESO application is shown in Fig-
ure 1. Applications can be partitioned or isolated from each
other by assigning them to protection domains. Spatial iso-
lation is constructively ensured by a strict logical separa-
tion of all global data (heap, static class fields, etc.). The
runtime system provides control-flow abstractions such as
threads and interrupt service routines (ISRs), along with
their respective activation and synchronisation mechanisms
such as alarms and locks. The Java thread API is mapped
to the thread abstraction layer of the underlying OS. Inter-
domain communication is possible through so-called portals,
using a remote-procedure call mechanism.

KESO’s ahead-of-time compiler jino takes the applica-
tion’s Java bytecode as input and translates it into plain
C code. It then relies on a C compiler to generate machine

4https://www4.cs.fau.de/Research/KESO/

1.2 Motivation

Microcontroller

OSEK / AUTOSAR OS

KESO Runtime Environment
Mem-Mapped I/O

Device Drivers

Domain C

Domain B Portal
Portal

GC/Heap Resources
Alarms
ISRs

5 2 3
Tasks

Domain A

Figure 1.1: Schematic overview of a KESO system. An OSEK or AUTOSAR RTOS runs on a microcontroller. On
top of the operating system, the KESO runtime environment provides services and abstractions used
by the application, such as RPC primitives or device drivers. Multiple protection realms (domains) can
contain multiple tasks each, have their own resources, heap, and garbage collector and communicate
safely using portals.

Due to the reduction of structure sizes in modern computing chips, dealing with

transient soft errors such as bit flips is mandatory for critical applications. Software-

based mechanisms for isolation are at a disadvantage compared to microcontroller

units (MCUs) with hardware-based memory protection such as MPUs and MMUs,

which offer protection against errors caused by this problem class. Previous work on

KESO attempts to compensate this [TSK+11, SSE+13].

1.2 | Motivation

Manual memory management using library functions has been the de-facto standard

method of dealing with dynamic memory needs in C and C++. It provides fine-

grained control over applications’ memory allocation behavior, but comes with a

downside: Programming mistakes can lead to leaks and dangling pointers, which

in turn can lead to security vulnerabilities or crashes. As a consequence, developers

need to be careful while writing code that uses manual memory management, in

particular when used in safety-critical components.

In order to address these drawbacks, automatic memory management techniques,

3

Figure 1: Architecture of a KESO application.

code for the respective target platform. The compiler com-
prises a set of analysis and transformation passes. The static
nature of the entire application system allows it to assume a
closed world, making the program code good to analyse and
optimise. A number of high-level optimisations are included
in jino, among them:

• Constant propagation and folding

• Method-call devirtualisation

• Method inlining

• Stack allocation

• Dead-code elimination

• Runtime-check elision

Even though most modern C compilers already implement
these techniques, it makes sense to also perform them in the
Java AOT compiler. The AOT compiler possesses high-level
type, application and platform knowledge that cannot be
represented in C and gets lost in translation. Hence, jino’s
high-level optimisations are complemented by the lower-level
optimisations performed later on by the C compiler.

KESO has been shown to generate very efficient code suit-
able even for resource-constrained low-end systems [16].

4. IMPLEMENTATION
In this section, we present our solutions to the problems

identified in Section 2: identifying immutable initialised fields,
finding constant arrays and allocating data in flash memory.
Our approaches are built upon a number of compiler tech-
niques already present in jino.

Data-flow analysis.
The data-flow analysis in jino is derived from Wegman

and Zadeck’s SSA-based Sparse Conditional Constant Prop-
agation algorithm [18]. In a nutshell, it keeps track of the
values and types of all variables and expressions in the in-
termediate code and constitutes the basis for a range of op-
timisations. Most importantly, it permits intra- and inter-
procedural constant propagation and folding, allowing pro-
grammers to initialise their constant arrays with arbitrary
expressions as long as the compiler is able to statically eval-
uate and fold them into constants.

Dominator analysis.
Dominator information is used in various parts of jino,

e.g. during SSA construction. Since our control-flow graph
consists of maximal basic blocks, we need to define a relation
dominates for a pair of statements (s1, s2) as follows: s1
dominates s2 iff (a) the basic block containing s1 strictly
dominates the block containing s2 or (b) both statements
are located in the same block and s1 does not come after s2.

Alias analysis.
For a potentially constant array, we need a list of all pos-

sible references to it in order to make sure we miss no reads
and writes. Due to Java’s type safety and since KESO does
not permit dynamic code-loading or reflection, no hidden
aliases are possible.

4.1 Finding Effectively final Fields
Fields with final properties give the compiler more op-

portunities for optimisation than regular fields: On the one
hand, the compiler knows that the field is initialised and
does not carry its default value (0 or null). In the case
of a reference field, this eliminates the need to insert null-
checks for operations on that field. On the other hand, since
the field is only written once, the initialisation value can be
propagated to all reads. If the propagated values can be
folded, this possibly benefits many other optimisations. For
example, a conditional branch depending on a field might
now be folded into unconditional ones, leaving parts of the
code dead, which in turn creates an“optimisation avalanche”
effect. Hence, our goal is to detect all fields that fulfil the
properties of being effectively final.

For a static field, the following criteria must be met:

1. The field must be written exactly once, in the class
constructor of its class.

2. The write must dominate the class constructor’s exit
– that is, all possible code paths through that function
must go through the write.

3. If there are any reads of the field within the class con-
structor (or recursively in methods called by the class
constructor), they too must be dominated by the write.

The algorithm to find out if these conditions are met for a
given field f is shown in Listing 5. It first makes sure that
there is only a single write, which is performed in the field’s
class constructor and dominates its exit. It then searches the
code of the class constructor for reads of the field to check
if they are dominated by the write. If a method invocation
is encountered, all possible callees are recursively searched
as well. To protect the algorithm from infinite recursion
due to loops in the call graph, a stack of the methods being
processed is maintained. In case a method to be searched is
already found on the stack, processing is defensively aborted.

It must be noted that, under normal circumstances, this
algorithm would not suffice to determine the third criterion.
This is due to Java’s default lazy class-loading approach:
Every class is not loaded and initialised until it is being
accessed for the first time. As a consequence, we would not
only have to consider explicit method calls, but also implicit
calls to the class constructors of all classes that may not have
been initialised yet. This set is far from trivial to determine.

However, KESO makes two assumptions which allow it to
implement a simplified class-initialisation scheme:

procedure isEffectivelyFinal(f)

w ←Writes[f] . Criterion 1
if |w| 6= 1 then

return false
end if
m← Class[f].<clinit>
if w 6∈ Code[m] then

return false
end if

if ¬dominates(w,Exit[m]) then . Criterion 2
return false

end if

for all statements s ∈ Code[m] do . Criterion 3
if readsField(s, f) ∧ ¬dominates(w, s) then

return false
end if

end for
return true

end procedure

procedure readsField(s, f)
if s ∈ Reads[f] then

return true
else if s is an invocation then

for all methods c ∈ Callees[s] do
if call-graph loop detected then

return true . Be conservative
end if
for all statements sc ∈ Code[c] do

if readsField(sc, f) then
return true

end if
end for

end for
end if
return false

end procedure

Listing 5: Algorithm to determine whether a field f is effec-
tively final.

1. In each protection domain, the runtime system invokes
all class constructors sequentially at startup, before
execution begins at the entry point of the first task.
The execution order is unspecified, but it is guaranteed
that no class is used before it has been initialised.

2. A class constructor must have run-to-completion se-
mantics; it must not block or call a blocking method.

To determine the order in which the class constructors are
called, the compiler analyses their code, builds a dependency
graph and sorts it topologically. This imposes the additional
constraint that there must be no cyclic cross-dependencies
between class constructors as shown in Listing 6. If the ap-
plication violates this constraint, the compilation is aborted.
We argue that code should not rely on such cyclic dependen-
cies because its behaviour is hard to impossible to follow – a
limitation that is also imposed by the SCJ specification [8].

class A {

public static int field = B.foo;

}

class B {

public static int foo = 42;

public static int bar = A.field;

}

Listing 6: Example of a class-initialisation cross-dependency.
If A is loaded before B, A.field and B.bar will both be 0;
otherwise, they will both be 42.

The simplified class-initialisation mechanism has the ad-
vantage that it eliminates the need to perform initialisation
checks at runtime whenever a class is accessed, and it makes
the algorithm in Listing 5 sufficient to find all read accesses
to potentially uninitialised data.

For a non-static field to be marked as effectively final,
it must be initialised in all constructors – either directly or
through a call to another constructor. This is more complex
and currently not yet implemented in jino.

4.2 Finding Constant Arrays
In this section, we describe how jino detects constant ar-

rays and how these arrays are converted for static initialisa-
tion. Our approach is limited to singleton arrays which are
initialised in class constructors. That is, we assume that pro-
grammers define constant arrays in the same manner as ex-
emplified in Listing 2 and that the resulting bytecode looks
like Listing 3. From our experience, this is also the most
common, obvious and convenient manner. For an array to
be marked as constant, it must fulfil a number of conditions:

1. It must be created with a constant size within in a
class constructor, and the allocation statement must
dominate the class constructor’s exit. This ensures
that there is exactly one instance of the array.

2. All writes to the array or any of its aliases must be in-
side the class constructor and dominate its exit. More-
over, each write statement must have a constant index
and a constant value, and every index must appear at
most once. This guarantees that the entire array is
initialised with constant values. Elements which are
never written can be assumed to be zero or null.

3. If there are any reads of the array or its aliases within
the class constructor (or recursively in methods called
by it), they too must be dominated by all writes.

These criteria are very similar to the ones for effectively
final fields described in Section 4.1. Essentially, the goal
is to find arrays whose members are all effectively final

– with the extra requirement that they be initialised with
compile-time constants.

Our algorithm to determine if an array is constant is
shown in Listing 7. We first check that the array is allocated
with a fixed length inside a class constructor and dominates
its exit. We then make sure that all writes into the array
have a constant index and value, and that no member is
written more than once. We check the dominance criteria in
the same fashion as in the effectively-final analysis, again
exploiting KESO’s simplified class-loading mechanism.

procedure isConstantArray(a)

if ¬isConstant(Length[a]) then
return false

end if
m←Method[a]
if m 6= <clinit> ∨ ¬dominates(a,Exit[m]) then

return false
end if
indices← ∅

for all array writes w ∈ ArrayWrites[Aliases[a]] do
i← Index[w]
if ¬isConstant(i) ∨ i ∈ indices then

return false
end if
indices = indices ∪ i
if ¬isConstant(V alue[w]) then

return false
end if

if w 6∈ Code[m] ∨ ¬dominates(w,Exit[m]) then
return false

end if
for all statements s ∈ Code[m] do

if readsArray(s, a)
∧ ¬dominates(w, s) then
return false

end if
end for

end for
return true

end procedure

Listing 7: Algorithm to determine if an array (denoted by
its allocation a) is initialised with constant values. The pro-
cedure readsArray() is analogous to readsField() from
Listing 5, but also takes the aliases of a into account.

Multi-dimensional arrays are handled in the same man-
ner, provided the isConstant function also returns true for
arrays previously tagged as constant and a fixed-point itera-
tion is built around the above algorithm. A two-dimensional
primitive array (the base case) is represented in Java as an
array of references to a number of primitive arrays. In the
first iteration, we mark all the primitive sub-arrays as con-
stant. In the next iteration, isConstantArray determines
that the super-array contains only references to constant ar-
rays, and marks it as well. By repeating the process, multi-
dimensional arrays of arbitrary order can be handled.

In the following section, we describe how to convert the
arrays into statically allocated data.

4.3 Static Allocation of Constant Arrays
The process of turning a dynamically allocated Java array

into static data is done by jino’s C backend. Since we al-
ready possess all relevant information, it is straightforward:

1. Declare a C struct for holding the data of the array
(see the explanation in the following section), with the
correct type and number of elements.

2. Emit a global variable of that type, filled with the

values gathered from the analysed write operations
or zero where no write was found. For reference ar-
rays, fill it with pointers to the previously emitted sub-
arrays or null, respectively.

3. Generate the C code as normal, but omit all the previ-
ously identified writes and replace the allocation with
a simple assignment of the global object’s address.

Revisiting our original example from Section 2, Listing 8
shows the C code that is emitted by jino for the Java code
in Listing 2. The class constructor is now boiled down to
the bare minimum.

// Declaration of the array type

typedef struct {

uint8_t gcinfo;

uint16_t class_id;

uint32_t length;

const int32_t data[2];

} int_array2_t;

// Initialisation of the constant array

const int_array2_t const_arr0 = {

1,

INT_ARRAY_ID,

2,

{10, 2},

};

// Class constructor of the ConstArray class

void c7_ConstArray_m1__clinit_(void) {

object_t *obj0_0 = (object_t *) &const_arr0;

SC7_CONSTARRAY_C7F1_ARRAY(&dom1_DDesc) = obj0_0;

}

Listing 8: C code emitted by jino for the array in Listing 2
(slightly cleaned up for readability).

4.4 Making Use of Flash Memory
When RAM is scarce, it is a common option for embed-

ded applications to move constant data into flash memory to
trade faster access times for more available space. KESO ap-
plications generally have three categories of constant, stati-
cally initialised data that is a candidate for flash allocation:

• Runtime-system data structures, namely the class store
containing size and layout information about all class
types, and the dispatch table holding function pointers
for virtual-call lookups.

• Strings from constant pools in the .class files.

• Constant arrays, as previously determined by the anal-
ysis in Section 4.2.

Since jino’s backend emits C code, we can make auto-
mated use of the regular mechanisms available to C pro-
grammers. This is straightforward on platforms which have
one unified address space, but more complex on specific ar-
chitectures that exhibit a different addressing model.

4.4.1 Von Neumann Platform (Single Address Space)
In the easy case, for instance on the 32-bit TriCore plat-

form, RAM and flash memory are both mapped into the

32 bits

Object

Array

class_id

colour

reference fields

primitive fields

data

length

class_id

colour

unused

reserved

Figure 2: Layout of regular objects and arrays in KESO on
a 32-bit platform. On small systems, object headers can be
reduced to 16 bits.

same physical address space and can be accessed using the
same instructions. The linker normally places the .rodata

section into flash memory by default – so the relevant data
merely has to be declared as const in the C code.

To understand how constant objects are handled, we must
first take a look at the object layout in KESO. As illustrated
in Figure 2, an object consists of a header and the actual
data. The header contains the ID of the instantiated class
plus a number of management bits for the garbage collector
(GC) if the application is configured accordingly. References
to an object are represented as pointers to its header.

To simplify garbage collection, the data is laid out around
the header in a bi-directional manner: Primitive fields lie
in memory directly after the header, reference fields directly
before it. Arrays are structured like regular objects, but
have an additional length field followed by its members.

KESO’s mark-and-sweep GC runs in a separate task and
scans the object graph, starting at the root set (task stacks
and static fields) and marking the objects visited as live.
When scanning an object, it uses the class ID to look up
the number of reference fields from the class-store table,
and then recursively processes the references adjacent to the
header. To avoid infinite loops, the GC maintains a “colour
bit” in the header of each object which indicates if the object
has already been visited during the current GC cycle.

Flipping this colour bit can be an issue if the object resides
in non-writable memory. Depending on the architecture and
configuration of the hardware, a write may be silently ig-
nored, but it may also cause a trap. Hence, the GC needs
to skip scanning constant objects. A flash-allocated object
cannot contain references to heap objects (allocated at run-
time) because those references would be unknown at compile
time, preventing the object from being put into flash mem-
ory in the first place. Consequently, skipping flash-allocated
objects cannot lead to falsely freed heap memory. Two im-
plementations are possible:

• The GC can perform an address-range check and only
follow references which do not point into .rodata5.

5Only following references into the heap is not an option
because objects may be allocated on the stack.

0x1234

obj1
obj0

ld
lpm

RAM Flash

Figure 3: Aliasing between different address spaces if the
mutable object obj0 is allocated in RAM and the immutable
object obj1 lies at the same address in flash memory.

• The header of a constant object can be marked with a
special bit (e.g. bit 2). The GC then skips all objects
whose “constant”-bit is set.

Constant arrays are allocated as already shown in List-
ing 8. Strings consist of two parts: a char array containing
the data and the actual String object which encapsulates
that array. Constant String objects must have the same
layout as a regular, heap-allocated String object, so the ar-
ray and the wrapper object are emitted as separate entities.

4.4.2 Harvard Architecture (Multiple Address Spaces)
Some lower-end microcontrollers such as the 8-bit AVR

platform have a fundamentally different architecture which
maintains strictly separated address spaces for RAM (data
memory) and flash (program memory). Values can be loaded
from program memory using special instructions. Flash-
allocated data cannot be handled transparently on AVR. C
developers must use special macros to access program mem-
ory, and it is their own responsibility to make sure that
addresses are not used in the wrong manner.

Since the address spaces of RAM and flash both begin at
address 0x0, it is impossible to determine the target of a
pointer simply by looking at its contents. Hence, the infor-
mation which pointer is associated with which address space
must either be explicitly carried along with the pointer, or
it must be implicitly expressed in the data flow of the pro-
gram. A pointer into flash memory must never be used to
access RAM or vice versa. In particular, flash pointers and
RAM pointers must not be aliases. An exemplary case of im-
proper aliasing on the AVR architecture is shown in Figure 3.
Depending on the access instruction, the address 0x1234 is
either used to load a word from data memory (ld) or from
program memory (lpm). Preventing such aliasing and using
the correct operations is the programmer’s responsibility.

In Java, we want the use of flash memory to be transparent
to the programmer. The compiler must ensure that code like
in Listing 9 causes no aliasing across address spaces6.

To find such potentially problematic accesses, we create a
flash-allocation candidate set – the set of arrays previously
marked as constant. We track the aliases of these arrays and
examine all instructions in the code that access either the
members or the object header via one of the aliases. This
applies to the following bytecode instructions:

• [abcdfils]aload

• arraylength

6This code is for illustration. In practice, the compiler will
inline printFirst(), thus eliminating problematic aliasing.

public class Aliasing implements Runnable {

private static final int[] WC = {54, 74, 90};

public void run() {

java.util.Random r = new java.util.Random();

int[] a = {r.nextInt(), r.nextInt()};

printFirst(WC);

printFirst(a);

}

private static void printFirst(int[] array) {

System.out.println(array[0]); // !!!

}

}

Listing 9: Aliasing between a constant and a non-constant
array in Java.

• checkcast

• instanceof

If the operand of any of these instructions has a points-to set
which contains an array that is not a flash-allocation can-
didate, we have detected cross-address-space aliasing. We
remove the affected constant arrays from the candidate set
and repeat the process until reaching a fixed point.

After termination of the algorithm, we distinguish be-
tween two categories of constant arrays:

• Arrays which are in the candidate set – that is, arrays
not participating in problematic aliasing: We mark
these arrays and all accesses to them as flashable. Based
on this tag, the compiler backend later emits the ap-
propriate macros (PROGMEM, pgm_read_word(), etc.) in-
stead of regular C code.

• Arrays not in the candidate set: These arrays cannot
be placed into flash memory, but they still benefit from
static initialisation and allocation (in RAM).

Placing the class store and dispatch table of KESO’s runtime
system into flash memory is trivially achieved by emitting
the respective C macros.

One downside of our approach is that mark-and-sweep
garbage collection is not possible in the presence of flash-
allocated objects. Since the runtime system has no informa-
tion about the address space a reference is associated with,
neither of the solutions proposed in Section 4.4.1 are feasible
on AVR – the GC would not know which reference has to be
used in which manner. AVR applications that contain flash-
allocated arrays consequently need to fall back to a simpler
memory-management mechanism such as scoped memory.
We argue that this is a reasonable trade-off because full-
blown garbage collection is often not the best choice for a
small, deeply embedded system anyway.

5. EVALUATION
In this section, we evaluate the effectiveness of our opti-

misations. We use two different applications and platforms
and break the results down to analyse the effects of the
optimisations individually. The first benchmark primarily

Variant text data
Baseline 51542 3573
+ final analysis 45084 (–13 %) 1993 (–44 %)
+ constant strings 46126 (–11 %) 837 (–77 %)

Table 1: Section sizes of the CDj benchmark (in bytes).

demonstrates the capability of the effectively-final analy-
sis and the handling of constant strings, whereas the second
highlights the allocation of constant arrays in flash memory.

5.1 Collision Detector
As our first application, we use version 1.2 of the real-time

Collision Detector benchmark (CDx) [9], which comes in a
C (CDc) and a Java (CDj) variant. CDx is an aircraft mon-
itor that detects potential collisions from simulated radar
frames. A collision is reported whenever two aircraft are
closer than a configured proximity radius. To bound the
computation, the detection is performed in two phases: In
the first phase, only the x- and y-coordinates of aircraft are
considered, so impossible collisions can quickly be ruled out.
In the second stage, a full three-dimensional collision detec-
tion is performed for the remaining candidates.

We deploy the slimmed onthego variant of CDj that uses
pre-generated radar frames on an Infineon TriCore TC1796
board (150 MHz CPU clock, 75 MHz system clock, 1 MiB
SRAM). We use a 600-KiB heap managed by a mark-and-
sweep GC. The application is compiled with GCC 4.5.2 and
bundled with KESO and the CiAO operating system [11].
Code and constant data are allocated in internal flash.

Table 1 shows the difference in binary size with multiple
combinations of the optimisations proposed in Section 4.
The text section comprises the contents of flash memory,
i.e. code and constant data, the data section contains the
initialised data located in RAM.

The effectively-final analysis found 71 static fields in to-
tal. 30 of these fields stem from a class called Constants

containing configuration parameters of the air-traffic gener-
ator. In some application variants, CDj can be configured
via the command line, in which case some of the values in
the Constants class are overwritten. These fields cannot
be marked as final. Since the KESO application is stat-
ically configured, the command-line code is dead. Most of
the now-constant fields are folded and then removed by the
compiler, shrinking the size of the data section by 44 %.

The optimisation also leads to a considerable reduction
in code size. This is on the one hand caused by constant
folding, including the folding of conditional branches and the
subsequent occurrence of dead basic blocks. On the other
hand, many reference fields are now known to be initialised
and no longer have to be checked upon access. For instance,
the CDj code contains several singleton objects which are
created in the class constructor of the respective class and
stored in a static field. In total, the number of emitted null

checks is reduced by 30 %.
The optimisations accompanying the effectively-final anal-

ysis also improve the performance of the application. Fig-
ure 4 compares the iteration times of a CDj run with the
analysis enabled against the times measured without it. The
optimisations yield a mean performance improvement of 10 %.

The CDj application contains no constant arrays, but 1
KiB of constant strings. Moving these strings into flash

1 public class Clock {

2
3 static Clock singleton = new Clock ();

4
5 public static Clock getRealtimeClock () {

6 return singleton;

7 }

8 public AbsoluteTime getTime () {

9 long nanos = System.nanoTime ();

10 return new AbsoluteTime(nanos / 1000000L, \

11 (int) (nanos % 1000000L));

12 }

13 }

Listing 4.2: Example of the singleton design pattern. The instance of the class
can only be acquired via the getRealtimeClock() method.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 5 10 15 20 25 30 35 40 45

R
e
la

ti
v
e
 e

x
e
cu

ti
o
n
 t

im
e

Iteration

Baseline
With effectively-final analysis

Figure 4.1: Relative execution time of the CDx on-the-go with runtime final anal-
ysis. Execution time improved by 5 to 12%.

35

Figure 4: Relative execution times of the collision detector
with the effectively-final optimisation enabled.

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0 5 10 15 20 25 30 35 40 45

R
e
la

ti
v
e
 e

x
e
cu

ti
o
n
 t

im
e

Iteration

No constant objects
Address-range check

Marker bit

Figure 4.2: Relative execution time of the CDx on-the-go with enabled ROM allo-
cation. Ignoring constant objects in the GC via memory range check
induces 8 to 12% penalty on the execution time, whereas checking
for a special color in the object header’s gcinfo byte only decreases
performance between 4 and 8%.

a certain color, represented by a special bit in the object’s header. The results
show that the method ignoring by color has less negative impact on the execution
time, with a mean of 6% slowdown, compared to 10% of runtime penalty due to
the linker script memory range method.

To measure changes in the performance due to ROM allocation in the traffic
light application, the profiling feature of the Avrora simulator was used. The
profiler measures the amount of time it spent in each function. The time is
measured in cycles. To measure the performance, the traffic light application was
run with profiler enabled, measuring the time spent in each function during one
full cycle from red light to green and back to red light again. The method that was
compared is the setLights method, responsible for enabling and disabling specific
LEDs and setting the alarm trigger for the display of the next color. This method
almost exclusively works with the array containing the states and the amount of
seconds that each color is displayed, so the impact on the execution time when
storing this array in program memory is best revealed here. Table 4.5 displays
the result of the Avrora cycle count of the setLights method, showing a 24%
runtime overhead with the ROM allocated state array. The Atmega128 manual [1]

36

Figure 5: Comparison of CDj execution times with constant
strings allocated in flash memory and marked in two ways.

memory further shrinks the data section, freeing up RAM. In
Figure 5, we compare the two methods of marking constant
objects for the GC presented in Section 4.4. The measure-
ments show that using a marker bit in the object headers
has a smaller impact on the execution time, with a mean
of slowdown by 6 % (most of which is caused by the longer
access times of flash memory) compared to a 10 % runtime
penalty when performing address-range checks.

5.2 SPiCboardTest
Our second application is a showcase program for an AVR-

based evaluation board called SPiCboard, which is primarily
used for teaching embedded C programming (and solder-
ing) to students. The board is populated with LEDs, seven-
segment displays, buttons, a potentiometer and a photoresis-
tor, all of which are controlled by an Atmel ATmega32 MCU.
The microcontroller runs at 1 MHz and provides 32 KiB
flash memory and 2 KiB SRAM. The primary purpose of
the application is to provide a testbed for students to verify
that the board was populated and soldered correctly. We
ported the SPiCboardTest application from C to Java, us-
ing the KESO JVM running on top of a JOSEK7 operating
system. Since the application only allocates memory during
its initialisation, it runs without garbage collection.

To compile the C code emitted by jino into machine code,

7https://www4.cs.fau.de/Research/KESO/josek/

Variant text data heap
Baseline 6244 140 144
+ constant arrays 5916 (–5%) 220 (+57%) 72 (–50%)
+ RT data in flash 5964 (–4%) 188 (+34%) 72 (–50%)
+ arrays in flash 6078 (–3%) 108 (–23%) 72 (–50%)

Table 2: Section sizes of the SPiCboardTest application (in
bytes).

we used GCC 4.8.2. The resulting binary sizes can be seen
in Table 2. The baseline version makes use of all existing de-
fault optimisations, but has the new optimisations disabled.
Since we already declared all possible static fields as final,
the effectively-final analysis did not yield any results.

The application code contains three arrays with primitive
constant data: a mapping from LED numbers to I/O pins
and two fonts for the seven-segment displays (one for digits,
one for alphabetical characters). All three arrays, with a
total size of 80 bytes (including headers), are detected by
our analysis and converted. The data section consequently
grows by the same size and the heap can be halved. Most
importantly, the initialisation code of the arrays – whose size
is more than four times the actual payload – is discarded.

The runtime system’s class-store structure takes 32 bytes;
the dispatch table is empty because all virtual calls were de-
virtualised. Moving class store and constant array data into
program memory incurs some overhead in the text section
because the instructions to load from program memory are
less compact than regular loads. As Listing 10 shows, load-
ing a byte from program memory takes 9 cycles as opposed
to 6, so the maximum overhead for a theoretical application
that performs only bytewise loads is at 50 %. In practice,
the performance impact will be significantly lower than that.

movw r30, r16 ; 1 cycle

ldd r22, Z+5 ; 2

mov r28, r17 ; 1

std Y+2, r22 ; 2

movw r30, r28 ; 1 cycle

adiw r30, 0x05 ; 2

lpm r28, Z+ ; 3

movw r30, r16 ; 1

std Z+2, r28 ; 2

Listing 10: Loading one byte from data memory (left) vs.
loading one byte from program memory (right) on AVR.

Since our test application handles only a relatively small
amount of data, there is no extreme pressure to move con-
stant data from RAM to flash memory in our case. Nev-
ertheless, half of the data is constant, and we expect the
majority of more complex embedded applications to have a
significantly higher data-to-code ratio. In these cases, our
optimisations will pay off more visibly.

6. RELATED WORK
Several proposals [2, 4] have been made to add“read-only”

qualifiers with stronger semantics than final to Java. As of
yet, none of these suggestions have found their way into the
programming language, and it is not forseeable that any of
them will in the near future.

The RTSJ [3] supports accessing arbitrary pieces of phys-
ical memory through the RawMemoryAccess class. The ad-
dressed storage can be of any memory type, so it is also
possible to access flash memory. The data residing in the
raw-memory area cannot be defined directly in the Java pro-
gram, but must be defined separately and then linked with

the application. Data can be accessed in the form of an in-
dividual primitive load or by copying memory chunks into
a heap-allocated array. The first way is cumbersome to use,
whereas the second way does not allow for memory savings.

There are several other JVMs for embedded and real-
time systems, including Fiji VM [13], JamaicaVM [15] and
HVM [10]. To our knowledge, only the HVM has special
handling for constant arrays and allows allocating their con-
tents in flash memory. The HVM leaves this task to the
programmers, requiring them to explicitly annotate such ar-
rays. Mistaken writes into a constant array are not detected
until runtime, when an exception will be thrown. The alias-
ing problem on Harvard architectures is solved by a run-time
switch, which is somewhat costly.

In contrast, our approach requires no programmer inter-
vention, prevents mistaken writes by design (such arrays are
not made constant in the first place) and incurs no addi-
tional runtime cost.

7. CONCLUSION AND FUTURE WORK
In this paper, we highlighted a number of shortcomings in

the Java programming language that have the potential of
limiting the feasibility of employing Java on small, resource-
constrained devices. These shortcomings are caused by the
Java’s insufficient means to cope with immutable data. Build-
ing upon an AOT compiler, we presented a number of tech-
niques to automatically detect immutable, initialised static
fields and constant arrays and to allocate program and runtime-
system data in flash memory in order to free up RAM.

Our techniques are currently fully automatic and neither
require nor permit programmer intervention. However, de-
velopers may want to prevent certain constant data from
ending up in flash memory, for example because of its higher
access times. This could be achieved using annotations like
in the HVM and checking their validity using our analyses.

Further future work includes an alternative approach to
solving the issues related to the Harvard architecture: On
MCUs where the RAM is mapped into the lower part of the
address space (e.g. 0x0060-0x085f on the ATmega32), flash
objects could be allocated at addresses above the RAM’s
upper bound. This would make it possible to distinguish
between RAM and flash references by means of a simple
address comparison. Consequently, it would eliminate the
limitation that no GC can be used. Also, when detecting
conflicting accesses, we would not have to prevent the flash
allocation of the arrays affected, but could insert HVM-style
runtime switches in the critical locations instead.

8. REFERENCES
[1] AUTOSAR. Specification of operating system (version

4.0.0). Technical report, Automotive Open System
Architecture GbR, Dec. 2009.

[2] A. Birka and M. D. Ernst. A practical type system
and language for reference immutability. SIGPLAN
Not., 39(10):35–49, Oct. 2004.

[3] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. AW, 1st edition, Jan. 2000.

[4] J. Boyland. Why we should not add readonly to Java
(yet). In In FTfJP, pages 5–29, 2005.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In 14th ACM

Conf. on OOP, Systems, Languages, and Applications
(OOPSLA ’99), pages 1–19, New York, NY, USA,
1999. ACM.

[6] C. Erhardt, M. Stilkerich, D. Lohmann, and
W. Schröder-Preikschat. Exploiting static application
knowledge in a Java compiler for embedded systems:
A case study. In JTRES ’11: 9th Int. W’shop on Java
Technologies for real-time & embedded systems, pages
96–105, New York, NY, USA, Sept. 2011. ACM.

[7] J. Gosling, B. Joy, G. Steele, G. Bracha, and
A. Buckley. The Java Language Specification, Java SE
8 edition, Mar. 2014.

[8] JSR-302: Safety-critical Java technology specification
(version 0.94). Oracle JCP, June 2013.

[9] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek,
B. Titzer, and J. Vitek. CDx: A family of real-time
Java benchmarks. In JTRES ’09: 7th Int. W’shop on
Java Technologies for real-time & embedded systems,
pages 41–50, New York, NY, USA, 2009. ACM.

[10] S. Korsholm. Flash memory in embedded Java
programs. In JTRES ’11: 9th Int. W’shop on Java
Technologies for real-time & embedded systems, pages
116–124, New York, NY, USA, 2011. ACM.

[11] D. Lohmann, W. Hofer, W. Schröder-Preikschat,
J. Streicher, and O. Spinczyk. CiAO: An
aspect-oriented operating-system family for
resource-constrained embedded systems. In 2009
USENIX ATC, pages 215–228, Berkeley, CA, USA,
June 2009. USENIX.

[12] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek.
Real-time Java scoped memory: Design patterns and
semantics. In 7th IEEE Int. Symp. on OO Real-Time
Distributed Computing (ISORC ’04), pages 101–110,
Los Alamitos, CA, USA, 2004. IEEE.

[13] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek.
High-level programming of embedded hard real-time
devices. In ACM SIGOPS/EuroSys Eur. Conf. on
Computer Systems 2010 (EuroSys ’10), pages 69–82,
New York, NY, USA, Apr. 2010. ACM.

[14] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P.
Ravn. Hardware objects for Java. In 11th IEEE Int.
Symp. on OO Real-Time Distributed Computing
(ISORC ’08), pages 445–452, Washington, DC, USA,
2008. IEEE.

[15] F. Siebert. Realtime garbage collection in the
JamaicaVM 3.0. In JTRES ’07: 5th Int. W’shop on
Java Technologies for real-time & embedded systems,
pages 94–103, New York, NY, USA, 2007. ACM.

[16] H. Søndergaard, S. E. Korsholm, and A. P. Ravn.
Safety-critical Java for low-end embedded platforms.
In JTRES ’12: 10th Int. W’shop on Java Technologies
for real-time & embedded systems, JTRES ’12, pages
44–53, New York, NY, USA, 2012. ACM.

[17] M. Stilkerich, I. Thomm, C. Wawersich, and
W. Schröder-Preikschat. Tailor-made JVMs for
statically configured embedded systems. Concurrency
and Computation: Practice and Experience,
24(8):789–812, 2012.

[18] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM Trans.
Program. Lang. Syst., 13:181–210, Apr. 1991.

