
Automatic Feature Selection in Large-Scale
System-Software Product Lines ∗

Andreas Ruprecht Bernhard Heinloth Daniel Lohmann
Friedrich-Alexander University Erlangen-Nuremberg, Germany

{ruprecht, heinloth, lohmann}@cs.fau.de

Abstract
System software can typically be configured at compile time via
a comfortable feature-based interface to tailor its functionality to-
wards a specific use case. However, with the growing number of
features, this tailoring process becomes increasingly difficult: As
a prominent example, the Linux kernel in v3.14 provides nearly
14 000 configuration options to choose from. Even developers of
embedded systems refrain from trying to build a minimized dis-
tinctive kernel configuration for their device – and thereby waste
memory and money for unneeded functionality.

In this paper, we present an approach for the automatic use-case
specific tailoring of system software for special-purpose embedded
systems. We evaluate the effectiveness of our approach on the
example of Linux by generating tailored kernels for well-known
applications of the Rasperry Pi and a Google Nexus 4 smartphone.
Compared to the original configurations, our approach leads to
memory savings of 15–70 percent and requires only very little
manual intervention.

Categories and Subject Descriptors D.2.9 [Software Engineer-
ing]: Management – Software configuration management; D.4.7
[Operating Systems]: Organization and Design

General Terms Experimentation, Management, Measurement

Keywords Software Tailoring, Feature Selection, Software Prod-
uct Lines, Linux

1. Introduction
Most system software can be configured at compile time to tai-
lor it with respect to a broad range of supported hardware archi-
tectures and application domains. The most prominent example is
the Linux operating-system family, which in v3.14 offers close to
14 000 configurable features across 26 architectures. But also many
other pieces of system software, such as BusyBox [5] (UNIX core
utilities), CoreBoot [3] (BIOS/UEFI firmware), or eCos [15] (oper-
ating system), already provide hundreds to thousands of – mostly
optional – features [1]. These numbers are subject to an ongoing
growth: Between 2005 and 2014, the number of configurable fea-
tures in Linux has grown by 10-–20 percent every year! This growth

∗ This work was partly supported by the German Research Council (DFG)
under grant no. LO1719/3-1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE, ’14, September 15-16, 2014, Västerås, Sweden.
Copyright © 2014 ACM 978-1-4503-3161-6/14/09. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

0

2000

4000

6000

8000

10000

12000

14000

16000
software

hardware

all

Linux kernel version

F
e

a
tu

re
s

hardware features
(in arch, drivers and sound)

software features (everything else)

Figure 1. Linux feature growth 2005––2014

appears to be inevitable, as it is mostly caused by advances in hard-
ware: About 88 percent of all features directly deal with low-level
hardware support (Figure 1). Especially embedded platforms, such
as ARM, with many derivatives and short innovation cycles have
become a driving force in this process.

The consequence: When configuring a Linux kernel, developers
are faced with an overwhelmingly large number of options. With
thousands of features representing potential choices, finding the
right set of optional features specifically needed for your system is a
hard and time-consuming task that, furthermore, requires detailed
knowledge about both, Linux and the platform in use. To suit as
many customers and their hardware as possible, distributors ship
a Linux kernel configuration with most optional features enabled.
Instead of per-use-case tailoring, we are practically back to one-
size-fits-all solutions.

One may consider this as a pragmatic approach for workstations
with disk sizes of 1 TB or more and several GB of RAM. However,
if you need system-software for a special-purpose embedded sys-
tem, you want it to be as small as possible. Currently, Linux is
already used in smartphones and is the prevailing operating system
installed on mini computers like the Raspberry Pi. There are how-
ever much more specific use cases for small-scale systems which
could be driven by Linux, such as home automation systems or
electronic control units used in the automotive industry, where low
per-unit costs are a crucial requirement [4].

In the case of Linux, this has led to the development of special
minimized versions like uLinux [8] and tinyLinux [14], but these
make many assumptions about your system and its usage, trading
flexibility for size. Moreover, even on those systems a lot of effort
is required by the providing developer to find a valid minimal con-

figuration and keep it up to date for future kernel versions. Thus, it
would be easier to take a well maintained standard distribution and
automatically derive a configuration specific to the actual needs,
once they are known.

Our Contributions In this paper, we present a tool-based ap-
proach for tailoring of large-scale system software by automatically
deriving a minimal configuration for a given use case. The resulting
configuration can be used by a device manufacturer or embedded
systems engineer as an initial point for further refinements. Com-
pared to earlier approaches, the method described in this work is
more general, less intrusive and not dependent on the presence of
any tracing infrastructure.

We evaluate the approach on the example of Linux and two
different ARM-based devices, the Raspberry Pi and the Google
Nexus 4 smartphone, and discuss its advantages over previously
described methods. Compared to the original configurations, our
approach leads to net memory savings of up to 70 percent and
requires only very little manual intervention. In detail, we claim
the following contributions:

• We present a method for the automatic generation of a use case-
specific software configuration on resource-constrained hard-
ware.

• We evaluate this approach in various real-world scenarios using
the Linux operating system on a Raspberry Pi and a Google
Nexus 4 smartphone.

• We provide a detailed comparison with a Linux-specific ap-
proach presented in earlier work.

• Using the approach we show the kernel size can be reduced by
15–70 percent depending on the use case.

The remainder of this paper is structured as follows: Section 2
presents an overview of how variability is implemented in Linux.
In Section 3, our tailoring approach is described in detail. Section 4
demonstrates the application and results of various use cases with
respect to kernel size metrics. These results as well as limitations
of the approach are then discussed in Section 5. Section 6 presents
related work. The paper concludes in Section 7.

2. Background: Variability in Linux
In the following section, we briefly describe how static variability
is implemented in Linux, that is, how configurable features and
their constraints determine the resulting binary code. The basic idea
of our approach is then to reverse this mapping by an automated
process, which we describe in Section 3.

Configurability in Linux is specified using the KCONFIG lan-
guage. In KCONFIG, a kernel developer can describe a feature
which can be selected when specifying features are desired in the
kernel. Additionally, constraints and interdependencies between
configuration options can be specified. For example, for a USB au-
dio device it is necessary to build general USB support into the
kernel; the developer would hence describe the configuration op-
tion for the device as dependent on USB support. Thus, the KCON-
FIG features are organized in a tree-like structure. The activation of
a feature in one part of this tree can (and often does [1]) trigger the
selection or deselection of features in other branches of the tree,
depending on the preconditions described by the developer.

When configuring the Linux kernel, the user first selects the
hardware platform via the ARCH environment variable and can then
choose from all KCONFIG features available on this platform with
a graphical or text-based configuration tool which ensures that the
resulting configuration is valid.

All options selected and deselected are gathered by KCONFIG in
a single kernel configuration file called .config inside the kernel
source directory.

The configuration is then interpreted by the build system to
implement coarse-grained variability. Depending on the selected
features, KBUILD determines which of the roughly 33 500 files
need to be compiled and linked to include the selected features.
In Linux, this is the dominant mechanism to implement variability:
In version 3.6, more than 70 percent of all KCONFIG features are
used to guide the build system in this way.

On the thereby selected source files, the C preprocessor is used
to implement fine-grained variability via conditional compilation
(#ifdef blocks). In Linux, 45 percent of all KCONFIG features
are interpreted in this step to select from a total of nearly 91 600
conditional blocks.

Lastly, MAKE is used to set the correct compiler options, deter-
mine the binding units and generate the Linux kernel image and any
corresponding loadable kernel modules as specified by the KCON-
FIG selection.

In order to obtain a Linux configuration tailored to a specific
scenario, we need a strategy to reverse this process, that is, to find
exactly those features that select (only) the required parts of the
code base.

3. Our Approach
The idea to obtain these features is to run a use-case–specific work-
load and concurrently observe which parts of the binary code are
executed. We then determine the reverse mapping (via conditional
blocks, build rules, and feature model) to those features that have to
be selected in order to have these specific code parts in the resulting
binary.

3.1 Our Previous Work
In an earlier approach described in a workshop paper [21], we al-
ready successfully leveraged the ftrace infrastructure to automati-
cally tailor Linux kernels for web server and workstation use.

ftrace is a frame work built into the Linux kernel which can be
used to gain insight on the control flow within the kernel. The acti-
vation of ftrace provides a profiling interface to the user allowing
to track which kernel functions are executed during runtime.

Employing ftrace to observe which parts of the code were ac-
tually executed worked well on the x86 machines we tailored. How-
ever, it is not generally applicable for the generation of small ker-
nels on weaker ARM systems, as it induces high overhead during
the observation phase. For example, ftrace records additional in-
formation about latency and execution time, and presents the data
in a comparably verbose way, therefore taking up a lot of computa-
tion time itself.

3.2 FLIPPER

In order to provide a leaner, more general solution which can also
be applied to system software projects other than Linux, we now
propose an approach we named FLIPPER.

1 #include <linux/do_sth.h>
+#include <linux/flipper.h>

2
3 int foo (){

+ SET_FLIPPER_BIT (23);
4 int i = 0;
5 #ifdef CONFIG_BAR

+ SET_FLIPPER_BIT (42);
6 i = bar ();
7 #endif
8 return i;
9 }

...
22 = sth.c:86
23 = foobar.c:4
24 = null.c:90
...
42 = foobar.c:6
...

Figure 2. Example source file foobar.c prepared with FLIPPER,
together with corresponding mapping of bits to locations

self-reflective
kernel

baseline
kernel

tailored
kernel

feature
conditions

B00 <-> CONFIG_ARM
&&
B1 <-> CONFIG_USB
&&
B2 <-> ! B1
&&
...

bitmap of
conditional

blocks

4c 6f 72 65 6d 20 69 70 73 75
20 64 6f 6c 6f 72 20 73 69 74 20
61 6d 65 74 2c 20 63 6f 6e 73 65
63 74 65 74 75 72 20 61 64 69 70
69 73 69 63 69 20 65 6c 69 74 2c
20 73 65 64 20 65 69 75 73 6d 6f 64 20 74
65 6d 70 6f 72 20 69 6e 63 69 64 75 6e 74
20 75 74 20 6c 61 62 6f 72 65 20 65 74 20
64 6f 6c 6f 72 65 20 6d 61 67 6e 61 20 61
6c 69 71 75 61 2e 20 55 74 20 65 6e 69 6d
20 61 64 20 6d 69 6e 69 6d 20 76 65 6e 69
61 6d 2c 20 71 75 69 73 20 6e 6f 73 74 72
75 64 20 65 78 65 72 63 69 74 61 74 69 6f
6e 20 75 6c 6c 61 6d 63 6f 20 6c 61 62 6f
72 69 73 20 6e 69 73 69 20 75 74 20 61 6c
69 71 75 69 64 20 65 78 20 65 61 20 63 6f
6d 6d 6f 64 69 20 63 6f 6e 73 65 71 75 61
74 2e 20 51 75 69 73 20 61 75 74 65 20 69
75 72 65 20 72 65 70 72 65 68 65 6e 64 65
72 69 74 20 69 6e 20 76 6f 6c 75 70 74 61
74 65 20 76 65 6c 69 74 20 65 73 73 65 20
63 69 6c 6c 75 6d 20 64 6f 6c 6f 72 65 20
65 75 20 66 75 67 69 61 74 20 6e 75 6c 6c
61 20 70 61 72 69 61 74 75 72 2e 20 45 78
63 65 70 74 65 75 72 20 73 69 6e 74 20 6f
62 63 61 65 63 61 74 20 63 75 70 69 64 69
74 61 74 20 6e 6f 6e 20 70 72 6f 69 64 65
6e 74 2c 20 73 75 6e 74 20 69 6e 20 63 75

1

prepare

2

observe

0xbad2342 /arch/arm/mach
0xbad2343 /arch/arm/mach
0xbad2344 /arch/arm/mach
0xbad2345 /arch/arm/mach
0xbad2346 /arch/arm/mach
0xbad2347 /arch/arm/mach
0xbad2348 /arch/arm/mach
0xbad2349 /arch/arm/mach
0xbad234a /arch/arm/mach
0xbad234b /arch/arm/mach
0xbad234c /arch/arm/mach
0xbad234d /arch/arm/mach
0xbad234e /arch/arm/mach
0xbad234f /arch/arm/mach

3

map solve

4

Figure 3. Overview of the automated kernel tailoring approach

By modifying the source code, we statically introduce a bitmap
into the code and associate every conditional block and every be-
ginning of a function with a bit, at the same time keeping a record
of the mapping from the single bits to their corresponding file name
and line in the source code. Additionally, we insert an instruction
into every block which will set the bit during runtime (see Figure 2
for an example).

3.3 Principle of Operation
We now characterize the basic steps needed to generate a system
tailored to a use case on the example of the Linux kernel, which are
also depicted in Figure 3.

Ê Preparation: First it is necessary to be able to identify the
places in the kernel that are actually used. To accomplish this with
Linux, we can use either of the different strategies described above.

When using the ftrace infrastructure, preparing a kernel for ob-
servation is accomplished by enabling the corresponding KCONFIG
option and configuring ftrace to track function calls.

Processing the kernel with FLIPPER by patching the bitmap op-
erations into the source code takes less than 5 minutes on a standard
desktop machine and is completely automated.

Ë Observation: After booting the system with the prepared
Linux kernel, we run a target workload on the system. This will
lead to additional functionality being triggered in the kernel.

When using ftrace, collecting the data from the kernel is done
by reading and parsing the output pipe of ftrace while running
the workload, since ftrace can only buffer a limited amount of
information. The addresses of executed functions are then saved
into a separate output file.

With FLIPPER, we only have to read the bitmap from the system
once the target workload has finished running, as the bits have
gradually been set during execution.

After the workload has been run, we save the output file or the
bitmap, respectively, for further processing as described by the fol-
lowing steps.

Ì Feature mapping: In this step, we process the information
obtained from step Ë. In FLIPPER, whenever a bit is set, we collect
the associated entry from the mapping file generated during step Ê.
With ftrace, debug information is used to resolve the addresses
obtained from the output file to the corresponding locations in the
source code.

From this point, the process is identical for both strategies: We
now have a list of file names and line numbers of code that has
been executed in the measured scenario. For every item in this
list, the preconditions described by the conditional blocks around
the code have to hold as well as possible dependencies described
by KCONFIG. We use tools described in previous work [7, 19,
22] which are able to determine the preconditions described in
KCONFIG and provide an option to look up the preconditions for
a given line.

A description of the complete conditions for the whole scenario
observed is then obtained by conjugating all individual conditions
into a propositional formula.

Í Solving for the configuration: To derive a valid config-
uration from this list of features and preconditions generated by
step Ì, a SAT solver is employed. The resulting assignment of
variables represents the selection or deselection of configuration
options for the kernel.

As the configuration system itself might enforce additional con-
straints not covered by the extracted dependencies, this partial con-
figuration is lastly expanded by the KCONFIG system, generating a
fully valid Linux kernel configuration. The final configuration can
either be used to directly compile a tailored Linux kernel or as the
base for further refinement by a developer.

3.4 Challenges
In order to come up with a thorough solution for deeply-embedded
systems, the approach described has to face some challenges which
we will explain in this section.

Invasiveness Collecting the information about which parts
of the code have been executed must only minimally affect the ob-
served system’s behavior. While ftrace was successfully used to
tailor Linux on a x86 server machine, it proves to be too complex
for application in a weaker system. Trying to use ftrace here re-
sults in altered timing behavior and important information about
executed functions being dropped from the output buffer, which
are not being accounted for in the resulting configuration.

Accuracy At the same time, it is important to gather as
much information as possible to correctly model the configuration
requirements for a given scenario. As described above, ftrace fails
to accurately collect all data due to unneeded overhead. Especially
during the early boot phase which triggers a lot of functionality,
function calls representing critical features can easily be missed.

Completeness of the traces By design, our approach can
only take information into account which has been triggered dur-
ing the observation phase. This, however, should not cause the
tailored system to fail if additional functionality related to the trig-
gered functionality – for example, error handling in a driver, when
no error occurred while running the target workload – is needed
during later productive use.

Untraceable features Moreover, some configuration options
like errata specific to a certain processor or compiler flags, which
do not have an immediate representation in the control flow, might
not even be detectable at all. This requires the consideration of
external knowledge while deriving a solution. In particular, this
applies to KCONFIG features of string or numeric type (for example
the kernel command line or section offsets), where an automated
solving approach cannot provide any choice.

Table 1. Results for the Raspberry Pi scenarios using three metrics. Percentages shown are quotients between the FLIPPER tailored version
and the corresponding original configuration file

(1) raspBMC (2) Google Coder (3) OnionPi
Metric Baseline Tailored Baseline Tailored Baseline Tailored

KCONFIG features 1 874 497 (26.5%) 1 732 473 (27.3%) 1 734 471 (27.2%)
Text segment (byte) 22 960 278 5 656 040 (24.6%) 22 621 072 4 835 648 (21.4%) 22 688 201 5 041 604 (22.2%)
Source code lines 842 460 275 403 (32.7%) 845 627 239 680 (28.3%) 846 554 252 362 (29.8%)

Alternatives Some KCONFIG features present a set of alter-
natives to the user (e.g., the choice of a scheduling strategy). From
these, the SAT solver will simply choose one, as there are no further
constraints to observe. Additionally, the default choice provided by
the distributor might not fit the systems actual needs. Thus, the de-
veloper needs to be able to specify previously known selections to
integrate his domain knowledge into the tailored kernel.

4. Case Studies
In this section, we will present the results we obtained using FLIP-
PER and subsequently compare them with results generated while
employing ftrace where this was possible. To show the broad ap-
plicability of the approach, we selected two different devices and
used them in a typical manner for their respective domain.

The first part shows results for the Raspberry Pi platform. We
use it as a test device, because it is probably the most popular mini
computer on the market and is used for wide range of purposes.
This is also represented by our evaluation, where we present de-
tails for three distinct situations: (1) using the Raspberry Pi as a
media center running raspBMC, (2) learning to write web browser
applications on Google Coder, and lastly (3) setting up a wireless
access point acting as a proxy to route the user’s web traffic through
the TOR network. At the same time, it is a lot less powerful than
modern desktop computers, allowing us to observe the usability of
the approach in a resource-constrained environment.

The second part focuses on a different device running Linux as
well: the Google Nexus 4 smartphone. We chose this comparably
high end device to show that our approach can also handle devices
using more specific hardware while generating a lot of throughput
due to its multicore processor. We installed the latest development
version of the Ubuntu Touch distribution and used it in a typical
manner: making calls, taking pictures, browsing the internet over
wireless LAN, watching videos and connecting it to a PC via USB.

The test runs are structured in a similar way which we designate
as the twenty minute approach: After booting the device with a
prepared kernel, we allow it to settle for ten minutes to avoid
potential interference of any initialization code run after startup.
During the next ten minutes, we perform use-case-specific actions
which we pre-defined in a timed schedule. The specific actions used
are more extensively described in the respective subsections.

4.1 Raspberry Pi
To evaluate the effectiveness of the proposed approach, we generate
a configuration from the data collected by FLIPPER and measure
the reduction achieved in terms of KCONFIG features, text segment
size and the number of source code lines compiled compared to the
baseline kernel.

In all cases, mapping the bitmap to source code locations, corre-
lating these to configuration items and generating the solution takes
around 10 minutes, with the latter part consuming most of the time.

To successfully boot the kernels, we had to put 14 test case-
independent features onto a whitelist which we identified manu-
ally from the original configuration. This was less tedious than it
sounds, as the items provided were mainly specific to the hardware

(for instance, to bypass ARM errata) or other low level features
which we could identify by name.

(1) raspBMC In this scenario, which resembles the very
common usage of the Raspberry Pi as a media center, the Raspberry
Pi is connected to a screen via HDMI, speakers are plugged into the
audio port, internet connectivity is provided using Ethernet, and a
USB keyboard is used to handle the machine. We used the latest
raspBMC version available (December 2013 update), running on a
Linux kernel 3.10.25 as shipped by the distributor.

After the settling period mentioned earlier, we first started an
integrated app to show the current weather. Subsequently, a video
clip was streamed from a remote SFTP server, followed by multiple
accesses to the web front end for remote controlability. Lastly, two
more video clips were played.

The results provided in Table 1 show that the number of enabled
KCONFIG features is reduced by over 73 percent, leading to a text
segment of only a quarter of its original size. Using DWARF debug
information, we also determined the number of source code lines
actually compiled into the kernel. The reduction is similar to the
other metrics, with savings reaching more than two thirds.

Using this generated kernel, we initially tested its functional-
ity by running the tasks from the workload description again. We
were not able to detect any degradation in performance or usability
and could also use features provided by raspBMC we did not trig-
ger during the observation phase. When we subsequently handed
out one of the systems running on a tailored kernel to fellow re-
searchers, they did not encounter any problems during daily private
use as a media center over the course of four months.

(2) Google Coder Another popular use case for a Raspberry
Pi is Google Coder. Here, the mini computer acts as a server
providing a platform to learn HTML, CSS, and JavaScript which
can be accessed from a web browser over a local network. For the
evaluation, we used the most recent version 0.4, which comprises
a Linux kernel 3.6.11. Since the system is running as a server and
only used via network, no keyboard or screen were connected; the
only external cable besides the power supply was an Ethernet cable.

In this scenario, the schedule included connecting to the service
after ten minutes, followed by changing some of the code provided
in the default installation package and running some of the web
applications.

Table 1 shows the results achieved. Similar to the raspBMC use
case presented before, the total number of features is reduced to
27 percent when compared to the configuration provided by the
developers. Thus, the number of lines compiled into the kernel is
reduced by more than 70 percent leading to the total size of the text
segment being reduced by almost 80 percent.

Using the tailored kernel, we were able to use all functionality
provided by Google Coder, modifying code on the web interface as
well as running all sample applications worked perfectly.

(3) OnionPi The last scenario employs the Raspberry Pi as
a proxy for the TOR anonymity network. This is done by installing
the TOR client software on top of a standard Raspbian Linux

distribution using the Linux kernel version 3.6.11. Connectivity to
the internet is provided via the Ethernet port while a USB wireless
adapter is used to establish a WiFi network. Traffic sent through
this network will subsequently be routed via TOR.

To reconstruct normal usage, a computer connected to the WiFi
network after the settling phase, visited web sites using a browser,
and fetched emails from a server. After five more minutes, a smart-
phone logged into the network and was then used to visit web sites.

The results for the tailored Linux kernel are provided in Table 1.
As with the two previously presented test cases, the number of
features present in the tailored configuration file is reduced by
about 73 percent, the text segment shrinks to 22 percent its original
size and the number of source code lines mentioned in the DWARF
debug information is decreased to less than a third.

The tailored kernel was tested with the schedule again and
provided the same functionality as before without any problems
or noticeable performance degradation. Additionally, we let the
Raspberry Pi provide a WiFi hotspot in our laboratories for a period
of over two weeks. Daily use with various devices proved the
tailored system to be stable and to perform without any problems
in a realistic environment.

Conclusion For the Raspberry Pi, our approach yields very
promising results: In all scenarios, the size of the kernel can be
reduced to almost a quarter its original size. The resulting tailored
kernels were able to fulfill not only all functionality triggered dur-
ing observation, but also handled other use case-related conditions
very reliably. Only a very small and hardware-specific white list
was necessary to produce the tailored kernel.

4.2 Google Nexus 4 (Ubuntu Touch)
When running on a smartphone, the need for configurability to sup-
port a lot of hardware vanishes. As almost no peripheral hardware
can be connected, the kernel configuration will not need to provide
drivers for them. On the other hand, a smartphone often uses very
specific hardware, making it hard for an engineer to derive a valid
initial Linux kernel configuration. Additionally, some phones do
not support SD cards to be inserted for more storage space, thus it
would be desirable to have the operating system taking up as little
space as possible.

The test load defined by the schedule imitates everyday use of
the phone: After the initial waiting interval, the phone was first used
to play some music stored on the device, the internal front and back
camera were used to take pictures, then WiFi was enabled and used
by the web browser to load a web site containing a video. After
that, one incoming and one outgoing phone call were initiated.
Lastly, the phone was connected to a PC and the images taken were
transferred from the phone to the computer.

As the Google Nexus 4 was the main development platform for
Ubuntu Touch, we presume the developers already have invested
a lot of time trying to reduce the number of activated KCONFIG
features. Consequently, the number of enabled features in the base-
line configuration is already more than 35 percent lower than in the
kernels provided for the Raspberry Pi. We therefore assumed our
approach would not be able to achieve a similar level of reduction
in terms of enabled KCONFIG features as in the Raspberry Pi case.

Table 2. Results for the automated tailoring of Ubuntu Touch on a
Google Nexus 4 smartphone.

Metric Baseline Tailored

KCONFIG features 1 186 850 (71.67%)
Text segment (byte) 14 464 220 12 251 012 (84.70%)
Source code lines 564 324 503 046 (89.14%)

The results are shown in Table 2. As expected, the number of
enabled KCONFIG features is reduced by 28 percent, thus lessening
the text segment size by 15 percent and the number of source code
lines compiled by 11 percent.

The tailored kernel was then used for the same purposes as
described in the schedule and performed flawlessly. Furthermore,
it was possible to use previously untouched functionality: We were
able to send and receive text messages, which deliberately was not
part of the test load.

While the reduction is not as high as for the Raspberry Pi use
case, our approach is able to slice another 28 percent off the number
of enabled configuration items. This result could provide valuable
hints to the developers on which further features could be removed.

4.3 Comparison with ftrace

(1) Raspberry Pi When we tested the different approaches,
we found ftrace to be capable of collecting enough addresses to
compile a usable Linux kernel. Thus, we also generated configura-
tions for all scenarios using the ftrace collection method. While
the kernels produced were able to boot into the scenarios and the
resulting configurations were even smaller (see Table 3), a manual
comparison showed that especially during boot a lot of information
was lost due to the high load induced by the ftrace data collection
mechanism. However, the kernel configuration system fortunately
was able to recover most of the required configuration options.

Table 3. KCONFIG feature selections in the unexpanded partial
configurations for the test cases when using different data collec-
tion methods.

ftrace FLIPPER
Scenario enabled disabled enabled disabled

(1) raspBMC 251 1 876 381 1 987
(2) Google Coder 311 1 871 379 1 981
(3) OnionPi 249 1 714 376 1 981

Nexus 4 – – 661 2 085

The problem is exemplarily shown in Figure 4(a) for the
raspBMC use case described earlier. During startup and for over
five more minutes in the settling phase, the number of observed
code points rises continuously. After this, execution of the sched-
uled actions clearly shows the detection of additional functions and
distinctly visible increases in enabled KCONFIG features.

Analyzing the same scenario using the new FLIPPER approach,
we found a very different situation: While the functionality trig-
gered by the defined actions from the schedule can still be seen as
a very slight increase in the number of code points recorded (see
Figure 4(b)), the configuration generated is almost completely sta-
ble from the beginning of our recordings (in both cases, snapshots
of the current tracing progress were collected as early as possible
during the upstart phase). The evolution of features has been sim-
ilar for all use cases we presented in this paper; it is, however, not
compulsive for every possible case. Nevertheless, while the mea-
surement time frame was just long enough for the ftrace approach
to generate a working tailored kernel, FLIPPER delivers a more
comprehensive solution much earlier during the observation phase.

(2) Google Nexus 4 As for the Raspberry Pi, we tried to
generate a tailored kernel using ftrace. On the Google Nexus 4,
however, ftrace simply produced way too much output: The heavy
load generated by the continuous evaluation of the ftrace output
pipe most of the time lead to a watchdog being triggered, effectively
breaking boot and our measurements.

(a) traditional ftrace approach

Time in s

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

E
ve

nt
s

F
ea

tu
re

s

code points in source
affected source files

enabled features

(b) new FLIPPER approach

Time in s

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

E
ve

nt
s

F
ea

tu
re

s

code points in source
affected source files

enabled features

Figure 4. Evolution of recorded points in the source code, total number of source files used and KCONFIG features enabled in the resulting
configuration for the (1) raspBMC use case using both the old and new approach.

In the rare cases the system was able to boot, the collected data
was insufficient as too much information was lost due to the lim-
ited buffer size of ftrace: To make a generated partial solution
bootable, over 180 KCONFIG features – more than 25 percent of
the total number of activated features – had to be added through
the whitelist mechanism, rendering ftrace practically unusable for
data collection even for an approximation of an automated solution.

Conclusion From these results, the advantages of the new
FLIPPER approach become apparent:

• FLIPPER induces a lot less overhead compared to the ftrace

collection method. As the registration of code points is slimmed
down to only switching one bit in memory and no further pro-
cessing is needed on the target system, the approach can be
used on weaker systems without noticable performance degra-
dation. The lower overhead additionally leads to less side ef-
fects caused by the observation itself.

• The resulting configuration resembles the actual needs more
closely. As a higher number of conditional blocks will be regis-
tered and no data can be lost by design – as opposed to ftrace,
where data might be dropped due to full buffers –, all infor-
mation potentially available will be taken into account when
generating the configuration. This, of course, might lead to an
overapproximation of required features (as opposed to an un-
derapproximation when using ftrace). However, it is always
easier to manually identify superfluous features from the small,
tailored configuration than to decide which features are missing
in an underapproximated solution.

5. Discussion
In the following section we will discuss the limitations and chal-
lenges of our approach.

5.1 Accuracy
The completeness of data collected by ftrace becomes signifi-
cantly worse when aiming for smaller systems: ftrace might not
be available on the target architecture at all (e.g., on m68k). Even if
it is, the low computing performance is a big issue: The slower the
ftrace output can be produced and parsed, the higher is the proba-
bility to lose potentially important functions which were executed.
Setting a bit, on the contrary, will not affect performance as badly.
In our test cases, the overhead induced was less than five percent.

It should, however, be noted that contrarily to ftrace the FLIPPER
approach cannot be disabled at runtime: The (small) overhead will
always be present during the observation phase.

Another important difference is the point in time at which the
collected data starts: Using ftrace, we can only collect data as
soon as the file systems have been mounted by the kernel and
an initialization script can be executed. This inevitably leads to
missing data from the very beginning of the boot process, which
would provide important information about features corresponding
to the hardware Linux is running on. This turned out to be the
case: Using the FLIPPER method which can effectively begin to
collect data in the very first function the kernel executes, we were
able to identify more relevant configuration options. For example,
in the raspBMC use case the ftrace approach identified about
6 700 called functions, while the FLIPPER method found more than
11 000 relevant places.

This higher accuracy on the other hand had an unforeseen im-
pact: When using a kernel without loadable kernel module support,
Linux probes the devices. Thus, it will invoke the initialization rou-
tines for every driver very early during boot – even if the device it-
self is not present. For this case, an execution of the module_init()

function is not sufficient to determine if a driver is needed. If, how-
ever, more functions in the driver are called, the device is most
likely present in the system.

To handle this situation, we currently exclude functions marked
by the module_init() macro from being patched.

If the initialization function calls other functions itself, they will
still be registered in the bitmap and their configuration require-
ments will be accounted for in the generated configuration. How-
ever, we found the over-approximation in terms of enabled KCON-
FIG features to be reasonably small – the functions called by the
initialization functions are mostly related to memory and data struc-
ture allocation – and, moreover, helpful to accurately detect more
functionality being exerted during the test run.

In order to automatically identify more functions which are in
fact unnecessary for the use case, additional information would be
needed. For example, it would be possible to keep track of the to-
tal number and timestamps of executions instead of just flipping
a bit, allowing us to identify seldomly used functions during dis-
tinct stages of the observation phase. However, the impact of this
additional data collection on overall performance requires a more
detailed evaluation and is a target for future work.

Baseline
1874 features

ftrace
364 features

13 extra features
in both approaches

8 features by
Flipper approach

1 unique feature by
ftrace approach

features not
present in the
baseline

350 core features
in every kernel

126 additional features
with Flipper compared

to ftrace approach

Flipper
497 features

Figure 5. Quantitative comparison of KCONFIG features contained
in the expanded configurations between the original kernel and the
tailored version in the (1) raspBMC use case.

5.2 Selection of Features
As can be seen from Figure 5, the Linux kernel generated using
FLIPPER has about 33 percent more KCONFIG features enabled in
its configuration when compared to the ftrace result.

The features additionally enabled with FLIPPER are mainly used
for low-level purposes: For example, they specify parts of the GPIO
support and other hardware probing routines which currently are
not covered by the exclusion described in Section 5.1. Another
case involved functions being inlined: ftrace will not insert its
function call into the beginning of an inlined function whereas
FLIPPER patches the source code before inlining takes place; thus,
dependencies on #ifdef constraints around the inlined function
can only be detected with FLIPPER.

The features enabled only in the generated configurations and
not present in the original Linux kernel arise from the SAT solver
approach: Some KCONFIG variables in the formula neither have
been directly required during workload execution nor do appear in
other features’ dependencies. Thus, they will be seen as free vari-
ables; enabling or disabling them is at the SAT solver’s discretion.
One target for future work is to identify such free variables and
provide guidance to the SAT solver; for example, it could be in-
strumented to prefer the assignment present in the initial configu-
ration file or to preferably consider options which optimize desired
properties of the target system.

5.3 Granularity
One goal for the FLIPPER approach was to achieve a more accurate
and fine-grained result for the #ifdef blocks contained in the code,
thus defining stronger dependency requirements and generating a
configuration matching the use case more exactly.

There are, however, some uses of #ifdef in the Linux source
code where an additional instruction can not easily be inserted.
For example, parameters of arithmetic operations can be altered or

the right hand side of an assignment might be different depending
on the configuration1, as can be seen from the following code
fragment, taken from net/ipv4/inet diag.c in the Linux 3.6
source code:

686 entry.saddr =
687 #if IS_ENABLED(CONFIG_IPV6)
688 (entry.family == AF_INET6) ?
689 inet6_rsk(req)->loc_addr.s6_addr32 :
690 #endif
691 &ireq ->loc_addr;

In order to correctly insert the tracking instruction into every
block without changing semantics, a structural and logical analysis
of the program code would be required. As this incurs a lot of addi-
tional overhead and the expression at which we would need to insert
the additional instruction can become arbitrarily complex, we man-
ually excluded problematic points from being patched – in total, we
identified 17 files with these non-trivial #ifdef uses in Linux and
ignored them during the patching process. However, when we ran
the same test schedule and generated a configuration from this ex-
act approach, a comparison of the resulting configurations revealed
no difference to a configuration obtained with only the beginning
of functions being instrumented.

This suggests that – in the case of Linux – conditional blocks
inside a function’s body do not contribute as much to the total
variability as expected, therefore it is sufficient to collect data at a
function level granularity; thus, our current implementation of the
patching tool only inserts the bit-set operation into the beginning of
every function definition encountered.

5.4 Completeness
During the observation phase, an application will most likely not
trigger every single functionality it could. For example, certain er-
rors and thus execution of error handling code, might not occur dur-
ing the test run while they could arise during later, more extensive
use of the tailored system.

This is a principle problem of the approach: If we can only
track events that are actually triggered and no errors occur during
observation, we can not prove that every functionality possibly
required later will be included in the resulting configuration.

In practice, this problem is less severe than it appears to be: In
all of our test cases (including those from previous work, where
we tailored a server system and a workstation [21]) we did not
encounter a single situation where any required functionality was
missing – even though we and others have been using the tailored
devices for a period of several months and exerted previously un-
used functionality such as sending text messages from the Nexus 4
phone.

However, there are also structural reasons that mitigate the po-
tential risk of missing some important functionality during the ob-
servation phase:

(1) Use of configurability in Linux Linux mostly uses con-
figurability in a way which leads to related but possibly untraced
functionality to be included during compilation: As mentioned in
Section 2, more than 70 percent of the features in KCONFIG are
used by KBUILD to determine whether an entire feature of the
kernel – possibly consisting of multiple source files – has to be
compiled or not (see Figure 6); this particularily applies to drivers,
where the corresponding configuration option will either include
the whole driver for a device or leave it out entirely.

This observation implies that in most cases triggering one single
function inside a source file will be sufficient to have all capability

1 A detailed analysis of such undisciplined preprocessor annotations has
been published by Liebig, Kästner, and Apel [13].

3,233
27 %

5,325 features (45%) in code (#ifdef)

2,092
18 %

6,574
55 %

8,666 features (73%) used by Kbuild

Figure 6. Usage of KCONFIG features in Linux 3.6.11 which was
employed for the raspBMC use case.

related to the surrounding feature present in the resulting kernel,
thus leading to the inclusion of additional unobserved functions,
such as error handling code, associated with this feature. As an ex-
ample, accessing a file through the file system driver will also trig-
ger the compilation of functions to handle situations like running
out of space on the file system – in fact, all functionality associated
with the file system –, even if this has never occurred during the
observation phase.

In contrast, the 27 percent of KCONFIG features only present
as C preprocessor instructions implement fine-grained variability.
As this technique is mostly used in the central parts of the kernel,
missing functionality or inconsistency would already be detected
as errors during link time or startup.

(2) Test requirements For special-purpose embedded
systems, system developers typically have to provide test suites
achieving very high or complete coverage of the system anyway
(e.g., for certification purposes). Hence, running these test suites as
the workload during observation will greatly diminish the risk of
missing but possibly required code in the tailored kernel.

Finally, it should be pointed out that the completeness concern
would also arise if an expert manually tailors the system: How can
the system developer be sure to have selected every configuration
option required for his needs? Thus, we consider our automated
approach as practically usable.

5.5 Untraceable and Alternative Features
We employ white-/blacklists to provide user guidance in situations
our approach cannot cover. This, however, is not an issue for prac-
tical use: Selecting features necessary for a certain device can be
done once (for example by the subsystem maintainer for this par-
ticular device or a distributor); it is not dependent on the use case
rather than the device.

It will also be much less work than manually getting a Linux
vanilla kernel to work on a specific device. Our tools can directly
be used to simplify this process: When trying to determine features
required for a new device, a developer could generate a configura-
tion without using any lists and specifically search the difference
between this preliminary configuration and the initial file for fea-
tures relevant for the architecture or the specific use case. We used
this approach to quickly determine the 14 architecture-dependent
KCONFIG features provided in the Raspberry Pi use case.

Features of string or numeric type (for instance, the kernel com-
mand line) are automatically taken from the original configuration
and used after the SAT solver has generated an assignment for the
binary features: Hence, the corresponding values in the tailored
configuration are simply the same as in the distribution kernel.

The whitelists can further be used to guide the feature selection
process, allowing domain experts to specify optional KCONFIG
features they identified as being important for a certain system.

Particularly, for features presenting alternatives (such as the
memory allocator or the scheduling strategy) it might not be desired

to simply use the (possibly randomly selected) option from the SAT
solver but rather to provide a choice known to be correct in advance.

5.6 Impact on Non-Functional Properties
When optimizing an operating system for use on a deeply-embedded
system, binary size is only one factor to consider. For example, re-
ducing the power consumption of a long-running embedded device
can be seen as highly important to lower not only the production
cost but also the operating cost of a system.

We therefore also conducted measurements of the power con-
sumption of the Raspberry Pi in the Google Coder scenario.

While we were able to observe reductions of around 1–2 percent
with our tailored kernel, we do not think this is significant; on
the contrary, choosing from observation alone and employing a
SAT solver to cover dependencies might in some situations lead
to kernels with energy-saving features disabled.

One possible solution for a combined approach to optimize non-
functional properties (i.e., power consumption) of the system as
well as minimizing binary size could be the integration of heuris-
tics as proposed by Siegmund et al. [17] into the selection process.
In this way, the impact of KCONFIG features on desired proper-
ties could be considered when making a choice, thus guiding the
approach to be more aware of the target system’s properties.

Again, this expert knowledge can currently be brought into the
tailoring process by putting KCONFIG features previously identi-
fied onto the whitelist.

5.7 Dependency Modelling Defects
The fact that configurability is used for different purposes in the
Linux kernel has lead to problems in the past [22]. This becomes
an even bigger issue on the ARM architecture, with not only the
architecture itself, but nearly every single device having different
requirements. Additionally, in the ARM subtree many hardware
peculiarities are modelled using KCONFIG. This has made ARM
the by far biggest and fastest-growing subtree in terms of possible
KCONFIG configuration options in the Linux kernel. Unfortunately,
this also implies there is a higher probability certain things might
be wrong or wrongly modelled.

Hence, it is extremely important for our approach to gather
as much information as possible: While some things (like the
aforementioned module init() functions) might lead to an over-
approximation, we can overcome possible defects of the depen-
dency model by supplying much more detailed data to the SAT
solver, thus building stronger constraints and leading to a more
solid solution.

5.8 Generalization beyond Linux
The approach presented in this paper can not only be applied
to Linux but can be transferred to other operating systems and
software product lines.

The FLIPPER method to prepare the Linux kernel for data col-
lection is directly applicable to any software project which uses the
C preprocessor to implement fine-grained variability, as it is only
necessary to parse the source code and insert an instruction when-
ever a conditional block is found.

The harder part is the accurate extraction of models describing
the features and their dependencies which are required to find
the correct mapping from the observations to their corresponding
configuration items. Previous work [7], however, has shown the
portability of the extractors we used for Linux to other software
product lines such as the BusyBox UNIX utility suite [5] and the
FIASCO microkernel [9], requiring only little effort.

Thus, the proposed method makes it feasible to generate small
configurations matching an observed scenario for any configurable
software product.

6. Related Work
In earlier work [11, 21], we have been able to show the general
feasibility of tailoring a Linux kernel to a specific use case, ob-
serving improvements in binary size and security. As already dis-
cussed, however, the approach presented there needs comparably
strong hardware to cope with the amount of data generated during
the observation phase, rendering it useless for application in em-
bedded systems.

There are a number of other researchers working in the field of
specializing configurable systems, whose findings we will briefly
outline in the following section.

As an example, Lee et al. [12] use a graph-based approach to
identify the specific needs of an application and the underlying
Linux operating system. They subsequently remove all code not
required by the target application (e.g. unnecessary exception han-
dlers and system calls) from the source code.

Chanet et al. [6] also propose the analysis of a control flow
graph of both the applications and the Linux kernel. Instead of
patching the source code, however, they use link-time binary
rewriting to eliminate unused code from the resulting compiled
kernel.

For embedded devices based on Linux and the L4 microkernel,
Bertran et al. [2] suggest a similar concept. Their approach con-
structs a global system view and subsequently removes dead code
which can not be reached from entry points defined by the applica-
tion binary interface.

A shared drawback of these approaches is that they do not
make use of any configurability options already provided by the
kernel which could eliminate code as well. Moreover, by patching
information out of the binary they are prone to leaving ,,loose
ends” inside the kernel. Our approach, in contrast, is assisted by the
configuration system itself. This ensures that a valid Linux kernel
configuration is derived and used for compiling the tailored kernel.

An approach taking configurability into account when deriving
a tailored software system has been presented by Schirmeier and
Spinczyk [16]. Again, static analysis is used to determine relevant
parts in the code, however, the authors only tested their work on
a much smaller and less complex application with only 15 config-
urable features, already leading to a graph consisting of approxi-
mately 600 nodes.

In contrast, Siegmund et al. [17] use interacting configurable
features to predict non-functional properties like performance from
a given configuration and also developed a method to automatically
derive an optimized software variant [18]. As discussed earlier, it
would be interesting to combine these results with our tailoring
approach; for example, the generation of a tailored configuration
could not only consider selecting as few features as possible, but
rather select features optimal for non-functional properties deemed
important for the target use case, e.g., power consumption in an
automotive scenario.

On the other hand, our results could be used to extend their
work onto the Linux kernel. While this has not been feasible to
date due to the massive amount of KCONFIG features in Linux, the
authors could reduce the problem to the features (and their possible
alternatives) identified by the tailoring approach.

To integrate preferences of the user while optimizing a configu-
ration for non-functional properties, Soltani et al. [20] model the
selection of features as a Hierarchy Task Network (HTN) plan-
ning process. Due to the runtime of their approach already rising
strongly when applied to a random model consisting of only 200
features, its adaption to a real-world large-scale system could prove
to be very difficult, if not impossible.

Guo et al. [10] present a genetic algorithm to find an optimal
feature selection incorporating resource constraints in a software
product line which also performs well for a randomly generated

model consisting of 10 000 features. The generated configuration,
however, is not use-case specific: The optimization is performed
using cost vectors associated with every feature (i.e., CPU or mem-
ory consumption) rather than considering specific functionality re-
quirements deduced from actual system use.

7. Conclusion
Configuring system software for a given use case is a very chal-
lenging task. With hundreds of optional features to choose from,
finding a small set of configuration options which includes just the
right features is hard, even for a domain expert. This particularly
applies to the Linux operating-system family, which offers nearly
14 000 configurable features.

For use on general-purpose computers, the solution provided
by Linux distributors is to include as many features as possible
into their kernel configurations, thus also increasing the size of the
kernel. For the use of Linux in deeply-embedded systems, however,
this is not an option: To keep costs at a minimum, as little memory
as possible is to be occupied by the operating system.

While there are developers manually building small kernel con-
figurations, these configurations often make assumptions of the us-
age of the embedded system which may not be valid for a specific
use case.

Tackling these challenges, this paper presents an automated tai-
loring approach for system-software product lines which can be
used to generate a use-case–specific Linux kernel configuration.
Causing only minimal overhead, the approach is also suitable for
use in resource-constrained embedded systems. As the resulting
configuration might not take domain-specific knowledge into ac-
count, additional information can be brought into the generation
process with minimal effort.

Our results show that for Linux, the kernel size can be reduced
by up to 70 percent. These results can be used by system developers
as a basis to easily create small, fitted software configurations
for their systems, thus opening up a whole new field of use for
Linux inside deeply-embedded systems such as control units in the
automotive industry.

References
[1] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. “A

Study of Variability Models and Languages in the Systems Software
Domain”. In: IEEE Transactions on Software Engineering 39.12
(2013), pages 1611–1640. ISSN: 0098-5589. DOI: 10.1109/TSE.
2013.34.

[2] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis
Vilanova, Enric Morancho, and Nacho Navarro. “Building a Global
System View for Optimization Purposes”. In: Proceedings of Work-
shop on the Interaction between Operating Systems and Computer
Architecture (SCA-WIOSCA ’06). 2006.

[3] Anton Borisov. “Coreboot at your service!” In: Linux Journal 1 (186
2009).

[4] Manfred Broy. “Challenges in Automotive Software Engineering”.
In: Proceedings of the 28th International Conference on Software En-
gineering (ICSE ’06). (Shanghai, China). 2006, pages 33–42. ISBN:
1-59593-375-1. DOI: 10.1145/1134285.1134292.

[5] BusyBox Project Homepage. URL: http://www.busybox.net/
(visited on 05/11/2012).

[6] Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo Van Put,
and Koen De Bosschere. “System-wide Compaction and Special-
ization of the Linux Kernel”. In: Proceedings of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools
for Embedded Systems (LCTES ’05). 2005, pages 95–104. ISBN: 1-
59593-018-3. DOI: 10.1145/1065910.1065925.

[7] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. “A Robust Approach for Variability Extraction

http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1145/1134285.1134292
http://www.busybox.net/
http://dx.doi.org/10.1145/1065910.1065925

from the Linux Build System”. In: Proceedings of the 16th Software
Product Line Conference (SPLC ’12). (Salvador, Brazil, Sept. 2–
7, 2012). 2012, pages 21–30. ISBN: 978-1-4503-1094-9. DOI: 10.
1145/2362536.2362544.

[8] Embedded Linux – Lineo Solutions. 2014. URL: http : / / www .
lineo.co.jp/modules/products/ulinux.html (visited on
05/30/2014).

[9] Fiasco Project Homepage. URL: http://os.inf.tu-dresden.
de/fiasco/ (visited on 05/11/2012).

[10] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin
Wang. “A genetic algorithm for optimized feature selection with
resource constraints in software product lines”. In: Journal of Sys-
tems and Software 84.12 (2011), pages 2208 –2221. ISSN: 0164-
1212. DOI: 10 . 1016 / j . jss . 2011 . 06 . 026. URL: http :
/ / www . sciencedirect . com / science / article / pii /
S0164121211001518.

[11] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Hein-
loth, Valentin Rothberg, Andreas Ruprecht, Wolfgang Schröder-
Preikschat, Daniel Lohmann, and Rüdiger Kapitza. “Attack Surface
Metrics and Automated Compile-Time OS Kernel Tailoring”. In:
Proceedings of the 20th Network and Distributed Systems Security
Symposium. (San Diego, CA, USA, Feb. 24–27, 2013). 2013. URL:
http://www.internetsociety.org/sites/default/files/
03_2_0.pdf.

[12] C.T. Lee, J.M. Lin, Z.W. Hong, and W.T. Lee. “An Application-
Oriented Linux Kernel Customization for Embedded Systems”.
In: Journal of information science and engineering 20.6 (2004),
pages 1093–1108. ISSN: 1016-2364.

[13] Jörg Liebig, Christian Kästner, and Sven Apel. “Analyzing the dis-
cipline of preprocessor annotations in 30 million lines of C code”.
In: Proceedings of the 10th International Conference on Aspect-
Oriented Software Development (AOSD ’11). (Porto de Galinhas,
Brazil). 2011, pages 191–202. ISBN: 978-1-4503-0605-8. DOI: 10.
1145/1960275.1960299.

[14] Linux Tiny – eLinux.org. 2014. URL: http://elinux.org/Linux_
Tiny (visited on 05/30/2014).

[15] Anthony Massa. Embedded Software Development with eCos. 2002.
ISBN: 978-0130354730.

[16] Horst Schirmeier and Olaf Spinczyk. “Tailoring Infrastructure Soft-
ware Product Lines by Static Application Analysis”. In: Proceedings
of the 11th Software Product Line Conference (SPLC ’07). 2007,

pages 255–260. ISBN: 0-7695-2888-0. DOI: 10 . 1109 / SPLINE .
2007.33.

[17] N. Siegmund, S.S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M.
Rosenmuller, and G. Saake. “Predicting performance via automated
feature-interaction detection”. In: Proceedings of the 34nd Inter-
national Conference on Software Engineering (ICSE ’12). (Zurich,
Switzerland). 2012, pages 167–177. ISBN: 978-1-4673-1067-3. DOI:
10.1109/ICSE.2012.6227196.

[18] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Chris-
tian Kästner, Sven Apel, and Gunter Saake. “SPL Conqueror: Toward
optimization of non-functional properties in software product lines”.
English. In: Software Quality Journal 20.3-4 (2012), pages 487–517.
ISSN: 0963-9314. DOI: 10.1007/s11219- 011- 9152- 9. URL:
http://dx.doi.org/10.1007/s11219-011-9152-9.

[19] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang
Schröder-Preikschat. “Efficient Extraction and Analysis of Prepro-
cessor-Based Variability”. In: Proceedings of the 9th International
Conference on Generative Programming and Component Engineer-
ing (GPCE ’10). (Eindhoven, The Netherlands). 2010, pages 33–42.
ISBN: 978-1-4503-0154-1. DOI: 10.1145/1868294.1868300.

[20] Samaneh Soltani, Mohsen Asadi, Dragan Gašević, Marek Hatala, and
Ebrahim Bagheri. “Automated Planning for Feature Model Configu-
ration Based on Functional and Non-functional Requirements”. In:
Proceedings of the 16th International Software Product Line Confer-
ence - Volume 1. SPLC ’12. 2012, pages 56–65. ISBN: 978-1-4503-
1094-9. DOI: 10.1145/2362536.2362548. URL: http://doi.
acm.org/10.1145/2362536.2362548.

[21] Reinhard Tartler, Anil Kurmus, Bernard Heinloth, Valentin Rothberg,
Andreas Ruprecht, Daniela Doreanu, Rüdiger Kapitza, Wolfgang
Schröder-Preikschat, and Daniel Lohmann. “Automatic OS Kernel
TCB Reduction by Leveraging Compile-Time Configurability”. In:
Proceedings of the 8th International Workshop on Hot Topics in
System Dependability (HotDep ’12). (Los Angeles, CA, USA). 2012,
pages 1–6.

[22] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang
Schröder-Preikschat. “Feature Consistency in Compile-Time-Con-
figurable System Software: Facing the Linux 10,000 Feature Prob-
lem”. In: Proceedings of the ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2011 (EuroSys ’11). (Salzburg, Aus-
tria). 2011, pages 47–60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/
1966445.1966451.

http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1145/2362536.2362544
http://www.lineo.co.jp/modules/products/ulinux.html
http://www.lineo.co.jp/modules/products/ulinux.html
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
http://dx.doi.org/10.1016/j.jss.2011.06.026
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.internetsociety.org/sites/default/files/03_2_0.pdf
http://www.internetsociety.org/sites/default/files/03_2_0.pdf
http://dx.doi.org/10.1145/1960275.1960299
http://dx.doi.org/10.1145/1960275.1960299
http://elinux.org/Linux_Tiny
http://elinux.org/Linux_Tiny
http://dx.doi.org/10.1109/SPLINE.2007.33
http://dx.doi.org/10.1109/SPLINE.2007.33
http://dx.doi.org/10.1109/ICSE.2012.6227196
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/2362536.2362548
http://doi.acm.org/10.1145/2362536.2362548
http://doi.acm.org/10.1145/2362536.2362548
http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.1145/1966445.1966451

	Introduction
	Background: Variability in Linux
	Our Approach
	Our Previous Work
	Flipper
	Principle of Operation
	Challenges

	Case Studies
	Raspberry Pi
	Google Nexus 4 (Ubuntu Touch)
	Comparison with [style=inline,breaklines=false]@ftrace@

	Discussion
	Accuracy
	Selection of Features
	Granularity
	Completeness
	Untraceable and Alternative Features
	Impact on Non-Functional Properties
	Dependency Modelling Defects
	Generalization beyond Linux

	Related Work
	Conclusion

