
Usable RTOS-APIs?

Tobias Klaus, Florian Franzmann, Tobias Engelhard, Fabian Scheler, Wolfgang Schröder-Preikschat
Chair of Distributed Systems and Operating Systems

{klaus,franzmann,engelhard,scheler,wosch}@cs.fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract—We believe that the Application Programming Inter-
faces (APIs) is a commonly ignored but very important property
of a real-time operating system (RTOS). It should not only be
complete i. e., offer all mechanisms needed to implement common
real-time systems, but also be easy to use in order to prevent
programming errors and make real-time systems more reliable.
Sadly there exists only little information about how a usable RTOS
API should look like. Therefore this paper aims to give assistance
in assessing and designing RTOS APIs. First we give an overview
of concepts we expect an RTOS API to offer and introduce criteria
we think must be fulfilled for an API to be called ‘usable’. Then
we examine the widely known API specifications POSIX and OSEK
OS as well as the APIs of the RTOSes FreeRTOS and Windows
Embedded Compact 7 w. r. t. to these criteria. Finally we discuss
possible reasons for the outcome of our examination and we
deduce some advice on how to design RTOS APIs.

Keywords—Operating Systems, System software, Real-Time Sys-
tems, Application programming interfaces, Ergonomics, Human
factors

I. INTRODUCTION

In our everyday world, real-time systems are pervasive.
Often, laymen may not realize that they are surrounded by real-
time systems but without these systems the most mundane
things of our industrialized world would not be possible.
Industry needs real-time systems for production, many modern
aircraft cannot fly without real-time-critical control systems, and
not even something as mundane as a modern car’s engine would
function without an underlying real-time system. People may
take something like a mobile telephone for granted, however,
even this is a real-time system.

This enumeration reveals how large parts of our civilization
depend on real-time systems acting at the right time in the
right way. However, what does ‘right’ mean in this context?
Though in general this is a very tough question often demanding
intricate domain knowledge about the physical processes and
machines involved, for the underlying RTOS it is simple: Do
what the application programmer told you to do!

Therefore it is crucial for an RTOS to know precisely
what the programmer wants it to do. The ‘language’ the
programmer uses for this purpose is the API of the RTOS. Since
misunderstandings between RTOS and programmer can lead to
serious damages like plane crashes, we believe it is crucial that
RTOS APIs are well designed and straight forward to use. This
makes programming real-time systems less error-prone and
provides more time for actually testing the application instead
of wondering how the API might be used correctly. Moreover
an understandable and easily usable RTOS API can seduce

This work was supported by the German Research Foundation (DFG) under
grant no. SCHR 603/9-1.

programmers to make their decisions explicit in the code instead
of expressing them in terms of the implicit temporal order of
instructions. This makes the job of analysis or transformation
tools much easier, helping to increase the reliability of the
real-time system even more. Nevertheless there appears to be
little guidance as to what a well designed API looks like and
what to take care of when implementing an RTOS.

In this paper we will first establish what the term real-time
means, and what semantics an OS has to offer in order to be
called ‘real-time capable’. From this we will present our criteria
for assesing the appropriateness of an API for programming
real-time systems. After that we will take a look at some OSes
and OS standards to find out how these perform w. r. t. our
criteria. We will then discuss the appropriateness of the APIs
we examined and explain where we think these succeed and
fail at being usable RTOS APIs. From this discussion we try to
deduce some short remarks on how to design an RTOS API.

II. REQUIREMENTS FOR AN RTOS API

In order to assess RTOS APIs w. r. t. their semantics, we first
want to present an overview of important properties of real-
time systems. Throughout this paper we will be focusing on
embedded real-time systems running on microcontrollers. We
will derive concepts and semantics we believe an RTOS for this
environment should provide to the application programmer.

Most real-time systems interact with their environment using
one or more sensors and actuators. The real-time system reacts
to external stimuli signified by a sensor value. These stimuli are
called physical events. The reaction to such an event is called
a task and produces some kind of result like e. g., a setpoint
for an actuator.1 More complex tasks may be triggered by a set
of events combined by AND- and OR-relations. In contrast to
non-real-time critical computer systems, a real-time system has
to react to an ever-changing external environment in a timely
manner. Events and tasks are therefore attributed with timing
information. Events may be periodic or non-periodic. Periodic
events are described by a period and a phase while non-periodic
events are described by their minimum inter-arrival time.

Additionally, all real-time critical events have a deadline
which denotes the latest point in time at which the result of
the associated task has to be available. Missed deadlines may
make the result of a task unusable or even destroy the real-time
system, leading to damage to people and loss of life. A real-
time system’s tasks are often split into multiple jobs, which
represent the basic unit of work. In addition to physical events,
jobs may have to react to a change in state of the real-time

1Note that we distinguish between the abstract notion of a task and its
concrete implementation in the form of an OS process, thread, coroutine etc.



software. These state changes are triggered by the real-time
application’s jobs and are called logical events.

A. Mapping of Real-Time Concepts to APIs

Now that we know which abstract model an OS has to
conform to in order to be suitable to a real-time environment,
we will take a look at the particular semantics an RTOS API has
to offer and the concepts an RTOSes may use to implement
them. Most RTOSes do not use the concepts of jobs and
tasks directly. In principle, jobs and tasks are passive entities
that have to be executed by the real-time system. Most
RTOS APIs, however, provide active entities like threads [1],
coroutines [2] or continuations [3] to allow the real-time
application programmers to execute the abstract jobs and tasks
they envision. For performance reasons, multiple jobs that
share temporal parameters may be executed by the same active
entity. In the rest of this section we will first show how RTOS
APIs can handle events. Next we will introduce options for
dealing with data dependencies in real-time applications and
finally we will detail how an RTOS API may manage shared
resources.

1) Event Handling: There are two fundamental ways a real-
time system can model event handlers. The first option is
to create the active entity when the event occurs and start it.
With respect to memory consumption this may be preferable
since an active entity that does not exist will not consume
any memory for its stack. The second option is to use an
event flag. An already existing and running active entity blocks
itself on the flag and waits for the flag to change state. When
the event occurs, the detecting entity toggles the flag and
the formerly blocked active entity resumes execution. As
event flags represent the most fundamental synchronization
mechanism, more complex concepts are built on top of them.
These include counting mechanisms like semaphores [4] and
barriers [5], which can be used to implement AND-semantics,
as well as the more complex condition variables [6]. To support
complex tasks it is desirable that the API supports waiting on
combinations of events e. g., by specifying event masks. In
a non-real-time application these mechanisms would already
be sufficient, however, in a real-time system we also require
an option for deferring the execution of an event handler to a
later point in time. Moreover there need to be concepts like
reoccurring timers to also support periodic events.

The aforementioned mechanisms are already sufficient to
handle logical events. Physical events, however, are usually
signalled by interrupts, which by their very nature occur
asynchronously. An interrupt service routine (ISR) that is
activated by the occurrence of an interrupt will run immediately,
and therefore it will violate the priorities assigned to other
active entities. The RTOS API must thus provide some way of
requesting the execution of a synchronous active entity, from
the interrupt handler, which will then obey its assigned priority.
If the real-time application programmer keeps the ISR as short
as possible, a priority inversion that would otherwise lead to
missed deadlines may be avoided. For an RTOS API to be
appropriate for a real-time system with firm deadlines, where a
silently missed deadline might lead to injury or loss of life, the
API should also provide some way of finding out if a deadline
has been missed and of reacting accordingly.

2) Data Flow: According to Wolfe and Blaza [7], approx-
imately one third of all real-time systems execute some kind
of control law to prevent a physical system from leaving its
operating point. The most natural way to model these control
systems is to represent them by a data flow from sensors
through filters and controllers to actuators. Therefore it would
be convenient to have some mapping of this data flow to the
real-time system. Although in principle it is possible to establish
producer-consumer patterns using the mechanisms we presented
in the previous section, this may be awkward. A more natural
way of modelling data flow is through mechanisms that combine
synchronization with copying of data, like message queues,
mailboxes, blackboards etc. This approach has the additional
advantage that it may also be used for communication between
remote processing nodes or to conveniently migrate jobs from
one processing node to another.

3) Resource Management: A real-time application always
needs some way to interact with its environment. As a
consequence, it needs access to physical devices, which can
usually only be used by one active entity at a time. An
RTOS API must therefore have some way of providing mutually
exclusive access to shared resources. However, exclusive access
may incur uncontrolled priority inversion [8], risking deadline
violations. Therefore an RTOS API must supply mechanisms
like the Priority Ceiling Protocol (PCP), Deadline Inheritance
(DI) or Non-Preemptive Critical Sections (NPCSes) to avoid
such behaviour. More complex resource access schemes like
the reader-writer-lock may be provided by the RTOS API to
coordinate complex resources like system memory.

B. Criteria for Assessing Real-Time Operating System APIs

Although we now know which semantics are necessary to
represent real-time systems, we still have to determine how to
judge the implementations the RTOS API offers. In this paper
we will employ two criteria to this end.

1) Completeness: Henning [9] identifies completeness as
the most important criterion of API design. In this paper, we
will consider an RTOS API complete if it provides at least
a representation of real-time properties like periods, phases,
deadlines etc., control flow and data flow dependencies, with
and without specifiable delay, and resource management that
avoids uncontrolled priority inversion.

2) Usability: Completeness of an RTOS API may be enough
to build a real-time system, however, we think that this is not
enough to build a reliable real-time system. Many real-time
systems are used in a firm or hard real-time environment where
missed deadlines have serious consequences. An RTOS API is a
man-machine interface since it is used to express a human’s
wishes in a form that can be processed by a machine. We
therefore propose to also consider the psychological aspects of
an RTOS API.

Raskin [10] identifies two properties of a good man-machine
interface. Modelessness, which means that the user does not
have to remember which state the machine is in to discern what
effect an action will have; and monotony, which means that
there should be exactly one way for the user to achieve some
effect. Both requirements aim to reduce the cost of training
personnel, developing the OS and application, and to reduce
the cost of maintenance. The locus of control of users that are



provided with multiple ways of achieving some goal will be
drawn away from what they are trying to achieve. Instead of
solving the problem at hand, they will spend time choosing
the right mechanism for doing so. Since average application
programmers are no experts in interface design, they will not
necessarily choose the best mechanism.

Note, however, that modelessness and monotony do not
mean that the user interface may not offer composite mech-
anisms. Such a requirement, however – which might be the
guiding principle of a naive approach to user interface design
– is counterproductive. It would encourage programmers to
implement mechanisms they frequently use themselves, leading
to a myriad of implementations of the same concepts.

Calculating feasible schedules is an NP-hard problem, while
determining events and event handlers is a precondition for
creating any schedule at all. Therefore it is much easier for
a human to just find the necessary events and event handlers
instead of calculating the required schedule. In this paper
we will therefore focus on RTOS APIs following the event-
triggered paradigm. We do not deny that hard real-time systems,
whose failure would endanger human lives, should be executed
in a time-triggered fashion. However, in our opinion, real-
time system designers should develop even hard real-time
systems in the event-triggered way and then use supporting tools
to transform the event-triggered design into a time-triggered
system. See [11] for an example of such a tool.

III. CHOICE OF RTOSES AND RTOS API STANDARDS

One goal of this paper is to give an overview of the state
of the art in RTOS APIs. We will therefore present two OS API
standards and two OSes, all of which are in widespread use in
academia and industry [7]. One fundamental decision an OS
designer has to make is whether the system should be configured
statically or dynamically w. r. t. active entities and resources.
The static approach has numerous advantages: A statically
configured RTOS will usually require less run-time resources
like RAM and processing power, which – even in our times,
where cheap 32bit microcontrollers are on the way of becoming
the norm rather than the exception – is an important issue in the
design of real-time systems. Also, it is much easier to analyze
the real-time properties of a static system, which allows the
designer to guarantee firm and hard deadlines. A dynamically
configured OS, on the other hand, may be much more flexible
at run-time when reacting to seldom circumstances. The rest
of this section will give a short overview of each RTOS API and
introduce the job execution abstraction of each approach.

POSIX: From a historical perspective, the Portable Oper-
ating System Interface (POSIX) standard is the most influential
standard in the world of dynamically configured OSes. First
adopted by the IEEE in 1988 [12], all Unix-like OSes implement
at least part of it. Even the Windows NT series of OSes has
had POSIX support in the past, and many embedded non-Unix
OSes provide a POSIX compatibility layer. The standard has
since grown considerably and by now encompasses a profile
that targets real-time systems even for microcontrollers without
memory managment unit (MMU) and filesystem support [13].
POSIX offers two abstractions for active entities, processes and
threads. These differ insofar as each process has its own address
space and therefore cannot access another process’s memory,

while multiple threads may share the same address space. In this
paper we will limit ourselves to the POSIX facilities appropriate
for real-time systems. We think that it is appropriate to include
POSIX in this paper since many embedded operating systems
like eCos or RTEMS implement at least part of the standard.
POSIX does not provide direct access to the interrupt handling
mechanisms of the hardware. Instead, interrupt handling may
be mapped to POSIX’s real-time signals mechanism. These
signals are guaranteed to be delivered in the order they are
generated, and if a signal is triggered multiple times, it will be
delivered exactly as often as it was triggered.

OSEK OS: Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug (OSEK) OS is an API standard
for statically configurable OSes. The standard consists of
parts that are mandatory as well as optional parts. In this
paper we are going to take a look at the mandatory OS
standard [14], which provides an abstraction for active entities,
and the optional communication standard [15], which specifies
a message passing interface. OSEK OS’s active entities are
called basic and extended tasks. Basic tasks have run-to-
completion semantics and map directly to our concept of
abstract tasks. Extended tasks, on the other hand, may yield the
processor voluntarily and therefore are more like other operating
system’s threads. OSEK OS is in widespread use throughout the
automotive industry. Although OSEK has been superseded by
the newer AUTomotive Open System ARchitecture (AUTOSAR)
standard, it is still relevant since it is part of this new standard.

FreeRTOS: The free and open source FreeRTOS2 is a
dynamically configured OS with support for a wide range
of different processors. FreeRTOS’s API is limited to the
facilities required by real-time applications. It provides two
implementations of active entities. Similar to the OSEK standard,
FreeRTOS names its preemptively scheduled threads tasks.
Additionally, jobs may also be mapped to coroutines, which
are scheduled cooperatively.

Windows Embedded Compact 7: This OS is a component-
based embedded RTOS that has compile-time configurable
support for diverse hardware, a Graphical User Interface
(GUI), touch screen and playback of digital media. In contrast
to all other examined RTOSes it demands an MMU but was
included nevertheless, since according to [7] it is used quite
frequently in industrial applications. Windows Embedded
Compact 73 configures resources and active entities dynamically
and provides three abstractions for the later ones: Processes
and threads are very similar to their POSIX namesakes, while
fibres are thread-local coroutines.

Unfortunately none of these RTOSes include an API to detect
deadline misses as mentioned in Section II-A1. Therefore in
this paper we will not examine this requirement, though we
think such an API should at least be offered in firm RTOSes.
Moreover we will only take the thread abstraction offered
by the four presented approaches into account. The reasons
for this decision are twofold: 1. Processes guarantee separate
memory address spaces and therefore rely on the presence of
an MMU. Since the kind of RTOS we have in mind usually
runs on a microcontroller and most microcontrollers do not

2http://www.freertos.org/
3http://www.microsoft.com/windowsembedded/en-us/

windows-embedded-compact-7.aspx



come equipped with an MMU, full-blown processes simply are
not an option. 2. Coroutines are non-preemptive and therefore
increase the chance of an active entity violating the priority of
some other active entity. In principle it is possible to build a
real-time system with coroutines, however, we think that this
makes the programmer’s task much harder and is in conflict
with our goal of providing a usable API.

IV. METHODOLOGY

The goal of our evaluation is to find out in how far the RTOS
APIs we haven chosen succeed w. r. t. the criteria of completeness
and usability. To show if an RTOS’s API is complete we first
grouped the calls provided by the APIs w. r. t. the criteria we
established in Section II. After that we determined how many
functions have to be called in order to use these concepts
correctly. In this assessment we ignored functions that are only
required for setup and configuration.

Next we tried to quantify the monotony of the APIs by
exploring all choices an application programmer has to make
when implementing one of the basic semantics described in
Section II-A. To do so we tried to implement each requirement
in all ways permitted by the API and created a test case for
each option to verify its semantics. The experience we gathered
while implementing these proofs of concepts now allows us to
also judge the RTOS APIs w. r. t. the criterion of modelessness.

In Section II-A1 we presented two ways of handling events
– either by creating an active entity or by waking a preexisting
one up. As part of our evaluation we implemented both methods.
First we focused on handling events by directly starting active
entities. We implemented the activation of jobs from within
other jobs to support logical events and splitting tasks into
multiple jobs. To support asynchronous i. e., physical events
we also considered all ways of activating entities from within
an ISR. Second we used synchronization mechanisms like
semaphores to inform waiting active entities of events. For
both approaches we also implemented snippets that trigger
delayed events. A special case of delayed events may be
implemented using the sleep mechanism since the event is
handled by the same control flow that triggers it. In addition to
using the sleep mechanism of most APIs, we also implemented
delayed activations by other means.

In order to test the data flow mechanisms of the APIs, we
implemented simple code snippets using the basic building
block of data flow modelling, which is transferring one byte
from one job to another.

To execute these test cases conveniently and quickly we
did not deploy them on embedded hardware. Instead we used
x86-64 based desktop computers. For POSIX snippets this was
straight forward since the Linux operating system implements
the relevant parts of the standard. As the set of mechanisms
we used is basic and timing is not crucial for their semantics,
we used Linux-based simulators for the other RTOSes: Trampo-
line [16] for OSEK OS and the FreeRTOS Linux simulator4 for
FreeRTOS. Unfortunately the FreeRTOS simulator does not
support all features of the most recent FreeRTOS release, so we
had to forgo execution of some snippets. Microsoft provides
a virtual machine for testing Windows Embedded Compact 7

4http://www.freertos.org/FreeRTOS-simulator-for-Linux.html

Table I. NUMBER OF FUNCTIONS ASSOCIATED WITH EACH API
MECHANISM

mechanism OSEK OS POSIX FreeRTOS Windows EC 7

event handling
thread administration 4 (2) 4 (1) 4 (8) 4 (3)

interrupt administration 4 (6) 4 (11) 4 (2) 4 (5)
synchronization

event flags 4 (3) 4 (7) 4 (5) 4 (4)
semaphore 6 4 (4) 4 (6) 4 (1)

condition variable 6 4 (4) 6 6

barrier 6 4 (1) 6 6

timer 4 (2) 4 (3) 4 (4) 4 (2)
OR-combination 4 (1) 4 (5) 4 (2) 4 (1)

AND-combination 6 4 (1) 6 6

data flow
message queue 4 (3) 4 (5) 4 (12) 4 (3)
Read-write-lock 6 4 (7) 6 4 (2)

resource management 4 (2) 4 (4) 4 (2) 4 (3)

relevant functions 18 40 39 23

applications. As this virtual machine does not support ISRs
we could not run the corresponding test cases. Instead we
drew our conclusions from the API documentation. Our code
snippets and the complementing test framework are provided
for reference5.

V. RESULTS

In this section we will present the results of the experiments
we introduced in the previous section.

Table I summarizes the concepts present in each RTOS API.
The number of related functions is given in brackets if available.
The POSIX standard describes all examined mechanisms and
therefor is the most featureful API. Next in line is Windows
Embedded Compact 7, followed by FreeRTOS and finally OSEK
OS.

The number of options the user has when implementing
a required real-time concept serves as an indicator for an
APIs’s monotony. Table II shows this number for all test
cases described in Section IV. For RTOSes supporting ISRs we
differentiated between triggering events from within an ISR and
from regular active entities. In Table II the first number in
each column refers to physical events while the second number
represents the number of implementations for the logical event
mechanism. Although POSIX signals can be interpreted as an
abstraction for hardware interrupts, we did not differentiate
them from threads since they are an OS service and not a
property of the hardware.

Completeness: As every examined API offers at least one
way to implement each requirement, we consider all of them
complete.

Monotony: None of the examined RTOS APIs is monoton-
ous, since all of them offer multiple ways of achieving the
same semantics. Nevertheless, OSEK OS comes quite close to
meeting this criterion: the maximum amount of choices for
developers to achieve their aim is four. This indicates a very
straightforward API compared to the 45 choices imposed on
users by POSIX.

5https://www4.cs.fau.de/Research/AORTA/perfectRTOSAPI.tar.gz



Table II. NUMBER OF OPTIONS FOR IMPLEMENTING THE
REQUIREMENTS

test case OSEK OS POSIX FreeRTOS Windows EC 7

event handling
activation 3 / 4 1 1 / 1 1 / 1

delayed activation 2 1 1 1
periodic activation 3 1 1 1
suspend interrupt 3 1 1 3
synchronization

control flow 3 / 3 45 19 / 19 18 / 17
delayed control flow 2 / 2 24 19 / 19 19 / 19

sleep 2 32 29 25

data dependency 1 4 3 2

resource management 1 2 2 3

Modelessness: Most APIs do quite well when it comes
to modelessness. Even inside of ISRs most RTOSes permit
the same API calls as in normal control flows. Nevertheless,
dynamically configured systems like POSIX tend to violate
this criterion since API mechanism often can be configured
extensively. Each of these configurations represents a mode
since each configuration introduces a different semantics for
some API calls. In FreeRTOS different API calls have to be used
for the same purpose, depending on the calling context. This
serves to confuse the API user without need. Consequently it
includes more relevant functions in Table I than POSIX, though
it features less API concepts.

VI. DISCUSSION

Though all of the examined RTOSes can be called complete,
none of them fulfil both criteria of usability. Nevertheless,
some seem to do better than others. In this section we want to
discuss particular problems of the APIs and if possible make a
guess as to why they are designed the way they are.

The most obvious flaw that comes to mind when comparing
Table I and Table II w. r. t. POSIX is that it is overloaded with
functionality. During the nearly 30 years of its existence, it
has been extended and improved again and again, adding new
functionality to the API. The resulting extensive API leads to
a huge amount of choices a user has to make in order to
achieve some intended semantics. Especially the smorgasbord
of synchronization mechanisms should be mentioned here.
Although not all mechanisms are marked as ‘mandatory’ in the
standard, and thus are not implemented in most embedded POSIX
compatible OSes, this is a severe violation of the principle of
monotony. Another problem is that POSIX is very configurable
and flexible due to its design goal of being easily adaptable
to arbitrary OSes. Normally these words bear a positive
connotation but w. r. t. to usability of APIs this does not hold true.
Configuring an API mechanism means changing its semantics,
which introduces modes. From our point of view both problems
can be attributed to the fact that POSIX has always been an
integrating standard which has to fit many existing systems
and provide even more mechanisms. This approach conflicts
with designing a clear and usable API.

The FreeRTOS API requires the user to apply different
functions for the same purpose depending on the execution
context (thread, coroutine or ISR), which is in conflict with our
requirement of modelessness. Whenever FreeRTOS application

developers are trying to achieve some goal, they first have to
make themselves aware which context they are programming
in. Only after that can they decide which function to use. This
mental overhead combined with the unnecessary amount of
functions available for each task hinders efficient use of this
API.

In contrast, Windows Embedded Compact 7 seems to
follow a rather good general development pattern. Its API
may not be perfect but seems to be quite usable. All results in
Table I and Table II show that Windows Embedded Compact 7
does better than the other dynamically configurable RTOS APIs
(FreeRTOS and POSIX). Microsoft probably benefits from two
factors: 1. The development team seems to have a structured
and consistent vision of the API they want to offer. This is
probably due to the tighter integration of developers and stricter
leadership in the project. Although FreeRTOS is marketed by
a commercial vendor too, its API seems to have been designed
with much less regard for usability issues. This may be a
result of feature growth over time and of designing an API
matching the internals of the OS instead of the API user’s
requirements. 2. Since Microsoft’s customers licence specific
versions of embedded Windows, Microsoft has complete control
over the degree of backward compatibility provided. This is
very important since backwards compatibility is one of the
major reasons APIs erode over time [9]. Not having to provide
backward compatiblity enables the vendor to make drastic cuts
where necessary. Nevertheless Windows Embedded Compact 7
suffers from the same issue other dynamically configured OSes
have: configurable mechanisms imply different working modes
for these mechanisms.

Most of the statically configured OSEK OS’s API does not
suffer from this flaw. It seems that great care has been taken
in OSEK’s design to avoid modes, and the standard’s designers
had the application programmer instead of the OS implementer
in mind when they composed it. This seems surprising
since standardization usually only achieves a perpetuation of
the status quo. Another excellent decision in the design of
OSEK was to target embedded hardware platforms exclusively.
This approach has led to a very lean, straight forward and
monotonous interface. A critical look at Table II, however,
reveals an apparent exception. There are four different ways of
activating threads where all other APIs only provide one function.
This may seems excessive but the OSEK OS standard aims for
a one-to-one mapping of jobs to active entities. Therefore,
in order to support complex control flows, different ways
of activating threads are necessary (e. g., one handy API call
atomically ends the current thread and activates another one).

Regarding modelessness, OSEK fails only in one aspect, and
it does so without a pressing need: An OSEK event is coupled
with the existence of its associated thread, and therefore, if an
event occurs while a thread does not exist, the event will be lost.
This design decision is detrimental to the API’s usability and
OSEK’s version of the event mechanism in general appears to
be defective. It would have been a much better design decision
to specify that an event flag exists even while its associated
thread does not. Nevertheless, we think that of all APIs we
examined in this paper, OSEK OS provides the best usability
experience in an embedded context.

The discussion of the different APIs reveals one commonal-
ity: The design process is crucial for the usability of an API.



Since the API should be ergonomic for its end-users and their
applications, the designers should have these in mind instead of
the underlying implementation. Instead of trying to have one
API to cover all applications and purposes w. r. t. to usability it
seems to be profitable to aim at one core purpose i. e., real-time
in our case. Additionally if planning ahead did not work out
and already existing interfaces do not work the way they were
planned, one should not shy away from breaking backwards
compatibility in favour of better API design.

VII. RELATED WORK

In the field of RTOSes only little scientific work seems to have
been done w. r. t. the design of usable APIs. Most papers that
have been published either take a look at the overall properties
of the RTOS, or, they focus on microbenchmarks of individual
properties. Almost no work has been done that assesses the
RTOS API itself, and the few examples that do, like Timmerman
and Perneel [17], use measures like the ‘richness’ of the API,
which conflicts with its usability. Anh and Tan [18] present
a relatively comprehensive collection of microbenchmarks for
implementations of RTOS APIs but do not examine the usability
of the APIs themselves. The preexisting literature thus does not
give a usability assessement of RTOS APIs.

In those cases where new APIs for RTOSes are introduced,
these are usually intended for model-driven real-time system
development. Since one of the main goals of model-driven
development is simulating the resulting real-time system, the
invented APIs cater to the needs of simulators instead of those
of programmers. In some cases this means that the API does not
even offer resource management and therefore is incomplete
w. r. t. our criteria. Examples of this approach include Hessel
et al. [19], Shaout et al. [20] as well as Maeng et al. [21].

As far as we are aware, no published work targeting the
real-time domain explores APIs w. r. t. ergonomic properties like
modelessness and monotony. So far, the human factor does
not seem to have been at the focus of real-time API design.

VIII. CONCLUSION

In this paper we first presented a minimal set of semantic
concepts that we think are necessary to express the needs of real-
time applications. We then showed how these concepts can be
mapped to RTOS APIs and introduced the criteria of completeness,
modelessness and monotony for assessing the usability of RTOS
APIs. After that we presented two RTOS API standards and
two RTOSes that we had selected as candidates for a usable
RTOS API. We examined these w. r. t. our criteria and are now
convinced that the Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug (OSEK) RTOS API comes quite
close to an usable API. Furthermore we came to the conclusion
that Windows Embedded Compact 7 is a pleasant API but suffers
from the requirements the API of a dynamically configurable
OS necessarily faces. We also discussed the shortcomings of
FreeRTOS and the Portable Operating System Interface (POSIX)
standard. The designers of FreeRTOS do not seem to have
given much thought to usability while POSIX is trying to be
adaptable to any OS regardless of the intended use case. It
therefore implements many concepts in more than one way,
burdening the application programmer with having to decide
which part of the API to use.

In the future we intend to present an RTOS API that surpasses
OSEK OS and expresses the abstract real-time concepts we
introduced in Section II-B more directly.

REFERENCES

[1] D. R. Cheriton, “Multi-process structuring and the Thoth operating
system,” Ph.D. dissertation, University of Waterloo, Ontario, Canada,
1978. [Online]. Available: https://cs.uwaterloo.ca/research/tr/1979/
CS-79-19.pdf

[2] M. E. Conway, “Design of a separable transition-diagram compiler,”
Commun. ACM, vol. 6, no. 7, pp. 396–408, Jul. 1963. [Online].
Available: http://doi.acm.org/10.1145/366663.366704

[3] P. J. Landin, “A generalization of jumps and labels,” in Report, UNIVAC
Systems Programming Research, 1965.

[4] E. W. Dijkstra, “Cooperating sequential processes,” Technische
Universiteit Eindhoven, Eindhoven, The Netherlands, Tech. Rep.,
1965, (Reprinted in Great Papers in Computer Science, P. Laplante,
ed., IEEE Press, New York, NY, 1996). [Online]. Available:
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

[5] P. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple-Nested
Parallel Loops,” in Parallel Processing, 1986. Proceedings. International
Conference on, August 1986, pp. 528–535.

[6] P. B. Hansen, “Concurrent programming concepts,” ACM Computing
Surveys (CSUR), vol. 5, no. 4, pp. 223–245, 1973.

[7] A. Wolfe and D. Blaza. (2013) 2013 Embedded
Market Study. online. UBM plc. [Online].
Available: http://images.content.ubmtechelectronics.com/Web/
UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%
7D_2013EmbeddedMarketStudyb.pdf

[8] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE TC, vol. 39, no. 9, pp.
1175–1185, 1990.

[9] M. Henning, “API design matters,” Queue, vol. 5, no. 4, pp. 24–36, May
2007. [Online]. Available: http://doi.acm.org/10.1145/1255421.1255422

[10] J. Raskin, The Humane Interface – New Directions for Designing
Interactive Systems. ACM Press/Addison-Wesley Publishing Co., 2000.

[11] F. Scheler and W. Schröder-Preikschat, “The RTSC: Leveraging the
migration from event-triggered to time-triggered systems,” in 13th
IEEE Int. Symp. on OO Real-Time Distributed Computing (ISORC
’10). Washington, DC, USA: IEEE, May 2010, pp. 34–41.

[12] Portable Operating System Interface (POSIX®) Base Specifications, ISO
Std. 9945, 1988.

[13] Standardized Application Environment Profile (AEP) - POSIX Realtime
and Embedded Application Support, IEEE Std. 1003.13-2003, 2004.

[14] OSEK/VDX Operating System Specification 2.2.3, OSEK/VDX, February
2005.

[15] OSEK/VDX Communication Specification 3.0.3, OSEK/VDX, July 2004.
[16] J.-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet, “Trampoline –

an Open Source Implementation of the OSEK/VDX RTOS Specification,”
in 11th Int. Conf. on Emerging Technologies and Factory Automation
(ETFA’06). Prague, Tchèque, République: IEEE, Sep. 2006.

[17] M. Timmerman and L. Perneel, “RTOS State of the Art,” Dedicated
Systems Experts, Tech. Rep., 2005.

[18] T. N. B. Anh and S.-L. Tan, “Survey and performance evaluation of
real-time operating systems for small microcontrollers,” IEEE Micro,
2009.

[19] F. Hessel, V. da Rosa, I. Reis, R. Planner, C. Marcon, and A. Susin,
“Abstract RTOS modeling for embedded systems,” in Rapid System
Prototyping, 2004. Proceedings. 15th IEEE International Workshop on,
June 2004, pp. 210–216.

[20] A. Shaout, K. Mattar, and A. Elkateeb, “An ideal API for RTOS modeling
at the system abstraction level,” in Mechatronics and Its Applications,
2008. ISMA 2008. 5th International Symposium on, May 2008, pp. 1–6.

[21] J. C. Maeng, J.-H. Kim, and M. Ryu, “An RTOS API Translator for
Model-Driven Embedded Software Development,” in Embedded and
Real-Time Computing Systems and Applications, 2006. Proceedings.
12th IEEE International Conference on, 2006, pp. 363–367.




