
MULTI SLOTH: An Efficient Multi-Core RTOS
using Hardware-Based Scheduling∗

Rainer Müller, Daniel Danner, Wolfgang Schröder-Preikschat, Daniel Lohmann
Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Germany

{raimue,danner,wosch,lohmann}@cs.fau.de

Appeared in: Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS ’14),

pages 189–198, IEEE Computer Society, 2014, ISBN 978-1-4799-5798-9

Abstract—Multi-core operating systems inherently face the
problem of concurrent access to internal kernel state held in
shared memory. Previous work on the SLOTH real-time kernel
proposed to offload the scheduling decisions to the interrupt
hardware, thus removing the need for a software scheduler; no
state has to be managed in software. While our existing design
covers single-core platforms only, we now present MULTI SLOTH,
a multi-core AUTOSAR OS implementation. In this paper, we
show that our hardware-centric approach enables us to easily
make the transition to multi-core platforms without the need
for explicitly synchronizing kernel data. Even in the case of
cross-core interactions, MULTI SLOTH keeps the unique SLOTH
properties of strict priority obedience and complete prevention
of rate-monotonic priority inversions.

AUTOSAR OS mandates only unordered spinlocks, which do
not guarantee predictable timing. We show the advantages of
the MULTI SLOTH design by additionally providing a wait-free
and efficient implementation of the priority-aware Multiprocessor
Priority Ceiling Protocol (MPCP). On our reference platform,
we achieve overheads as low as 1.1 µs for acquiring a globally
shared resource using the MPCP and round-trip times of 1.4 µs
for cross-core task activations.

I. INTRODUCTION

The ongoing trend to multi-core systems is spreading in
the embedded systems at the moment, which also leads to
fundamental changes in system software for the management
of tasks and the provisioning of synchronized access to shared
resources. In the automotive industry, for example, the widely
used AUTOSAR OS interface [1] only recently added support
for multi-core systems. As AUTOSAR builds their specification
on the older OSEK OS specification [18], the abstractions for
control flow and resource management are still mainly targeting
a single-core system.

In previous work on the SLOTH real-time operating sys-
tem [12], [13], we have shown that the interfaces of the
single-core OSEK OS specification can be implemented
by using interrupt controllers in off-the-shelf hardware for
scheduling and dispatching. By mapping all control flows in
the system to interrupts, efficient management leads to a high
performance with only little support in software necessary.
This approach leads to a concise kernel implementation with a
low memory footprint. Furthermore, it allows organizing both
tasks and interrupt service routines (ISRs) in the same unified
priority space, taming the problem of rate-monotonic priority
inversion [8] by construction. In traditional software-scheduled

∗This work was partly supported by the German Research Foundation (DFG)
under grants no. SCHR 603/8-1 and by the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89), Project C1.

systems, in contrast, interrupt handlers with semantically low
priorities can defer the execution of any task despite its priority.

In this paper, we present MULTI SLOTH as an adoption
of the SLOTH concepts to multi-core platforms following
the AUTOSAR OS multi-core specification. The AUTOSAR
system model for multi-core real-time systems uses partitioned
fixed-priority scheduling, where each task is statically allocated
to a core and each core is scheduled using a single-core policy.
Our focus is providing the system interface of the operating
system with abstractions for task and resource management. By
identifying and combining the building blocks of the original
SLOTH design, we show how little effort is required for the
transition of our implementation to multi-core platforms—
in particular, to the Infineon AURIX [14], which is one of
the major target platforms for upcoming applications in the
automotive industry. Additionally, to explore the possibilities
offered by our hardware-centric design, we present an efficient
implementation of a priority-aware synchronization protocol.

For the management of resources, OSEK mandates a stack-
based priority ceiling protocol (PCP) that builds on temporarily
raising a task’s execution priority while inside the critical
section. On a single-core processor this approach effectively
prevents unbounded priority inversions. With the addition of
multi-core in the AUTOSAR OS specification, spinlocks have
been added to perform inter-core synchronization. However,
no semantics for these spinlocks is specified in AUTOSAR OS.
The use of simple unordered spinlocks allows priority inver-
sions, for example when a low-priority task is preempted in a
critical section by an independent mid-priority task, effectively
delaying the execution of a high-priority task on another core
that is waiting for access to the shared resource locked by
the low-priority task. AUTOSAR recommends to make critical
sections completely non-preemptable by suspending interrupts
before acquiring a lock, although the spinning itself could still
be implemented preemptable. An analysis of different spinlock
types in the AUTOSAR context can be found in [23].

Synchronization protocols have been developed to provide
predictable synchronization in the multi-core scenario for
real-time systems. In [19], for example, Rajkumar extended
the priority ceiling protocol for use with multiple processors
defining the Multiprocessor Priority Ceiling Protocol (MPCP).

Due to the concise kernel design of MULTI SLOTH, we
are able to use its building blocks to implement the MPCP
efficiently and our implementation of the acquire and release
operations is wait-free. Moreover, we are not only able to reduce
the overall system overhead due to asynchronous scheduling



decisions in the interrupt controller hardware, but are also able
to remove priority inversions that would occur when using a
software scheduler.

A. Contributions

In this paper, we present MULTI SLOTH as an extension of
our hardware-centric SLOTH RTOS to multi-core platforms
with the following contributions:

• We show that MULTI SLOTH keeps the beneficial prop-
erties of SLOTH even with cross-core interactions, while
providing fast and bounded system service execution
without rate-monotonic priority inversions.

• Based on these non-functional system properties, we show
on the example of MPCP that it is possible to implement
advanced synchronization protocols for multi-core systems
in an efficient and deterministic manner.

• In our reference implementation on the Infineon AURIX
we show the round-trip time of a cross-core task activation
to be as low as 171 cycles and a global resource acquisition
with MPCP takes only 112 cycles.

B. Organization of this Paper

First, we present the building blocks of the SLOTH real-
time operating system in Section II as background information.
In Section III, we analyze the challenges of the transition
to multi-core following the AUTOSAR system model. With
regard to these challenges, in Section IV and V we present
MULTI SLOTH adapting the existing building blocks of SLOTH
for multi-core on the Infineon AURIX as reference platform. In
Section VI, we discuss the implications of the AUTOSAR OS
multi-core synchronization interface and explain the MPCP as
an alternative. Subsequently, Section VII details the design and
implementation of the MPCP in MULTI SLOTH. The whole
system is evaluated in Section VIII, the results are discussed
in Section IX and Section X discusses related work. Finally,
Section XI concludes the paper with a summary.

II. THE BUILDING BLOCKS OF SLOTH

First we want to provide an overview of the concepts and
mechanisms used in the original single-core design of the
SLOTH real-time operating system.

One main design property of SLOTH is that it abolishes the
traditional division of control-flow abstractions into threads
and interrupt handlers. Instead, all threads (or tasks in OSEK
terminology) are implemented as interrupts, moving their
management off the CPU onto the interrupt subsystem. By
mapping each task to a separate interrupt and assigning an
IRQ priority according to the application configuration, all
scheduling decisions are made autonomously as part of the
interrupt arbitration. When a task is activated by triggering its
assigned IRQ source (see, for example, 1 in Figure 1), the
interrupt controller hardware (see 2 ) determines the highest-
priority pending interrupt source and compares it to the current
execution priority on the CPU (see 3 ). If it is lower, the CPU
is interrupted, effectively preempting the currently running task.
In case of a low-priority task activation, however, the CPU

IRQ Source
Task1

prio=1

request
enable

IRQ Source
ISR2

prio=2

request
enable

IRQ Source
Task3

prio=3

request
enable

IRQ Source
Task4

prio=4

request
enable

HW IRQHardware
Periphery

IRQ
Arbi-

tration
Unit

CPU

curprio = X

ActivateTask(Task4)

ActivateTask(Task3)

ActivateTask(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

1

2

3

4

Fig. 1: Design of a SLOTH operating system for a single-core
platform, implementing all control flow types as interrupts,
leaving scheduling decisions to the interrupt hardware and
dispatching both tasks and ISRs as IRQ handlers.

Static Analysis

System Generator

Compiler

Application
Configuration

Hardware
Model

Binary

Fig. 2: Outline of the generative framework used for building
applications in SLOTH.

remains uninterrupted as the pending interrupt priority is lower
than the execution priority. For the dispatching of the interrupt
handler, the CPU will look it up in the interrupt vector table
(see 4 ), from where the corresponding task function will be
called in a SLOTH system. This approach not only allows
for a concise implementation that reduces kernel overhead
and latency, but also avoids the problem of rate-monotonic
priority inversion that comes with a priority space that is split
into tasks and ISRs. These non-functional properties allow the
implementation of real-time systems using the SLOTH concept
on many platforms, for example on our single-core reference
platform, the Infineon TriCore.

The interface that SLOTH offers to the user application
follows the OSEK OS standard as well as its compatible
successor AUTOSAR OS, which is a statically configured
system using fixed-priority tasks.

From an architectural point of view, SLOTH is built on
a generative framework that is composed of three main
components, as shown in Figure 2. Starting with a given
application and its configuration, a static analysis step first
extracts the requirements of the application to obtain a mapping
of operating system abstractions used by the application to
specific hardware resources, such as interrupt sources, timer
units and interrupt priority levels. By combining this mapping
and the hardware model information of the selected target
platform, the system generator then creates the actual kernel
code, which is specifically tailored to both the application and



the target platform. In the final step, compiling the generated
system code and the user-provided application code as a single
program allows the compiler to extensively optimize towards
the concrete behavior of the application by, for instance, inlining
system service calls, propagating constant parameters, and
eliminating dead code.

The system design of SLOTH consists of four fundamental
building blocks, which need to be implemented according to the
properties of the underlying platform. These blocks are (a) the
task activation via interrupts, (b) dispatching tasks as interrupt
handlers, (c) blocking tasks, and (d) raising and lowering task
priorities for synchronization.

a) Task Activation: With tasks implemented as interrupts,
synchronous task activations essentially consist in triggering
the associated interrupt from software. Usually, this is as simple
as writing to a certain memory-mapped register or executing a
special machine instruction. Naturally, the execution time of
the task activation itself is bounded as no dynamic decisions
are required.

b) Task Dispatching: OSEK differentiates between two
types of tasks, of which only extended tasks have the ability
to block in order to wait for events signaled by other tasks,
whereas basic tasks are constrained to run-to-completion
semantics. As a consequence, the IRQ handlers registered for
basic tasks merely have to save register contents not implicitly
saved by the hardware, followed by jumping to the actual task
function provided by the user application. Here, the nested,
stack-sharing nature of interrupts handling matches exactly the
desired task model.

c) Task Blocking: Extended tasks may block to wait for
an event, which means they leave their control flow context,
allowing other lower-priority tasks to run. Therefore, they
require a dedicated stack and a more complex IRQ handler,
which distinguishes between dispatching a freshly activated task
or resuming an existing context. The particular mechanism for
blocking a task is mostly up to hardware specifics. Generally,
the current context is stored, the task’s interrupt source is
disabled and then the task yields the CPU by leaving the
interrupt context. The reverse procedure to unblock a task
essentially only needs to re-enable and trigger the interrupt
source, such that it is considered in the IRQ arbitration once
again. For example on the Infineon TriCore, blocking a task
is implemented by lowering the current execution priority to
zero, which leads to immediate preemption by other tasks as
their priority is higher. The IRQ handler for the preempting
task is then in charge of preserving the previous (now blocked)
task’s state by performing the switch to its own dedicated stack.
When unblocking the task later on, a switch to the preserved
stack facilitates the full restoration of its state at the point
blocking. For a more detailed insight into task blocking in
SLOTH, see [13].

d) Resource Management: OSEK also prescribes resource
management in the form of a stack-based priority ceiling
protocol. The mechanism central to this is the raising and
lowering of a task’s priority while it is executing. In SLOTH
implementations, this is done by manipulation of the current

execution priority of the CPU directly, which inhibits the
preemption by interrupts of equal or lower priority.

III. EMBEDDED MULTI-CORE OS CHALLENGES

In our adoption to a multi-core architecture, we closely
follow the system model prescribed by AUTOSAR OS, which
specifies interfaces for event-triggered embedded kernels that
use partitioned fixed-priority scheduling. With regards to multi-
core platforms, AUTOSAR OS considers tasks to be statically
assigned to a certain core and to not migrate at run time. The
execution model within each core matches that of single-core
AUTOSAR systems. These sets of tasks per core are, however,
not entirely isolated from each other but may invoke task
activations across core boundaries and can also globally share
events to wait for.

In the transition of an existing embedded operating system
implementation to shared-memory multi-core platforms it is
first necessary to identify all situations that require concurrent
access to kernel data structures. Then, proper internal synchro-
nization mechanism need to be introduced internally, in order to
keep each core’s view on the system state consistent. In the case
of the AUTOSAR OS model, such need for synchronization
arises in all cross-core system services, such as activating
remote tasks.

Considering a traditional kernel implementation, which
schedules and dispatches in software, this is usually realized by
placing the relevant information in a shared memory location.
A high-priority inter-processor interrupt is then sent to the
target core to signal the incoming event. Regardless of the
priority of the currently executing control flow, the remote
core will get arbitrarily interrupted for performing duties on
behalf of a task with a lower priority, constituting a case of
rate-monotonic priority inversion.

One of the goals of SLOTH, however, has always been
to prevent such behaviour by design. In order to retain the
beneficial properties of SLOTH on the multi-core domain, we
need to devise how to perform kernel signaling across cores
without impeding the execution of higher-priority tasks.

IV. DESIGN OF MULTI SLOTH

Due to the simplicity of the SLOTH design, extending the
system to multi-core can be achieved by combining the existing
building blocks from the single-core system in new ways.

A. Extending the Building Blocks to Multi-Core

Only a few of the building blocks of SLOTH introduced in
Section II need changes to be used in a multi-core system, while
others can be used unmodified. Most noticeable, MULTI SLOTH
needs to support task activations across multiple cores. For
this, the task activation has to be extended to send interrupt
requests to another core, where it will participate in the
arbitration process. This will either require write access to
the interrupt sources of other cores with a memory-mapped
interrupt controller, or a special instruction to send an inter-
processor interrupt. In both cases, this does require changes in
the building block for task activation, which still boils down to



a single instruction setting the pending bit of the corresponding
interrupt source. No knowledge about the target core handling
the activation is required on the core executing the system
service, seeing that the arbitration in the interrupt controller
will determine the highest pending interrupt request individually
for each core.

In contrast, the handling of waiting for events and their
signaling in extended tasks needs to be adapted for use in
a multi-core system. When a task in AUTOSAR waits for
a specific event, it blocks and yields the CPU in order to
let lower-priority tasks run. It is then later unblocked by a
signal when the event is set by another task. The mechanisms
for blocking and unblocking of a task will be the same in
MULTI SLOTH as in the single-core SLOTH, as they merely
involve a change of the current task priority and another
trigger of the interrupt source for unblocking. As the events
can be signaled from any core, variables indicating events
set and waited for by each task need to reside in shared
memory. However, due to possible concurrent access to the
data structures, additional synchronization is required. When
multiple control flows set an event for a task in parallel, it must
only lead to a single unblock of this task. Otherwise, starting
the unblock mechanism although the blocked task already
continued due to another event signal would be mistaken as a
spurious task activation as both are performed with the same
interrupt request. Additionally, the decision whether a task
needs to block or the event was signaled before needs to be
synchronized as well to counter the lost wakeup problem.

For the handling of resources locally bound to one core
only, no changes on the existing building blocks implementing
the OSEK priority ceiling protocol are required. However, for
global resources shared across multiple cores, new functionality
is mandatory in a multi-core system. The AUTOSAR OS
standard only prescribes spinlocks for this, while leaving the
exact semantics unspecified. For the sake of completeness, we
implemented spinlocks as mandated by AUTOSAR, but we
will get back to this topic and its implications in Section VI
below.

B. Hardware Requirements

For this approach with a interrupt-based multi-core system,
we have requirements on the hardware architecture that the
MULTI SLOTH is implemented for. As in the existing SLOTH
kernel [12], [13], the hardware needs to allow interrupt
triggering from software either by a memory-mapped register
or a special machine instruction. In MULTI SLOTH, however,
it is also required to send interrupts to remote cores as inter-
processor interrupts. In a similar way, the number of available
interrupt sources and priorities per core needs to be at least as
high as the number of tasks and interrupts to be handled on
this core, as each task and interrupt is assigned to a dedicated
interrupt source and priority. Furthermore, for MULTI SLOTH
it is required to have at least a small shared memory region
where all cores are able to access the event variables. Of
course, additional local memory per core is also supported
when the data stored there must not be accessed by other

cores. These requirements are fulfilled by most embedded
microcontroller platforms, like the ARM Cortex-A series, the
Freescale MPC55xx, or—our reference platform used for this
paper—the Infineon AURIX.

V. IMPLEMENTATION OF MULTI SLOTH

The reference implementation of MULTI SLOTH targets the
Infineon AURIX platform, a next-generation embedded multi-
core platform based on the TriCore architecture, which is
widely used in the automotive industry. In this section, we
present the relevant features and properties of this platform,
followed by a presentation of the implementation details of
MULTI SLOTH following the AUTOSAR OS specification.

A. The Infineon AURIX Multi-Core Platform

The Infineon AURIX [14] offers up to three cores in a shared-
memory architecture, with each core sharing much similarity
and compatibility with the predecessor single-core TriCore
platforms.

The interrupt subsystem provides up to 1023 interrupt
sources called service request nodes (SRNs), most of which
are connected to hardware periphery. A subset of SRNs
serve as general purpose nodes that can solely be triggered
from software. The SRNs can be individually assigned an 8-
bit priority vector and target processor core to deliver the
interrupt request to. Each core provides its own interrupt
control unit (ICU) handling the arbitration of incoming interrupt
requests. If the determined highest priority of all interrupts
pending at a given core surpasses the current execution priority,
the core processes the request by executing the corresponding
handler function. Since both types of SRNs—periphery and
general purpose—offer the same features regarding software-
triggered interrupts, any SRNs connected to unused hardware
units can be repurposed for MULTI SLOTH. The upper limit of
tasks configured in an MULTI SLOTH system on this platform
is therefore only limited by the maximum number of 255
interrupt levels. Caching is optional on the AURIX, but it does
not provide cache coherence. Therefore, we consider caches
to be disabled in our design as well as for the evaluation.

In MULTI SLOTH, the configuration interface exposed to
the application designer allows them assigning each task to
a specific core, which is then translated to a suitable SRN
configuration. Figure 3 illustrates the AURIX platform archi-
tecture and includes an example application setup consisting of
three tasks and one ISR triggered by some peripheral hardware.
Each SRN represents one of these control flows and—through
its core field—is assigned to the ICU of a given core. In
turn, each core has an individually assembled IRQ vector table,
mapping incoming IRQs onto the proper task or ISR user code.

B. Implementing MULTI SLOTH Building Blocks

For each building block introduced in Section II, we outline
in the following, which changes were necessary for transition
of our implementation to the Infineon AURIX.



SRN 0: Task1
request

enable

prio=23

core=0

SRN 1: ISR1
request

enable

prio=24

core=0

SRN 2: Task2
request

enable

prio=5

core=1

SRN 3: Task4
request

enable

prio=8

core=2

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

ICU
(IRQ Arbitration)

Core 0

curprio = X

Core 1

curprio = Y

Core 2

curprio = Z

IRQ Vector Table IRQ Vector Table IRQ Vector Table

task1()

isr1()
...

task2()
...

task4()
...

A
c
t
i
v
a
t
e
T
a
s
k
(
)

,S
e
t
E
v
e
n
t
(
)

,e
tc

.
HW Periphery

IRQ

Fig. 3: Design of a MULTI SLOTH system on the Infineon
AURIX multi-core platform. The three cores each perform
individual IRQ arbitration for source assigned to them. Both
local and remote task activations are performed by triggering
interrupts from software via shared, memory-mapped registers
of the interrupt hardware.

a) Task Activation: Given that all SRNs are accessible
globally by any core, the implementation of synchronous task
activations on the AURIX does not need to pay attention
to whether it constitutes a local or cross-core activation. In
either case, tasks are activated by triggering their assigned
SRN, which means setting the SETR bit of the memory-
mapped control register of this SRN. Since the AURIX
provides dedicated instructions that allow to set single bits
in memory atomically, no additional synchronization measures
are necessary to be able to deal with concurrent task activations
on multiple cores.

b) Task Dispatching: Since each core on the AURIX per-
forms its IRQ arbitration individually and resolves incoming
interrupts based on a core-specific IRQ vector table, the task
dispatch mechanism is not affected by the fact that there are
multiple cores.

c) Task Blocking: Similarly, the task blocking procedure is
confined to activity on the local core and the local interrupt
controller. Unblocking a task, however, can be effected locally
as well as remotely from any other core. Since the only
modifying operation done for unblocking a task is enabling
the corresponding IRQ source, concurrent unblocking does
not need to be synchronized per se. Nevertheless, when using
these building blocks, attention needs to be paid to whether
unblocking a remote task which is in the process of blocking
itself at the same time might entail a lost wakeup for this task.
As we will show in our design for the MPCP in MULTI SLOTH,
this issue can be tackled by properly ordering each step leading
to blocking or unblocking a task as to prevent both happening
concurrently.

d) Resource Management: The stack-based priority ceiling
protocol prescribed for single-core AUTOSAR systems is

present in the multi-core case as well, but strictly confined and
partitioned onto each core. For MULTI SLOTH, this means that
besides adding a configuration directive for specifying which
core each local resource is assigned to, no extras measures
are needed for this building block to work on a multi-core
platform.

e) AUTOSAR Spinlocks: Additionally to adopting all ex-
isting functionality for multi-core platforms, MULTI SLOTH
offers a spinlock interface as prescribed by AUTOSAR OS. On
the AURIX, this is implemented by using the swap instruction
for atomically replacing a memory word with another.

VI. SYNCHRONIZATION IN REAL-TIME
MULTI-CORE SYSTEMS

MULTI SLOTH as presented so far supports task man-
agement on an embedded multi-core system following the
AUTOSAR OS specification.

However, another challenge in a multi-core system is the
management of logical and physical resources. For multiple
tasks accessing the same indivisible resource in parallel, the
operating system should provide a system interface for the
application programmer to efficiently ensure mutual exclusion.
With this abstraction, to maximize utilization of the computing
resources, tasks may block and yield the CPU while waiting
for a resource. In particular for a real-time system, the duration
of this blocking has to be bounded in order to be able to
give guarantees on the timing. For single-core systems, these
problems have been solved in OSEK with a priority ceiling
protocol [2], [21]. Upon acquiring a resource, this protocol
mandates to raise the execution priority to the highest priority
of all tasks accessing this resource, preventing preemption by
any of these tasks. On release of the resource, the execution
priority is lowered to the previous value. Using this approach,
the acquisition of a resource always succeeds as otherwise
the task holding the resource would prevent the dispatch of
other tasks accessing the same resource. Also, no blocking is
required for the resource management in OSEK and therefore,
it can be applied to both basic and extended tasks.

In a multi-core system with fixed task partitioning, resources
can be divided into local resources accessed by tasks on a
single core, and global resources accessed across multiple cores.
As local resources do not have interactions with other cores,
they can be managed with the same single-core priority ceiling
protocol. For the synchronization of global resources additional
problems arise due to the parallel execution of multiple control
flows. When a task wants to access a global resource that is
held by another task on another core, the latter must not be
preempted in the critical section by other independent tasks
with a higher priority, as that would lead to remote blocking.

In the AUTOSAR multi-core standard only spinlocks are
prescribed for the synchronization of resource access between
application tasks. Moreover, no specific semantic is mandated
for the spinlocks in AUTOSAR; the execution of multiple tasks
trying to acquire the same lock is unordered. When using these
simple spinlocks, an independent mid-priority task preempting
a low-priority task, which holds a spinlock, can inhibit progress



of a remote high-priority task waiting on the same spinlock.
This constitutes a priority inversion, which must not occur in a
real-time system. Furthermore, deadlocks are possible when a
task tries to acquire a spinlock held by a preempted task on the
same core. The AUTOSAR specification suggest to avoid these
issues by making critical sections non-preemptable, which is
also assumed by prior work analyzing spin locks. However, the
order of execution when multiple tasks compete for a global
resource is not defined and does not take task priorities into
account.

Thus, for predictable resource sharing, synchronization
protocols beyond the AUTOSAR specification have to be ex-
plored. Sophisticated priority-aware multi-core synchronization
protocols have been developed for many years, but none were
considered for the AUTOSAR specification. In particular, the
Multi-Core Priority Ceiling Protocol (MPCP) [20], [19] has
been proposed for use in AUTOSAR before [15].

In this paper, we therefore integrate the MPCP as an
example for a priority-aware synchronization protocol into
MULTI SLOTH. While originally designed for shared-memory
multiprocessor systems, the MPCP is applicable to embedded
multi-core systems as they are similar to these systems with
the same properties.

In MULTI SLOTH, we want to overcome synchronization
challenges for multi-core systems and not only follow the
AUTOSAR multi-core OS specification. An efficient, priority-
aware synchronization mechanism for multi-core is required in
order to implement real-time applications that can use hardware
platforms to their full extent.

VII. MPCP IN MULTI SLOTH

While MULTI SLOTH provides a full implementation of
the AUTOSAR OS multi-core standard including unordered
spinlocks, we added MPCP as an example of a priority-aware
synchronization protocol.

A. Multi-Core Synchronization using MPCP

MPCP classifies critical sections as local if the resource
access only needs to be coordinated between tasks on the same
core and the usual single-core PCP should be used. If a resource
is used across tasks on multiple cores, it defines a global
critical section. When a task tries to enter a global critical
section previously locked on another core it is suspended,
allowing lower-priority tasks to run. All global critical sections
are executed at ceiling priorities that are above the normal
priorities of all tasks.

For the sake of self-containment, we explain the applica-
tion of the MPCP to our system model in the AUTOSAR
context [15]:

• All tasks use their assigned priority unless in a critical
section.

• Access to local resources will be handled according to
the single-core stack-based priority ceiling protocol.

• Each global resource has a ceiling priority above all
priorities assigned to tasks on any core, such that this
global ceiling priority is defined as πmax + πtask where

πmax is the highest priority assigned to any task on any
core and πtask is the highest priority of all tasks accessing
this resource.

• Any task holding a global resource executes the global
critical section at the ceiling priority of this global
resource.

• On resuming execution after unblocking, a task entering
a global critical section at its ceiling priority can preempt
other global critical sections with a lower ceiling priority.

• When a task requests a global resource, it will be granted
atomically and cannot be held by any other task at the
same time.

• When access to a global resource cannot be granted, the
requesting task blocks and waits for a signal indicating
the acquisition of the global resource.

• When a task leaves a global critical section, the highest-
priority task waiting for this global resource will be
signaled and is allowed to continue at the ceiling priority
of the global resource. The signaled task is then holding
the corresponding global resource. When no task is waiting
for the global resource, it is just released.

B. Design of MPCP in MULTI SLOTH

The key components of the MPCP protocol are changing
the current execution priority, blocking the current task, and
signaling another task on a remote core. Traditionally, these
are implemented with a software scheduler that manages
tasks by maintaining priority-ordered queues on each core.
In MULTI SLOTH, however, we can use our building blocks to
implement the MPCP protocol.

In our system model following AUTOSAR, tasks using
MPCP resources need to be able to block, which means they
need to be extended tasks. Taking a global resource needs to
be properly synchronized in order to ensure only one task can
enter the guarded section at a time.

In our design process it became clear that the MPCP needs to
be introduced as a new interface in the OS level and cannot be
built on top of an existing AUTOSAR system. Global critical
sections need to be entered at the ceiling priority even after
a task blocked previously. This change in execution priority
cannot be reproduced with the existing AUTOSAR OS system
services.

The steps to acquire and release an MPCP resource in
MULTI SLOTH shown in Figure 4 are as follows:

a) GetMPCPResource(): At first, for synchronizing
changes made to the interrupt hardware configuration on
the local core, the system services must be non-preemptible,
which is achieved by locally disabling interrupts on the
executing core in A . Before deciding whether the task needs
to be blocked or not, two steps are performed early on, which
semantically are part of the Block Task step later on. First,
the IRQ source of the calling task is disabled (see B ) in
order to prevent a lost-wakeup situation that would arise if a
concurrent call of ReleaseMPCPRelease() was unblocking
this task at the same time it gets blocked. Disabling the source
early on ensures that the wakeup—which works by enabling



GetMPCPResource():

Disable Local IRQs

Disable IRQ Source

Raise Source Prio

Enqueue

Other tasks
in queue?

Raise CPU Prio Block Task

Enable Local IRQs

Enable IRQ Source

Resource Acquired

un
bl

oc
ke

d

no

yes

ReleaseMPCPResource():

Disable Local IRQs

Reset Source Prio

Dequeue

Other tasks
in queue?

Get Top of Queue

Unblock Task

Lower CPU Prio

Enable Local IRQs

Resource Released

noyes

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Fig. 4: Flow charts illustrating the procedures for acquiring
and releasing MPCP resources in MULTI SLOTH. The striped
regions indicate critical sections that must execute atomically.

the IRQ source of the affected task—will not get lost in this
situation. Similarly, by reconfiguring the source to raise its
priority level to the ceiling priority of the requested MPCP
resource in C , it is guaranteed that the task will resume at
this ceiling priority, even if it gets unblocked immediately
in the case of concurrency. In the next step D , the task is
inserted into an ordered queue that is specific to each MPCP
resource and used to keep track of the tasks that compete
for acquisition of this MPCP resource. After enqueueing the
task, the current state of the queue determines in E whether
the resource is available or the task needs to block. For
proper synchronization of multiple tasks trying to acquire
the resource or another task releasing the same resource
concurrently, the enqueue and check operation have to be
implemented to execute atomically (indicated by the hatched
areas in Figure 4). If other tasks were in the queue already,
meaning that the resource is currently being held by another
task, the calling task blocks to wait until the resource lock
is released. In case the queue was empty when enqueueing
the task, the resource is immediately acquired by raising the
current execution priority to the ceiling priority in F . The
procedure then concludes by re-enabling interrupts on the
current core in G and the IRQ source of the current task
in H .

b) ReleaseMPCPResource(): When releasing an MPCP
resource, local interrupts are first disabled for synchronization
as well (see I ), then the priority of the corresponding interrupt
source is reset back to the normal priority of the calling task
in J . In order to release the resource and pass it on to the next
task, the calling task removes itself from the queue in K and
checks if other tasks are still waiting to acquire the resource
(see L ). If so, the resource is handed over to the highest

priority task in the queue (determined in M ) by unblocking it
in N . Again, the dequeue step and the test for other waiting
tasks must be safe from concurrent queue operations on the
same MPCP resource, and therefore be implemented atomically.
After possibly unblocking the next task, the current execution
priority is eventually lowered again in O and local interrupts
are re-enabled in P . In case the task that was unblocked in N

executes on the same core the resource was released on, the
calling task would be preempted promptly after re-enabling
local interrupts in P .

Ensuring the atomicity of queue operations in our design
depends on the capabilities of the target hardware platform. In
the following section, we will present that this can be imple-
mented using atomic hardware instructions without resorting
to additional lock variables for the queues.

C. Wait-Free Priority Queue for MPCP

As laid out above, an implementation of our MPCP design
in MULTI SLOTH needs to provide a priority queue that offers
synchronized operations for either enqueueing or dequeueing
an item and observing the queued items. These operations
must work without concurrent queue manipulations interfering
between both steps. A straight-forward implementation of this
would be to make these sections non-preemptive and employing
an additional lock variable for mutual exclusion.

For our implementation on the AURIX platform, however,
we opted for a solution using hardware instructions for atomic
memory access. This allows us to realize the aforementioned
critical sections as single queue operations, which atomically
perform both the requested operation and return the queue
state.

To this end, we use a 32-bit word to represent the queue, in
which each bit designates the unique priority of a task within
the configured set of tasks that access the particular MPCP
resource. The slots in this bit mask are ordered according to the
priority in such a way that a simple clz (count leading zeros)
instruction provides the means for determining the highest
priority in the queue.

The atomicity of queue operations is then ensured by
using the swapmsk instruction available on the AURIX. This
instruction is similar to a regular atomic swap, except that
the swapping affects only certain bits in the memory location,
depending on a mask given as an operand. By specifying
a mask with only a single bit set, which corresponds to
a certain task, our implementation is able to enqueue or
dequeue a task and acquire the previous queue state in a single,
atomic operation. Ultimately, implementing the critical section
indicated in Figure 4 resolves to a single swapmsk instruction
atomically performing both the enqueue (or dequeue) step and
the retrieval of the queue state.

As a consequence, the execution of MPCP operations in
MULTI SLOTH is not influenced by concurrent invocations on
the same resource and is guaranteed to progress on a per-thread
basis. Therefore, acquiring and releasing MPCP resources in
MULTI SLOTH is wait-free.



D. Limitations

Each MPCP resource is organized with a queue that is
represented by a 32-bit word, which is the largest data type
on which atomic operations can be performed on the Infineon
AURIX. While the whole system can use all 255 different
priority levels available on this platform, a single MPCP
resource can only be shared by up to 32 distinct tasks due to
the dependency on the atomic hardware instruction.

In case an application needs more than 32 tasks sharing
the same global resource, a possible fallback is to arbitrate
accesses from tasks on the same core with a local resource first.
A single high-priority task on this core will then participate in
the synchronization using the global MPCP resource.

VIII. EVALUATION

In order to assess the performance of MULTI SLOTH, we
set up several scenarios with test applications and carried out
microbenchmarks measuring the execution times of each system
service. The measurements were obtained using a Lauterbach
hardware debugging and tracing unit, by instrumenting internal
benchmark counters and averaging the length of the examined
sections over 10,000 iterations each. Due to the constant
complexity of the measured code, no standard deviations
discernible from the few cycles of measurement accuracy were
observed.

We group our scenarios into three separate parts. The first two
reflect the difference in run-time overhead between a system
configured to support only basic run-to-completion tasks and
one to allow the blocking of tasks. The third group considers
an application that makes use of MPCP resources and aims
to cover the various transitions that can take place in such a
system.

Table I shows the results obtained for a basic system. In
cases where the given transition includes the dispatching of
another task, the measurement includes this task’s IRQ handler
up to the first instruction of the user code. Since the hardware
limitations in the evaluation setup only allow us to measure
one processor core at a time, we assess the behavior of
cross-core task activations by performing a round-trip back to
the initial core. The resulting 135 cycles therefore cover the
local ActivateTask() invocation, then a remote task dispatch
followed by another task activation and a local dispatch in
turn. The transitions measured for task activation, chaining,
termination as well as acquiring and releasing resources take
place locally on one core.

For the extended system, the test scenario is similarly
constructed but more extensive. Firstly, those transitions that
execute only on a single core have additional variants reflecting
whether or not they include switching between the dedicated
stacks of extended tasks. Secondly, the added support for task
blocking introduces WaitEvent, SetEvent and ClearEvent
as additionally available system services to be measured. The
figures given in Table II reveal that the added costs for handling
blocked tasks amount to 28-103 cycles, depending on the
type of system service and whether a stack switch is in order.
Notably, benchmarks that do not involve dispatching another

Transition Cycles

ActivateTask w/o dispatch 65
ActivateTask w/ dispatch 87
ChainTask w/ dispatch 97
GetResource 36
ReleaseResource w/o dispatch 19
ReleaseResource w/ dispatch 41
TerminateTask w/ dispatch 20

ActivateTask() cross-core round-trip 135

TABLE I: Evaluation results for a basic MULTI SLOTH system
on the Infineon AURIX

Transition Dispatch Stack Switch Cycles

ActivateTask() w/ dispatch w/o stack switch 107
ActivateTask() w/o dispatch - 65
ActivateTask() w/ dispatch w/ stack switch 168
ChainTask() w/ dispatch w/o stack switch 125
TerminateTask() w/ dispatch w/o stack switch 36
TerminateTask() w/ dispatch w/ stack switch 121
ClearEvent() - - 17
SetEvent() w/ dispatch w/ stack switch 215
WaitEvent() w/ dispatch w/ stack switch 234
GetResource() - - 38
ReleaseResource() w/o dispatch - 19
ReleaseResource() w/ dispatch w/ stack switch 122

ActivateTask() cross-core round-trip w/o stack switches 171
ActivateTask() cross-core round-trip w/ stack switches 299

TABLE II: Evaluation results for an extended MULTI SLOTH
system on the Infineon AURIX

task yield about the same run-time overhead as they do in a
basic system (see Table I).

The performance of the MPCP implementation on the
AURIX platform was measured in a separate scenario covering
the various combinations of acquiring and releasing resources,
which either does or does not lead to blocking or unblocking
of a task, which in turn can take place locally or remotely.
The results achieved here are provided in Table III1. Again, in
transitions that entail any remote action, such as, for instance,
when an MPCP resource is released and handed over to a task
on a remote core, the measurement of the transition considers
only the local costs of performing the unblock operation and
concludes when the ReleaseMPCPResource() call returns to
the user code. Keep in mind, however, that the remote core
will not be interrupted at all unless the priority of the unlocked
task is in fact high enough for preemption. Overall, the run-
time overhead for MPCP operations ranges between 130 and
350 cycles, equaling 1.3 µs and 3.5 µs at 100 MHz.

IX. DISCUSSION

MULTI SLOTH adapts the SLOTH system design of using the
interrupt hardware for scheduling and dispatching to a multi-
core system. Our concise kernel following the AUTOSAR

1A comparison to unordered spinlocks is omitted here, since their imple-
mentation on this platform boils down to merely a swap instruction followed
by a branch. The resulting overheads of about 5 to 8 cycles (depending on the
branch prediction) are too close to the measurement precision to be meaningful.



Transition Cycles

GetMPCPResource() w/ blocking 217
GetMPCPResource() w/o blocking 112
ReleaseMPCPResource() w/ local dispatch 360
ReleaseMPCPResource() w/o dispatch 134
ReleaseMPCPResource() w/ remote unblock 183
ReleaseMPCPResource() w/ local unblock and dispatch 311
ReleaseMPCPResource() w/o unblock w/ dispatch 231

TABLE III: Run-time overhead of MPCP operations in
MULTI SLOTH measured on the Infineon AURIX

system model offers low, predictable system service overheads
for both basic and extended tasks even with cross-core
interactions.

Porting the single-core SLOTH to a multi-core system
did not require much effort as we were able to reuse the
existing building blocks. Only small changes were required
in MULTI SLOTH, mainly to add functionality such as task
activation on a remote core. Overall, the complexity of porting
our system was greatly reduced thanks to the hardware-centric
approach of SLOTH. The current state of the system such as
tasks in running or ready state is not kept in main memory,
but rather is managed autonomously by the interrupt controller
hardware. As these are modified with simple write-to-memory
instructions, for example for setting the pending bit, no special
synchronization in the kernel itself is required. Thus, a system
built on MULTI SLOTH is still very concise as the cross-
core interactions are handled asynchronously by the interrupt
hardware.

Applications with real-time constraints on a multi-core
platform also need predictable and priority-aware synchro-
nization across cores. Such protocols have been developed: the
Multiprocessor Priority Ceiling Protocol (MPCP) [20], [19],
the Multiprocessor Stack Resource Policy (MSRP) [11], the
PARALLEL-PCP (P-PCP) [9], and the FIFO Multiprocessor
Locking Protocol (FMLP/FMLP+) [3], [4].

Of these, the MPCP was specifically suggested for
AUTOSAR [15]. Nevertheless, they were not considered by
the automotive industry for the AUTOSAR standard. Instead,
AUTOSAR only mandates unordered spinlocks (that is, spin-
locks, but no particular ordering semantics) [1]. Wieder and
Brandenburg have shown that with high workloads, ordered
spinlocks achieve higher schedulability of AUTOSAR systems.
They suggest that “AUTOSAR should mandate the availability
of FIFO-ordered spin locks” and “AUTOSAR should also
provide flexible priority-ordered spin locks” [23].

The reason that the industry has not introduced specific
semantics yet is that hardware costs are their major concern.
Only abstractions that can be implemented in memory/CPU-
efficient manner on many platforms are accepted for the
standard. As we learned from personal communication with
involved engineers at Elektrobit Automotive, ordered spinlocks
were in fact considered for the AUTOSAR multi-core standard,
but eventually dropped as they are difficult to implement on
architectures offering only a test-and-set instruction. However,

the hardware platforms in use advance and so does their least
common denominator. We are optimistic that, for instance,
ordered spinlocks will be included into one of the next releases
of the standard.

With our implementation in MULTI SLOTH we show that
the MPCP can be implemented in an efficient manner on
the Infineon AURIX, which is going to be one of the major
multi-core platforms in the automotive sector. The nature of
MULTI SLOTH demands the implementation to be dependent
on the hardware platform, as the kernel relies on the interrupt
controller to perform scheduling and dispatching. Likewise, the
implementation of any synchronization protocol will always
depend on the features of the hardware with regards to the
available atomic instructions. Due to the generative approach
in MULTI SLOTH, these hardware particularities can be hidden
from the application programmer, while the resulting system
still achieves efficient and predictable execution times.

The MPCP algorithm itself guarantees bounded remote
blocking, in which a high-priority task is blocked by waiting
for a low-priority task on another core. However, a special
case in a software-scheduled implementation may exist in
which the execution of a critical section can still be delayed
by other low-priority tasks. When a global critical section is
executed, the current priority is raised above all normal task
priorities. Meanwhile, another previously suspended task on
the same core may be signaled from a remote core. At this
point, a scheduling decision is required. The resuming task may
preempt other tasks executing global critical sections, when the
ceiling priority of the signaled global resource is higher than the
ceiling priority of the global resource held by the running task.
In a traditional system with a software scheduler, this leads
to deferred execution of the higher-priority critical section
as the scheduling decision must be handled on the highest
possible priority. With MULTI SLOTH, we solve this problem
as the scheduling decision will be made asynchronously by the
interrupt controller without interruption of high-priority tasks.

While we focus on the MPCP in this paper, the choice of the
optimal synchronization protocol depends on the application
and the length of the global critical sections as shown in a
comparison of the MPCP and the MSRP by Gai et al. in [10].
Moreover, in the migration of real-time applications to multi-
core it is vital to identify potential critical sections in the
application. The utilization of a locking protocol must not
always be the correct choice, as many complex data structures
used in applications can be synchronized in a wait-free manner,
while still adhering to timing constraints [22].

X. RELATED WORK

The approach of using the interrupt controller for scheduling
and dispatching was previously published in SLOTH [12] and
SLEEPY SLOTH [13]. MULTI SLOTH presented in this paper
extends this design to multi-core platforms and furthermore
includes the MPCP as an example for a synchronization
protocol. To the best of our knowledge, no prior implementation
of the MPCP for an AUTOSAR system was presented before,



although the MPCP was proposed by Lakshmanan et al. in [15]
for AUTOSAR multi-core systems.

Besides the MPCP [20], [19], other synchronization proto-
cols for multi-core systems exist. These protocols not only
differentiate in the semantics on the level of the operating
system abstraction, but also in the way tasks are allocated to
cores on a multi-core platform, which is not the scope of this
paper. For the MPCP, the synchonization-aware task allocation
is discussed by Lakshmanan et al. in [16].

With regard to our focus on partition fixed-priority scheduling
on shared-memory systems, similar synchronization protocols
include the Multiprocessor Stack Resource Policy (MSRP) [11],
which relies on busy waiting and thus allows tasks to share
the same stack. In an AUTOSAR system, the MSRP would
also be applicable to basic tasks, whereas the MPCP requires
extended tasks that are able to suspend due to using a separate
stack for each task.

Furthermore, the FIFO Multiprocessor Locking Proto-
col (FMLP/FMLP+) [3], [4] uses a FIFO ordering for waiting
tasks instead of the priority-based approach in the MPCP. Other
recent related work shows a wide variety of concepts. The
OMLP [6] is for both partitioned and global scheduling with
asymptotically optimal blocking behavior, the OMIP [5] focuses
on FIFO-ordered locks improving latency-sensitive workloads,
the MrsP [7] utilizes waiting time by delegating work of remote
tasks to a waiting task while adhering to a FIFO ordering, and
the MSOS [17] accomodates independent scheduling policies
on multiple cores with a combination of FIFO and priority
queuing. The diversity of the concepts introduced in these
recent publications underlines the importance of real-time aware
synchronization mechanisms for multi-core systems.

However, due to the use of the interrupt controller for
scheduling decisions in MULTI SLOTH, our approach is limited
to priority-based models. In off-the-shelf available microcon-
trollers, the arbitration in the interrupt hardware only takes
the priority of the pending interrupts into account and have
no record of the time they arrived. With interrupt controller
hardware offering this detail, a synchronization protocol with
FIFO ordering could also be implemented using the hardware-
centric approach of MULTI SLOTH.

XI. SUMMARY

In this paper, we have presented MULTI SLOTH, an efficient,
AUTOSAR OS compliant real-time operating system for multi-
core platforms. As the AUTOSAR OS multi-core system ser-
vices do not provide resource synchronization with predictable
timing guarantees, we extended the OS interface with the MPCP
as an example for a priority-aware synchronization protocol.
By adopting the design philosophy of the SLOTH kernel family
to the multi-core domain, our implementation exhibits many
properties favorable in real-time systems, including low latency
and predictable overheads. On the Infineon AURIX as our
reference platform, MULTI SLOTH achieves task activations in
65 cycles and round-trip times of 135 cycles for cross-core task
activations. The overheads for our wait-free implementation of
the MPCP range from 112 to 360 cycles.

XII. ACKNOWLEDGEMENTS

We would like to thank our anonymous shepherd for their
valuable input and guidance to improve this paper.

REFERENCES

[1] AUTOSAR. Specification of operating system (version 5.0.0). Technical
report, Automotive Open System Architecture GbR, 2011.

[2] Theodore P. Baker. A stack-based resource allocation policy for realtime
processes. In RTSS ’90, pages 191–200. IEEE, 1990.

[3] Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James H.
Anderson. A flexible real-time locking protocol for multiprocessors. In
RTCSA ’07, pages 47–56. IEEE, 2007.

[4] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[5] Björn B. Brandenburg. A fully preemptive multiprocessor semaphore
protocol for latency-sensitive real-time applications. In Eurom. Conf. on
Real-Time Sys. (ECRTS ’13), pages 292–302, 2013.

[6] Björn B. Brandenburg and James H. Anderson. Optimality results for
multiprocessor real-time locking. In RTSS ’10, pages 49–60. IEEE, 2010.

[7] A. Burns and A.J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol – MrsP. In Eurom. Conf. on Real-Time Sys.
(ECRTS ’13), pages 282–291, 2013.

[8] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In IEEE Real-Time and Embedded Technology and
Applications (RTAS ’06), pages 14–23. IEEE, 2006.

[9] Arvind Easwaran and Björn Andersson. Resource sharing in global
fixed-priority preemptive multiprocessor scheduling. In IEEE Real-Time
Sys. Symp. (RTSS ’09), pages 377–386. IEEE, 2009.

[10] Paolo Gai, Marco Di Natale, Giuseppe Lipari, Alberto Ferrari, Claudio
Gabellini, and Paolo Marceca. A comparison of MPCP and MSRP when
sharing resources in the Janus multiple-processor on a chip platform.
In IEEE Real-Time and Embedded Technology and Applications (RTAS

’03), pages 189–198. IEEE, 2003.
[11] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory

utilization of real-time task sets in single and multi-processor systems-
on-a-chip. In RTSS ’01, pages 73–83. IEEE, 2001.

[12] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In IEEE Real-Time Sys. Symp.
(RTSS ’09), pages 204–213. IEEE, 2009.

[13] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Sleepy Sloth: Threads as interrupts as threads. In IEEE Real-Time
Sys. Symp. (RTSS ’11), pages 67–77. IEEE, 2011.

[14] Infineon Technologies AG. AURIX™ – TC275T/TC277T – Product Brief,
2013.

[15] Karthik Lakshmanan, Gaurav Bhatia, and Ragunathan Rajkumar.
AUTOSAR extensions for predictable task synchronization in multi-
core ECUs. In Proceedings of the SAE 2011 World Congress, 2011.

[16] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. Coordi-
nated task scheduling, allocation and synchronization on multiprocessors.
In IEEE Real-Time Sys. Symp. (RTSS ’09), pages 469–478. IEEE, 2009.

[17] Farhang Nemati, Moris Behnam, and Thomas Nolte. Independently-
developed real-time systems on multi-cores with shared resources. In
Eurom. Conf. on Real-Time Sys. (ECRTS ’11), pages 251–261, 2011.

[18] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, 2005. http://portal.osek-vdx.org/files/pdf/
specs/os223.pdf, visited 2011-08-17.

[19] Ragunathan Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In Int. Conf. on Dist. Comp. Sys. (ICDCS ’90),
pages 116–123. IEEE, 1990.

[20] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-time
synchronization protocols for multiprocessors. In IEEE Real-Time Sys.
Symp. (RTSS ’88), pages 259–269. IEEE, 1988.

[21] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority
inheritance protocols: An approach to real-time synchronization. IEEE
TC, 39(9):1175–1185, 1990.

[22] Philippe Stellwag and Wolfgang Schröder-Preikschat. Challenges in
real-time synchronization. In Workshop on Hot Topics in Parallelism
(HotPar ’11), pages 1–6. USENIX, 2011.

[23] Alexander Wieder and Björn B. Brandenburg. On spin locks in
AUTOSAR: Blocking analysis of FIFO, unordered, and priority-ordered
spin locks. In RTSS ’13, pages 45–56. IEEE, 2013.

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

