Architecture Challenges for Internal Software Ecosystems:
A Large-Scale Industry Case Study

Klaus-Benedikt Schultis
Siemens Corporate Technology
Erlangen, Germany
klaus-benedikt.schultis.ext@siemens.com

ABSTRACT

The idea of software ecosystems encourages organizations to open
software projects for external businesses, governing the cross-organi-
zational development by architectural and other measures. Even
within a single organization, this paradigm can be of high value
for large-scale decentralized software projects that involve various
internal, yet self-contained organizational units. However, this intra-
organizational decentralization causes architecture challenges that
must be understood to reason about suitable architectural measures.
We present an in-depth case study on collaboration and archi-
tecture challenges in two of these large-scale software projects at
Siemens. We performed a total of 46 hours of semi-structured
interviews with 17 leading software architects from all involved
organizational units. Our major findings are: (1) three collaboration
models on a continuum that ranges from high to low coupling, (2)
a classification of architecture challenges, together with (3) a qual-
itative and quantitative exposure of the identified recurring issues
along each collaboration model. Our study results provide valuable
insights for both industry and academia: Practitioners that find them-
selves in one of the collaboration models can use empirical evidence
on challenges to make informed decisions about counteractive mea-
sures. Researchers can focus their attention on challenges faced by
practitioners to make software engineering more effective.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms

Design, Management, Human Factors, Documentation

Keywords

Software ecosystem, software product line, software architecture,
decentralized software engineering, collaboration, case study

1. INTRODUCTION

Software product lines proved successful to enable reuse of soft-
ware within an organization [4, 32]. Adopting software product

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FSE’14 , November 16-22, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

Christoph Elsner
Siemens Corporate Technology
Erlangen, Germany
christoph.elsner@siemens.com

Daniel Lohmann
Friedrich-Alexander University
Erlangen-Nuremberg, Germany
lohmann@cs.fau.de

“The most serious misconception that can be done by a
platform provider is to believe that the platform is used

as intended.” . . .
—Platform chief architect at Siemens

lines involves the development of core assets for a defined scope
and the creation of products by reusing them in a prescribed way
[9]. Both activities are governed by a single, common management
and target improvements for common business drivers like time to
market, cost and quality [9, 32].

In contrast, in software ecosystems, organizations open their
platform to external businesses in order to leverage a variety of
externally developed functionality [4, 21]. Those businesses are usu-
ally autonomous, act within a decentralized environment and cannot
be directed by a common management [4, 21]. Platform provider
and external businesses have widely varying business drivers, like
innovation, market expansion, profit or visibility [21, 24]. A promi-
nent example is Apple’s iOS where Apple acts as platform provider
for thousands of autonomous application developers.

We have investigated two large-scale software projects (about 500
and 950 developers) within Siemens where the reality is somewhere
between those two development paradigms. They involve a set of
internal organizational units that are self-contained profit centers
with own business objectives, organizational independent with own
product management, and have to a wide extent autonomous pro-
cesses and software-engineering life cycles. Thus, the view on the
organizational structure moves from strict hierarchies towards more
decentralized topologies. In the context of this paper, we define
those systems as internal software ecosystems (ISECOs).

This decentralization with independent spheres of authority sig-
nificantly impacts collaboration. Bosch et al. perceived software
architecture as enabler for effective collaboration in large-scale soft-
ware engineering [6]. However, in order to make informed decisions
about suitable architectural measures, it is necessary to understand
the modes of collaboration and resulting challenges in detail. This
raises our research questions:

RQ1:How do organizational units collaborate in such a decentral-
ized environment? Are there common collaboration models?

RQ2: Which architecture challenges become particularly crucial due
to collaboration? Can we relate them to collaboration models?

Our contributions are (1) the identification of three different col-
laboration models on a continuum that ranges from high to low archi-
tecture and process coupling; (2) a classification of architecture chal-
lenges, including platform openness strategy, composition of decen-
tralized developed software, preservation of the organizational-units
independence, guarantee of software qualities across the ecosystem
and compliance to architectural intentions and cross-cutting regu-
lations; together with (3) a qualitative and quantitative exposure of
respective recurring issues along each collaboration model.

Whereas software product lines [1, 9, 23, 32] and open software
ecosystems [16, 21, 24] already received attention in literature, to
this end, no empirical results exist on collaboration and emerging
architecture challenges for intra-organizational, yet decentralized
software engineering. To fill this significant gap, we conducted an
in-depth qualitative case study involving two of the largest ISECOs
at Siemens. To that end, we performed (A) a literature review as
well as (B) 2 workshops and 7 unstructured pre-interviews with
architects of the study systems to draw a guideline for (C) 17 semi-
structured interviews (lasting 135-240 minutes each) involving the
main architects of all organizational units and (D) inspected both
developer networks and dozens of documents that are applied to
coordinate development. We (E) draw our conclusions per interview
based on the grounded theory method [19], (F) received feedback
from the interviewees and (G) performed a cross-interview analysis.

The paper is laid out as follows: In Section 2, we depict both
study systems and outline our research method. In Section 3, we
introduce the collaboration models and characterize them along
the dimensions of the business, architecture, process, and organi-
zation (BAPO) model [32]. In Section 4, we classify architecture
challenges and discuss respective recurring issues along each collab-
oration model. In Section 5, we discuss threats to validity as well
as implications for practitioners and researchers. In Section 6, we
provide an overview on related work. In Section 7, we conclude the

paper.

2. METHODOLOGY

This section depicts the research settings of both ISECOs we have
investigated and outlines our research method.

2.1 Study Systems

Both study systems, ISECO-A and ISECO-B, comprise a keystone
that provides a platform and multiple clients that build applications
upon it. The keystone acts in a creative role but does not have power
to direct. Compared to open ecosystems, the number of clients is low
and involved parties can and commonly do communicate directly if
required. Moreover, clients develop only one to a handful, but large
applications. Below, the study systems are described in more detail.
We use the notation (x/y) to roughly denote for each organizational
unit the number of developers and development years, respectively.

ISECO-A initially involved KEYSTONE-A (100/11), CLIENT-
A1 (110/10), CLIENT-A2 (100/10) and CLIENT-A3 (85/10). They
defined the original scope, develop a set of software products for a
shared market and collaborate based on a strategic reuse approach.

Later on, the clients TRACY (40/4), SUSAN (40/6) and STEPHEN
(40/7) recognized the high reuse potential of the platform and joined
the ecosystem. They are outside of the scope and independently
develop software products for different markets. The units collab-
orate based on a platform reuse approach without strong strategic
coupling. In the remainder, we depict the successful reuse story
of SUSAN, the initial struggles when including STEPHEN and the
transition of TRACY into the group of strategic clients above. Figure
1 depicts a simplified illustration of ISECO-A.

ISECO-B started with KEYSTONE-B (300/8), client DONNIE
(150/7), CLIENT-B2 (70/7) and CLIENT-B3 (30/7). As for ISECO-
A, they set the initial scope and develop a set of software products
for a shared market. Compared to other clients, DONNIE is more
dominate and takes more action to influence the ecosystem.

Later on, the platform scope was explicitly broadened to involve
client PINO (150/2), CLIENT-B5 (200/1) and CLIENT-B6 (60/1).
They apply a decoupled and composition-oriented approach to de-
velop software products for different, partially overlapping markets.
PINO was the first added client and acts as a pioneer.

ISECO-A Platform Applications End User

Figure 1: A simplified illustration of ISECO-A.

2.2 Research Method

Our qualitative case study targets the identification of collabora-
tion models and emerging architecture challenges within ISECO-A
and ISECO-B. The study was carried out over a period of one year
and involved main architects of all organizational units. We struc-
tured our case study based on the guidelines by Runeson and Host
[28], developed a case study protocol and followed the method
outlined in Figure 2.

0 so® °
e 2 M = B = 3
B) Workshops & % C) Main interviews E) Transcribing, coding F) Member checking
pre-interviews J and concluding

1 =/

B’ B @

A) Literature review D) Archival data G) Cross-case analysis

Design and planning Data collection Data analysis Validation

Figure 2: Research method.

A) Literature review. The first researcher analyzed existing
literature for software ecosystems to collect already known issues
that target architecture and collaboration, such as [5, 6, 17, 20, 21,
24, 16, 18]. He condensed them to discuss and refine insights with
the second and third researcher in several iterations.

B) Workshops & pre-interviews. The first and second researcher
performed two half-day workshops involving 7 respectively 8 archi-
tects from Siemens with an average professional experience of about
20 years to discuss how they do qualitatively perceive collaboration
and emerging architecture challenges for ISECOs. Furthermore,
they performed 7 unstructured interviews [28] (lasting about 2 hours
each) with architects of ISECO-A and ISECO-B to get a basic under-
standing of the study systems and to commonly sketch collaboration
among organizational units in a scenario-based fashion. Two of
those architects were interviewed again during the main interviews.

As a result, we identified four categories of architecture chal-
lenges that become particular crucial: First, least-impairing co-
evolution of platform and applications is required. Second, platform
interfaces must be kept stable or must evolve predictably. Third,
internal and external qualities must be guaranteed across the ecosys-
tem. Fourth, rechnical integration must be enabled to compose
the software developed in a decentralized manner. Based on those
insights, we defined interview questions that target the identification
of problems that have been arisen for each of those categories and
measures that are applied to counter them. Furthermore, we defined
one open question that targets the identification of further architec-
ture challenges we were not aware of. We used those questions and
the sketched scenarios to draw a guideline for our main interviews.

C) Main interviews. We contacted both platform chief architects,
briefed them on the goal and process of our investigation and asked

them for suitable interviewees for each organizational unit. We
contacted the nominated architects to clarify if they feel suitable or
if they would recommend another one. Thus, we got 17 architects
for our main interviews: 1 for each client, 2 for the keystone of
ISECO-A and 3 for the keystone of ISECO-B. Their professional
experience ranges from 11-28 years with an average of about 21
years, and most of them are architects of the study systems since
their initial phase. Each architect was interviewed separately. The
interviews were semi-structured [28], lasted 135-240 minutes with
an average of about 160 minutes and were digitally recorded with
the interviewee’s consent. The first researcher guided the interviews,
the second researcher took notes and participated in discussions.
The interview guideline was refined when new insights were gained.

Each interview was structured as follows: (/) Briefing. We started
with a short briefing on the objective of the interview and case
study, and introduced our notion of decentralized software engineer-
ing and the categories of challenges we had identified. (2) Model
collaboration. Based on the sketched scenarios, we discussed the
collaboration among the interviewee’s organizational unit and other
ones. (3) Analyze architecture challenges. Finally, we performed the
main interview based on our interview guideline. Its semi-structured
nature allowed us to reorder questions depended on the course of
discussion while guaranteeing that all of them are handled. We did
not only discuss challenges, but also measures that are applied to
counter them. However, these are beyond the scope of this paper.

D) Archival data. Afterwards, most architects provided archival
data that turned out to be relevant during the interviews. Thus, we
inspected both developer networks, dozens of documents applied
to coordinate development and results of an ATAM [8] review that
was previously performed for ISECO-B. In doing so, we achieved
triangulation across data sources which improves validity [28, 29].

E) Transcribing, coding and concluding. Data analysis was
carried out in parallel with data collection, which is recommended
practice to consider new insights [28]. The first researcher fully
transcribed the audio recordings, coded the transcripts as described
by Seaman [29] and documented first insights in the form of memos.
In total, this results in 2732 chunks of coded text by using a hier-
archy of 168 codes and sub-codes. Conclusions were drawn and
summarized separately for each interview: This was an iterative
process were the first researcher searched for patterns and trends in
the coded data, grouped the data accordingly and analyzed related
archival data and the notes that were taken during the interview. The
results were carefully checked by the second researcher.

F) Member checking. Member checking is a recommended
method to validate conclusions [29]. We sent our conclusion sum-
maries (averagely about 3000 words) to the respective architects
and sought for feedback. All architects agreed with our conclusions,
only minor adaptations were suggested.

G) Cross-interview analysis. We performed a cross-interview
analysis inspired by Eisenhardt [11]. Using the same technique
as above, the first researcher created codes for the findings and
coded the conclusion summaries while considering the interviewees’
feedback. As proposed by Runeson et al. [28], he arranged the coded
data in a table where rows represent findings, columns represent
interviews and cells are marked if a finding is confirmed by the
respective interview. This technique supported us to group study
subjects by findings and to identify cross-cutting issues that are
confirmed by multiple data sources, which increases validity [28, 29].
The results were carefully reviewed by the other two researchers.

3. RQ1: COLLABORATION MODELS

Software development within an ISECO context results in depen-
dencies among both software assets and the responsible organiza-

tional units. This requires collaboration across organizational units
in software engineering. We identified three different collaboration
models ranging from high to low coupling. As mentioned before,
the involved organizational units commonly are self-contained profit
centers with own business objectives and autonomous software-
engineering life cycles and processes. They are organizationally
independent and have their own product management and R&D
department. Although there is the option for an escalation and deci-
sions through common top management, this is no generally viable
way for deciding on day-to-day collaboration practices. Decision
making on this operational level consists much more in negotiation
and mutual agreement than in strict management decisions.

Below, we provide a brief introduction for each collaboration
model and a characterization along the BAPO [32] dimensions.

Product-Line Engineering (PLE) for ISECOs. This collabora-
tion model was the starting point for both ISECOs. It comprises the
keystone and clients, in the following called core clients, who set the
original scope. Those organizational units are the core participants
and thus can significantly influence the direction of the ecosystem.
The keystone is responsible for the platform and acts in a creative
role, but does not have authority to give directions. The core clients
build their applications upon the platform and, for this purpose,
require additional features, changes and support by the keystone.
Their influence differs regarding their strategical importance, active
participation, human resources and geographical proximity. In fact,
both ISECOs contain core clients that are more dominant compared
to the others, for example DONNIE within ISECO-B. Finally, in
some cases, core clients collaborate to generate synergies.

Platform Reuse for ISECOs. This collaboration model enlarges
the original setting of ISECO-A. It additionally involves clients, in
the following called consumer clients, that were not considered in
the initial platform scope, but intend to leverage the high reuse po-
tential. The key goal is to leverage reuse synergies within Siemens
without requiring to extend the number of core clients. The resulting
relation is similar to a supplier-consumer relationship, where the
keystone offers its platform to consumer clients to build their ap-
plications upon. The keystone provides basic maintenance support
for the current stage of development and previous releases of the
platform. Consumer clients have less influence on the direction of
the ISECO and less priority for feature and change requests. The
fact that the platform may be still under development, and is not
explicitly designed for their needs results in significant effort and
initiative on consumer-client side. Creating awareness for this fact is
essential for successful consumer-client applications. Whereas this
worked well for SUSAN, the collaboration practices required signifi-
cant readjustment in case of STEPHEN, as the initial expectation of
a “ready-to-use” platform could not be fulfilled.

Decoupled PLE for ISECOs. Similar to product line engineer-
ing [3], organizations tend to stretch successful ISECOs significantly
beyond their original scope to additionally involve related, not yet
considered organizational units. This was the case for ISECO-B.
Those organizational units, in the following called extended core
clients, have related but also unique application requirements. They
want to reuse selected sets of core assets with high reuse potential
only, but not the platform as a whole. The keystone provides basic
maintenance support for released sets of the core assets. Regarding
their priority for feature and change requests, their position within
the ISECO and their influence, the extended core clients are on a par
with core clients and the keystone. Nevertheless, as for product line
engineering [3], the broadened scope requires a more decoupled and
composition-oriented software development approach.

In Table 1, we characterize the three models along the business,
architecture, process and organization (BAPO) dimensions.

Table 1: A characterization of the three identified collaboration models along the BAPO dimensions.

1. PLE for ISECOs

2. Platform Reuse for ISECOs

3. Decoupled PLE for ISECOs

Business:

* Organizational units are self-contained profit centers
that have different incentives and business objectives,
but similar business cases.

* Organizational units jointly distribute a common set of
products.

* Synergies among applications provide added value for
customers.

* Organizational units provide the core funding for the
ISECO.

Architecture:
* Deep integration of and among core-client applications.
% Strongly interconnected architecture.

* Multiple core clients share one common instance of the
platform.

Process:

* Organizational units have dedicated, yet intercon-
nected software-engineering life cycles and processes,
and need to synchronize on crucial milestones.

* Coupled product release schedules.

* Commitment for collaborative development and to align
processes and toolchains.

Organization:

* Organizational units are associated through similar
and also overlapping domains.

* |t is beneficial if organizational units belong to the same
organizational sector to facilitate the collaboration re-
quired to apply PLE techniques.

Business:

* Consumer clients are self-contained profit centers that
have different incentives, business objectives and dif-
ferent business cases.

* Consumer clients distribute their applications indepen-
dently, along with the reused platform.

* Consumer clients develop stand-alone applications.

* Financial models for refunding exist, but there is more
emphasis on leveraging reuse synergies than on exact
cost accounting.

Architecture:
* Decoupling of consumer-client applications.
* Partially decoupled architecture.

* Each consumer client gets a separate instance of the
delivered platform.

Process:

* Consumer clients have widely autonomous software-
engineering life cycles and processes, but there is an
implicit need to synchronize to stay in pace of the plat-
form.

* Partially' coupled product release schedules.

* Widely independent development and limited commit-
ment and possibility to align processes and toolchains.

Organization:

* Organizational units are partially associated through re-
lated domains.

* Organizational units generally can span over several
organizational sectors.

Business:

* Extended core clients are self-contained profit centers
that have different incentives, business objectives and
different business cases.

* Extended core clients distribute their applications inde-
pendently, along with the core assets.

* Extended core clients develop stand-alone applica-
tions.

* Extended core clients refund the keystone for the deliv-
eries, based on financing models.

Architecture:

* Reuse of mature and communal core assets only.

* Highly decoupled architecture.

* Each extended core client gets a separate instance of
the delivered core assets.

Process:

* Extended core clients have autonomous software-
engineering life cycles and processes. They indepen-
dently select length, frequency and time of their itera-
tion cycles.

* Decoupled product release schedules.

* Commitment for collaborative development, but limited
possibility to align processes and toolchains.

Organization:

* Organizational units are associated through similar
and also overlapping domains.

* |t is beneficial if organizational units belong to the same
organizational sector to facilitate the collaboration re-
quired to apply PLE techniques.

Collaboration models on a continuum that ranges from high (left) to low (right) coupling regarding processes and architecture, but not the influence on other ecosystem partners.

4. RQ2: ARCHITECTURE CHALLENGES

In this section, we present the architecture challenges we have
identified for ISECOs. We reclassify the categories of challenges
identified in the workshops and pre-interviews (see Section 2.2) to
simplify reporting. That is, we divide co-evolution into independent
platform development and independent application development to
present the challenge in separate from the two different perspectives.
Furthermore, we aggregate independent platform development and
interface stability, as these two challenges are strongly related. Fi-
nally, we identified two further cross-cutting challenges, that are
platform openness dilemma and compliant software development.
The classification is depicted in Figure 3. The challenges are related
to each other and can often not be treated strictly separately.

Below, we discuss each challenge for the three collaboration
models. Our collection comprises those issues that turned out as
most crucial for the respective challenges and collaboration models
within ISECO-A and ISECO-B. Nevertheless, we see the possibility
that many of our findings may be generalized to further similar
ecosystems. We discuss the generality of our study in Section 5.

In the remainder of this paper, we use the notation (x/y) to denote
that a finding is confirmed by data of x out of y interviews that were
relevant for the respective collaboration model. None of the findings
is contradicted by any collected data.

‘ Platform Openness Dilemma ‘

‘ Technical Integration ‘@‘ Independent Platform Development ‘

13 N T

‘ Independent Application Development ‘@‘ Qualities ‘

‘ Compliant Software Development ‘

Figure 3: Architecture challenges for ISECOs.

4.1 Platform Openness Dilemma

The platform openness dilemma targets the selection of an ap-
propriate point in time where the platform should be opened to the
clients. There are contrary forces that justify either an early platform
opening approach or a late one. On the one hand, requirements en-
gineering was to a major part performed in the organizational units
who have the appropriate knowledge in their domain. Therefore, an
early involvement of the clients was essential in order to understand
their development use cases. On the other hand, providing a plat-
form to clients that is still growing, changing and maturing almost
inevitably results in technical debt that needs to be costly refactored
as a part of a maturing process. The focal question is: Which level
of maturity is required before opening the platform and to which
extent the clients’ business pressure and requirements are missed
if the platform is opened too late? For both ISECOs, the schedule
pressure for product releases of multiple clients required the key-
stone to open the platform in early development phases. Below, the
challenge is discussed in detail for each collaboration model.

4.1.1 PLE for ISECOs

Platform opening approach. For both ISECOs, the core-clients’
requirements differed according to their business objectives. All of
them were involved in architecture decision making, so that coming
to mutual agreements could take significant amounts of time. Fur-
thermore, the clients’ development use cases were not completely
fixed right from the beginning. The mission to meet the different and
partially unknown needs led, for both ISECOs, to an optimistic open-
ing approach that supported different concepts. A large number of
interfaces® were publicly accessible and implemented extensibility

IFor ISECO-A, SUSAN and TRACY release their products few
months after the platform release. STEPHEN releases decoupled.
2The term interface is broadly defined for this paper, that is an
interface is everything that is offered to clients, for example APIs,
extension points, services or scripting languages.

in advance. This development context delivered more than one way
to achieve the same goal. In conjunction with the difficulty to collect
data on how clients are actually using the platform, and the not yet
matured architecture guidance and governance (G&G)? measures,
technical debt was accumulated, for instance, through unintentional
dependencies, unexpected platform usages or inconsistencies.

Maturing process. The maturing process worked iteratively based
on the clients’ feedback. Yet, due to the feature-driven development,
the remediation of technical debt requires strong arguments for the
benefit of its removal. Especially changes without visible customer
benefit have proven difficult to negotiate. The business impact needs
to be argued to the product management of all affected organiza-
tional units, whose primary focus is on the realization of features
their customers request. The explicit and systematic management
of technical debt has been identified as one of the core issues to
achieve transparency and take informed decisions.

Findings 1.1: The number of core clients, their schedule pressure,
and their unknown needs require an optimistic opening approach
(9/11). This provokes technical debt (9/11) that must be managed
explicitly (8/11).

4.1.2 Platform Reuse for ISECOs

Platform opening approach. The primary focus of the platform
did not include the business cases of consumer clients. Their devel-
opment use cases are not well known and of lower priority compared
to core clients. Combined with an optimistic opening approach, this
increases the risk of unanticipated platform usage and, consequently,
of technical debt. This was especially the case for STEPHEN, who
joined the ecosystem in the initial phase where the absence of expe-
riences hampered the identification of technical risks. In fact, this
led to problems regarding performance and memory consumption,
as concepts were used formally right, but significantly differed in
the expected qualities, which was not anticipated by the keystone.

Maturing process. The platform matures based on the needs of
core clients. Whereas the mutual understanding of the business
cases has improved, the keystone is, due to the organizational dis-
tance, still not constantly aware about the actual platform usage by
consumer clients. Thus, as part of the maturing process, consumer
clients have to spend considerable efforts to adapt to changed or
discontinued platform interfaces. This is a challenge all clients of
this collaboration model were concerned with.

Findings 1.2: The low involvement in platform scope and deci-
sions significantly increases technical risks during the optimistic
opening approach for consumer clients (5/5).

4.1.3 Decoupled PLE for ISECOs

Platform opening approach. The keystone’s core competence
has not been in the domain of the extended core clients. Hence, an
early alignment and involvement is even more important to under-
stand their needs. On the other hand, a more restrictive opening
approach is required since reactive removal of technical debt will be
extremely costly within this decoupled context. However, this is a
challenging and time-consuming task. For ISECO-B, the core assets
are interconnected within the architecture and need to be carved out
first. Additionally, the core assets have dependencies to core-client
applications that should not be broken. Finally, for maintenance rea-
sons the aspired result is only one single code base for the keystone.
In fact, the carve-out activities are still in progress, but extended
core clients have already started to develop their applications upon.

3According to Harrison et al. [15], architecture guidance and gover-
nance is the practice and orientation by which software architectures
are managed and controlled at an organizational-wide level.

Maturing process. The decoupled software development requires
using already matured core assets only, which possess a high degree
of stability. For ISECO-B, the main challenge is to complete the
carve-out with least possible side-effects. Experience has shown
that forbidden, but programmatically reachable parts of the platform
are used under schedule pressure when needed, carrying the risk of
technical debt. Consequently, there is the need to explicitly define
those parts that are allowed to use and to either strictly govern
extended core clients for adherence or perform explicit violation
management right from the beginning.

Findings 1.3: The decoupling requires a restrictive opening ap-
proach (5/5), although extended core clients need to be involved
in early stages (5/5). Architecture G&G must be established to
avoid or, at least, to explicitly manage technical debt (5/5).

4.2 Technical Integration

This challenge is concerned with processes and architecture mea-
sures that need to be applied to enable clients to integrate their
applications into the platform. Below, we discuss the specific chal-
lenges that arise for each collaboration model in more detail.

4.2.1 PLE for ISECOs

For both ISECOs, the keystone and core clients develop a com-
mon set of products that are jointly distributed. Thereby, synergies
among client applications shall generate added value for customers.
Furthermore, clients often need to extend the platform with spe-
cific functionality that is not offered as commonality®. Thus, the
applications need to be integrated deeply into all layers of the ar-
chitecture. Additionally, in some cases, there is the need to enable
integration among client applications, which increases complexity
once more. The deep integration implies dependencies that restrict
independent development, discussed in detail in a challenge below.
Finally, the coupled product release schedules as well as the strongly
interconnected architecture require short integration cycles and a
comprehensive understanding of the others’ contributions.

Findings 2.1: Core clients require a deep integration of their
applications (11/11), short integration cycles (10/11), and an un-
derstanding of the others’ contributions (10/11).

4.2.2 Platform Reuse for ISECOs

SUSAN, STEPHEN and TRACY have the solely responsibility
to integrate their applications. In principle, they can select their
integration frequency independently. In practice, the need for added
features, improved qualities and feedback call for achieving short
integration cycles. To shorten the comparatively long loops was a
critical factor for TRACY’s decision to become a core client. The fact
that the platform is not explicitly aligned with the consumer-clients’
needs inevitably results in more integration efforts. Awareness about
this and appropriate measures are crucial for the client’s success. For
instance, SUSAN proactively investigates about a quarter of her work
for contributing to platform development. Finally, some consumer-
client applications not only build upon the platform but also on top
of several core-client applications that are reused. The integration
problem is rather obvious: Those applications were initially not
designed as platform and thus have no stability guarantees and lack
supporting architecture G&G.

Findings 2.2: Consumer clients have to cope with increased inte-
gration effort (5/5), and intend to shorten integration cycles despite
sacrificing autonomy (4/5).

4For ISECO-A and ISECO-B, commonalities are features that are
required by more than one core client or extended core client.

4.2.3 Decoupled PLE for ISECOs

ISECO-B comprises several extended core clients with autono-
mous software-engineering life cycles and decoupled release sched-
ules. They only reuse selected core assets of the platform. There
is the need for integration processes and architecture measures that
enable them to independently integrate their applications into pro-
vided sets of the core assets. In addition, they also need to integrate
existing components they want to reuse. For ISECO-B, there is even
the challenge to cope with interoperability, as some of their existing
components were designed for different runtime infrastructures.

Findings 2.3: Extended core clients require processes and mea-
sures that allow to integrate the core assets with their applications
independently and with little effort (5/5).

4.3 Independent Platform Development

Independent platform development targets the capability of the
platform to evolve independently. The platform regularly needs to in-
corporate new features to fulfill the clients’ requirements. Likewise,
out-dated features need to be removed to keep the complexity of
the platform manageable. Finally, accumulated technical debt needs
to be refactored. The architecture challenge is twofold. First, the
keystone must consider dependencies to client applications, which
restrict the keystone’s possibilities of action. Second, breaking
changes must be managed, communicated and need to be carried
out incrementally over a long period to give clients enough time to
align their applications. Below, we discuss the recurring issues of
this challenge for each collaboration model.

4.3.1 PLE for ISECOs

Dependency management. As mentioned above, the optimistic
opening approach exposed a vast number of interfaces accessible
at the beginning. Along with the initially lacking G&G, the archi-
tecture eroded as clients used non-matured or for their use case
improper interfaces, in parts explicitly allowed by the keystone due
to the lack of alternatives. This led to undesired dependencies that
reduce the evolution capability of the platform.

As a part of the maturing process, it has been becoming more
and more clear which interfaces should be exposed to clients. To-
day, there is the need to close the platform reactively, based on
the clients’ feedback. However, the reactive closure necessitates
refactoring activities that, generally, do require clients to change
working applications while having the pressure to release new fea-
tures. Furthermore, clients often require those interfaces and, if
they are commonalities, the keystone first needs to offer alternatives.
There is the need to manage those dependencies explicitly. That
is, existing dependencies need to be removed incrementally when
alternatives are available, and new undesired dependencies need to
be tracked and are only allowed temporarily upon explicit consul-
tation. Thereby, consensus among all affected parties is required
as the keystone does not have authority to give directions. Further-
more, the keystone relies on the clients’ cooperation as adherence
to architecture guidelines cannot be strictly enforced.

Breaking changes. Interfaces cannot be kept strictly static and
need to evolve over time. Thus, the keystone must manage breaking
changes for interfaces that are explicitly intended for client use.
Breaking changes not only concern the syntax but often also non-
functional aspects, like behavior and assumptions, which turned out
to be the key challenge. As consensus is desired, core clients can
veto the adaptation if they can provide conclusive arguments. A
transparent decision process weighting up the different arguments is
required at this point. There is also the need for a change process that
allows to negotiate and communicate changes significantly ahead

of time of adjustments to give clients the opportunity to assess the
impact, to vote and to align their applications if mutually agreed.

Findings 3.1: The optimistic opening approach lead to undesired
dependencies of applications (8/11) that block the platform’s evo-
lution capability (8/11) and must be managed explicitly (7/11).
Breaking changes must be mutually agreed (11/11), communi-
cated in due time (9/11) and carried out incrementally (10/11).

4.3.2 Platform Reuse for ISECOs

Dependency management. The platform evolves when required
by the business of the core clients, even in the case that the adap-
tation break applications of consumer clients. Nonetheless, the
keystone tries to consider their needs and platform adaptations are
not appropriate when they endanger the business success of the
consumer clients. The actual difficulty is rooted in the different
business cases, the low influence in platform scope and decisions
and, for ISECO-A, the large organizational distance. The keystone
does generally not know about the exact interface dependencies of
consumer clients to the platform. In order to consider them there is
the need to provide these information to the keystone along with the
estimated impact of a potential adaptation.

Breaking changes. As for core clients, semantic changes turned
out to be the key problem. As mentioned before, consumer clients
are of lower priority, so their possibility to veto changes is much
more restrained. As a result, consumer clients restrict the indepen-
dence of the keystone only to a limited extent.

Findings 3.2: The platform commonly evolves when required
by its core business, even if adaptations break applications of
consumer clients (5/5). The keystone tries to consider them (5/5),
but does commonly not know which interfaces are used and how
they are used (5/5).

4.3.3 Decoupled PLE for ISECOs

Dependency management. The keystone needs to deliver selected
sets of core assets to extended core clients. In order to fulfill their
varying business cases, extended core clients need different com-
binations of the core assets, partially in different versions. As a
consequence of the decoupled product release schedules, it must be
possible to develop, build, release and deliver those required sets in-
dependently from each other. Hence, strict dependency management
between the different core assets is required.

As for core clients, also the dependencies among client applica-
tions and core assets need to be managed to preserve the keystone’s
independence. The decoupled development context and the poten-
tial large number of extended core clients make this particularly
challenging, as the keystone will not be able to track dependencies.
Consequently, significantly more restrictive approaches are required.
There is the need to explicitly define those dependencies that are
allowed and to govern clients for adherence as the keystone will
need to act resting upon those assumptions. However, the not yet fin-
ished carve-out activities already required four violations at PINO’s
pioneer application that are noticed with concern.

Breaking changes. As for core clients, the keystone must manage
breaking changes. In particular, there is the need to differentiate
between changes that affect clients who built their applications upon
released core assets and need to migrate to newer versions, and those
that only affect clients who build their applications in parallel upon
the current stage of development in order to release their application
upon the latest version. Again, the focus is on behavioral changes.

For changes between releases, the situation is as follows. The
decoupled life cycles and the higher heterogeneity among extended

core clients require a higher degree of stability, longer periods to
undertake the adjustments and a more predictable change process
compared to core clients. However, the keystone cannot always
assess the impact of interface changes as, first, the keystone’s core
competence is not in the domain of extended core clients and, sec-
ond, clients partially need to deviate from architecture guidelines
to achieve their business objectives. Hence, they must support the
keystone in testing interfaces according their actual usage.

Breaking changes during development are allowed, but need to
be published through a change process attending the development
phase, similar to the change process for core clients.

Findings 3.3: The keystone must manage dependencies among
core assets (4/5). Allowed dependencies to applications must
be defined in advance and adherence must be governed (4/5).
Breaking changes of released core assets are not allowed or must
be undertaken predictably over long periods (5/5). Extended core
clients must support the keystone in testing interfaces according
their actual usage (4/5).

4.4 Independent Application Development

All clients are self-contained profit centers. They aim at pre-
serving their independence for being able to optimally achieve their
objectives. For that reason, some clients chose to explicitly decouple
their development from the keystone to fulfill their varying business
cases and to reduce the impact of platform adaptations. Furthermore,
not all features and changes required can be processed by the key-
stone instantly. Hence, innovations, even if there is reuse potential
among clients, sometimes take place on client side. To enable reuse
afterwards, those innovations either need to be handed over to the
keystone or need to be shared directly with other clients. Below, we
discuss the challenge in more detail along each collaboration model.

44.1 PLE for ISECOs

Decoupling. For both ISECOs, the keystone and core clients de-
velop a common set of products that are jointly distributed. Thereby,
synergies shall generate added value for customers. Thus, a decou-
pling of the client applications is only partially desired. Nevertheless,
clients partially need to decouple in order to optimally achieve their
objectives and to reduce the impact of platform changes.

Feature and change requests. A crucial challenge for both ISECOs
are the limited development capacities of the keystone. As a bottle-
neck the keystone may slow down the innovation potential of the
ecosystem. Multiple clients require plenty of platform adaptation
and features. In addition, the generic and reusable implementation
within the platform is normally time-consuming. Nevertheless, com-
monalities shall not be realized many-times on client-side. In fact,
the keystone can frequently not satisty the great demand instantly,
resulting in long waiting times. Consequently, in some cases, clients
of both ISECOs tend to develop required innovations with platform
impact by themselves, in particular, for example, influential clients
like DONNIE. Further clients may then want to reuse those devel-
opments afterwards. To enable reuse, exchange mechanisms are
required so that either the keystone can incorporate the innovations
into the platform, or that clients can share them directly among each
other. This is a challenge all interviewees were concerned with.

For example, DONNIE handed several components over to the
keystone. The architecture challenge was twofold. First, the transfer
implicated loss of control and effort for DONNIE, as the compo-
nents were interconnected with his application architecture. Second,
the keystone needed to incorporate them into the platform without
breaking applications build upon. This has been quite challenging
as there has not been immediate benefit for all other clients, who

still work with an old variant of the components. Due to that, the
keystone still needs to maintain both variants. However, to reduce
maintenance effort, the old components will be discontinued in the
future. Thus, clients will either need to adapt their code or take over
the maintenance for the old components. This examples illustrates
how single clients can significantly influence the ecosystem.

Findings 4.1: The limited development capacities of the keystone
limit innovation capabilities (11/11). Clients develop innovations
with platform impact by themselves (9/11). To enable reuse, either
the keystone must incorporate them into the platform (9/11) or the
clients must share them directly among each other (5/11).

4.4.2 Platform Reuse for ISECOs

Decoupling. As already mentioned, platform adaptations are
generally performed when required by the core business. Further-
more, the change process is not aligned with the needs of consumer
clients. Instead, they have to take the initiative to get informed about
changes and to estimate their impact. The high effort that results
from changes, especially for those that were not announced in due
time, is a problem all consumer clients are concerned with. It is one
of the most crucial reasons for TRACY to become a core client. As a
consequence, consumer clients must decouple their applications to a
large extent to reduce the impact of changes, even if at the expense
of other qualities, for example, lower performance.

Whereas SUSAN and TRACY decoupled their applications right
from the beginning, STEPHEN initially built his application directly
upon the platform. The changing interfaces of the evolving platform
resulted in adaptation effort and the final decision to refactor the
application to be less dependent on the platform.

Feature and change requests. Due to the comparatively low re-
funding of the deliveries and, for ISECO-A, large organizational
distance, additional features and changes generally need to be re-
quested officially, in some cases with top management support. They
are of lower priority and processed dependent on the current work-
load for the core business and the urgency of the request. This often
results in long waiting times or requests that may not be processed
at all and, thus, finally require workarounds by consumer clients.

Findings 4.2: Consumer clients must decouple applications to
reduce the impact of platform changes (4/5). The low priority
for feature and change requests often cause long waiting times or
require workarounds by consumer clients (5/5).

4.4.3 Decoupled PLE for ISECOs

Decoupling. Each extended core client has a different business
case and partially needs to make design decisions different from the
keystone’s recommendations. For example, PINO wants to execute
core assets in dedicated processes, without using the container the
keystone provides. The question that needs to be answered is the
following: Which degree of independence do the extended core
clients require for fulfilling their business cases and how many error
sources are provoked through this additional flexibility? This is a
controversial issue all parties of this collaboration model discussed.
The fact is, independence is an important characteristic that the key-
stone must enable if the clients’ business drivers require. However,
this also implies the need for additional architecture G&G to hinder
architectural erosion that the additional flexibility enables.

Feature and change requests. As discussed for core clients, the
limited development capacities by the keystone are also a crucial
challenge for this collaboration model. In addition, the keystone’s
core competence is not in the application domain of extended core
clients. So even if several clients require the same feature, the

keystone might not be able to provide it. Therefore, similar to PLE
for ISECOs, there is the need to develop those features on the client
side, ideally even collaborative across client organizational units.

Findings 4.3: The varying business cases of extended core clients
require additional flexibility, (5/5) which provokes error sources
(4/5) calling for additional architecture G&G measures (4/5). Sim-
ilar to PLE for ISECOs, they partially need to develop commonali-
ties by themselves (5/5), in some cases aspiring joint development
across clients (5/5).

4.5 Qualities

Products that are developed within the ecosystem consist of de-
velopments of several organizational units. The compliance with
quality requirements generally need to be managed across all in-
volved participants. The most prominent qualities are the developers’
habitability and maintainability with regard to the internal software
quality and reliability, time behavior and memory utilization with
regard to the external software quality. Below, we discuss the recur-
ring issues of this challenge along each collaboration model in more
detail.

4.5.1 PLE for ISECOs

Internal software quality. The varying needs of the numerous
clients require a very generic, highly configurable and extendable
platform, often by means of metadata or internal domain-specific
languages (DSLs) for which there exists only limited tool support.
For both ISECOs, this led to a rather uncomfortable and error-prone
development context for metadata and DSLs. Error sources are often
not obvious and can only by identified by means of time-consuming
debugging. In addition, the resulting complexity extends the settling-
in periods for new developers. Most interviewees argued that there is
the need to establish a more habitable development environment that
supports developers to understand the construction and intentions
of the system in this regard. Furthermore, clients feel the need
to support their efficiency by providing more developer guidance
and governance with early feedback. However, respective issues
are often specific to the development context and the creation and
maintenance of counteractive measures, such as tool support, is
generally costly.

The interviewed architects considered it essential to strive for
consistent internal quality and to balance it with feature development
accordingly. However, external quality issues with direct customer
and product management visibility tend to gain more attention. To
achieve transparency, there is the need for a quality model that
correlates respective measures with the relevance for the product
objectives of all organizational units.

External software quality. Core clients develop their applications
upon one common platform instance and share available resources.
Hence, there is the need to ensure that applications do not impair
each other in order to preserve the reliability of the overall system.
Furthermore, for both ISECOs, this situation leads to challenges
regarding time behavior and memory utilization, and requires the
keystones to manage resource consumption, for example to restrict
memory usage. Reliability, time behavior and memory utilization
are the qualities the interviewees were most concerned with.

Frequently, those quality issues do not arise until several ap-
plications are executed simultaneously. Therefore, they need to
be handled jointly by the keystone and multiple clients. For both
ISECOs, there is the need to guide developers with quality patterns.
Furthermore, there is the need for measures that allow to visualize
and analyze causes and effects of quality problems across organiza-
tional units. This must be done close to point in time where code is
created in order to assist developers with early feedback.

Findings 5.1: ISECOs require special attention on measures that
increase the developers’ habitability (10/11). There is the need
to achieve transparency on the business impact of internal quality
issues (9/11). External qualities often must be handled across orga-
nizational units (11/11). The most crucial ones are time behavior
(11/11), memory utilization (9/11) and reliability (7/11).

4.5.2 Platform Reuse for ISECOs

Internal software quality. With regard to the developers’ hab-
itability, this is a similar situation as for core clients. In addition,
platform and G&G measures are not explicitly geared to the needs of
consumer clients. For instance, whereas some interfaces reveal too
much functionality or are not needed at all, some required function-
ality is missing. This may result in a lack of orientation points for
developers. Moreover, the low priority for support and, for ISECO-A,
the large organizational distance, complicate the identification of
suitable contact persons and the access to architecture G&G. In
terms of habitability, the consumer-clients’ architects are in charge
to align the environment with the needs of their developers.

External software quality. As a result of the different business
cases, consumer clients generally have different requirements re-
garding external qualities. For example, SUSAN needs to process
much more data compared to core clients. In fact, the business cases
of all consumer clients are at the capacity limit of the platform, lead-
ing to considerable challenges regarding time behavior and memory
utilization. In order to consider them in further decisions processes,
the keystone must be aware about their actual platform usage, their
quality requirements and the quality problems they have. Further-
more, consumer clients need to know how the platform should be
used to accomplish their business. There is also the need to visualize
the problems and to guide and govern developers. However, most
important is the common commitment to jointly analyze problems
and identify solutions, and own initiative by consumer clients.

Findings 5.2: ISECOs require special attention on measures that
increase the developers’ habitability (5/5). Consumer clients must
cope with increased external-quality problems (5/5) due to their
different business cases (5/5).

4.5.3 Decoupled PLE for ISECOs

Internal software quality. The situation is similar as for core
clients. In addition, for ISECO-B, extended core clients generally
also make use of legacy components that are developed and main-
tained independently, partially by use of different technologies and
tools. Consequently, it is the business of the clients’ architects to
bring the different worlds together in order to create a more habitable
environment for their developers.

External software quality. As the keystone’s core competence is
not in the application domain of extended core clients, they must
achieve transparency for their quality requirements, and they need
to be involved in concept development and architecture decision
making. Thereby, the identification of tradeoffs to satisfy the differ-
ing needs turned out as particularly challenging. Furthermore, the
keystone is not able to test core assets extensively with regard to ex-
ternal qualities. Instead, as with the challenge Independent Platform
Development, it is the clients’ responsibility to support the key-
stone in testing and to provide feedback. As for core clients, there
is the need to visualize arising defects along with the responsible
organizational units and to guide and govern developers.

Findings 5.3: ISECOs require special attention on measures that
increase the developers’ habitability (4/5). With regard to exter-
nal qualities, extended core clients must support the keystone in
architecture decision making (5/5) and testing (4/5).

4.6 Compliant Software Development

Compliant software development is a cross-cutting issue that
relates to all challenges discussed so far. It targets regulations that
must be handled across the ecosystem and the establishment and
execution of architecture G&G to assist and check for compliance.
This requires to decide on topics that are most relevant for the
ecosystem, to decide on processes and measures to execute G&G
and to define roles and responsibilities across the ecosystem that
support the overall approach. In doing so, the keystone acts as
driving force behind but does not have power to direct. Below, these
topics are addressed in detail for each collaboration model.

4.6.1 PLE for ISECOs

Decide on topics. The main topics are covered by all challenges
discussed so far and target intended platform reuse and those issues
that need to be regulated across organizational units, for instance
architecture dependencies, interface changes or coding styles. An
important step towards establishing compliance is to have the orga-
nization enabled for exercising compliance. For that reason, costs
and benefits need to be transparent to all organizational units upfront
and agreed. What matters is to build a consistent understanding and
consensus on topics and respective regulations. Different expecta-
tions may lead to effort on all sides. For instance, for ISECO-B,
there initially was no consistent understanding on which parts of
the platform serve as sample application only and are not intended
for direct reuse. This led to undesired dependencies which, today,
increase maintenance effort.

Decide on processes and measures. In order to enable compli-
ant software development, there is the need to communicate archi-
tectural intentions and imposed regulations. The standard that is
required regarding the management of technical knowledge is ex-
pectably high in such a decentralized context. Relevant information
need to be tailored and communicated coherently with regard to the
varying development use cases of all organizational units.

Furthermore, it is necessary to establish a process that supports
architecture G&G activities as their execution requires an effective
collaboration across organizational units. In addition, there is the
need to provide tools that govern developers for compliance, foster
their mindset through early feedback and motivate them through
defined goals and continuous improvement. There is also the need
to provide tools to support architects to systematically and continu-
ously monitor compliance. To reduce effort, the compliance process
should be automated where possible. However, manual checks like
reviews are unavoidable as expert knowledge is often required. As
the establishment of processes and tools is time-consuming an active
contribution by the clients is required.

As this is a consensus-based environment strict adherence to all
defined guidelines cannot be enforced across the ecosystem. It is
the self-responsibility of each organizational unit to maintain com-
pliance. Hence, it is highly necessary to establish an organizational
mindset towards compliance. Unfortunately, feature and schedule
pressure within both ISECOs regularly result in violations by several
organizational units, requiring countermeasures to avoid architec-
ture erosion. Moreover, regulations, processes and measures were
not fully defined at the beginning, but evolved progressively over
time. Consequently, there is also the need to allow for pragmatism
if required, but violations must be managed explicitly in order to
keep them in mind and to remedy them incrementally later on.

Define roles and responsibilities. Besides establishing a set of
regulations and mechanisms to be checked at various phases of
the development processes, it’s equally important to agree on and
establish roles and responsibilities across organizational units that
support the compliance process. For both ISECOs, initially not spec-

ified contact persons and responsibilities led to loss of development
efficiencies and technical debt as required guidance could often not
be requested and governance was not executed continuously.

Findings 6.1: Ensuring compliance requires the establishment of
architecture G&G (11/11). This includes transparency on costs
and benefits (9/11), consensus on regulations (10/11), tailored
guidance (8/11), supporting processes and tools (10/11), early
feedback (10/11), defined contact persons (8/11) and pragmatism
(11/11) along with explicit violation management (8/11).

4.6.2 Platform Reuse for ISECOs

Decide on topics. The platform is not explicitly designed for
needs of consumer clients. Consequently, as discussed for the chal-
lenges above, they require guidance that is tailored to their specific
development use cases to reuse the platform appropriately. What
matters most is not a set of commonly agreed regulations, but the
communication of general architecture concepts. Especially the
transfer of tacit knowledge proved difficult. Often, there are differ-
ent ways to achieve the same goal. Consumer clients must be aware
about intentions behind the concepts to determine those that are suit-
able for their purposes and to apply them correctly. It is a learning
process that requires both, continuous feedback by consumer clients
to make the keystone understand their needs, and continuous feed-
back by the keystone to ensure proper platform usage with regard to
their development use cases. As consumer clients are of lower prior-
ity, this process necessitates a considerable degree of own initiative
on the side of consumer clients. This was an essential differentiator
among SUSAN and STEPHEN. Whereas SUSAN were committed
to seek for and give feedback right from the beginning STEPHEN
initially tended to develop his application widely independent.

Decide on processes and measures. It is the consumer-clients’
responsibility to establish processes and measures in order to main-
tain compliance to the specifically-tailored guidance offered by the
keystone. In addition, they require access to the architecture G&G
measures that are offered to core clients and need to align them
with the needs of their developers. For all consumer clients, late
provision of this G&G led to temporary deficits in platform usage.

Define roles and responsibilities. There is the need to define
roles that are responsible to filter, prioritize and mediate requests.
This is essential to enable effective collaboration within this more
decoupled context. For instance, initially missing contact persons
led to development inefficiencies for STEPHEN, and to increased
expenditure for the keystone to process the number of requests that
were submitted directly over bilateral relations among developers.

Findings 6.2: Ensuring appropriate platform reuse by consumer
clients requires their continuous commitment to communicate
their development use cases (5/5), specifically-tailored guidance
and feedback by the keystone (4/5), access to the architecture
G&G of core clients (3/5) and roles who mediate requests (4/5).

4.6.3 Decoupled PLE for ISECOs

As this situation is similar to collaboration model PLE for ISECOs
we dwell on differences only: Extended core clients have different
development landscapes and define, build, test and distribute their
products autonomously. Within this decoupled context it will be
hardly possible to track compliance across the whole ecosystem.
If organizational units do not adhere to regulations it will not be
possible to guarantee that clients will be able to follow the evolution
of future core-asset releases with reasonable effort. Consequently,
this situation requires a more decentralized compliance process and
significantly more strict adherence to architecture guidelines on

client side. Even so, they have varying business cases that partially
require to deviate. In terms of sustainability, there is the strong need
to agree upfront on regulations and consequences for not adhering.

Findings 6.3: Ensuring compliance has the same enabler as dis-
cussed for core clients (5/5), but requires a more decentralized
compliance process (4/5) and significantly more strict adherence
to architecture guidelines on client side (5/5).

5. DISCUSSION

Limitations and generality. In the following, we discuss con-
struct, internal, conclusion, and external validity threats.

Threats to construct validity concern the relation between theory
and observation. We mainly performed interviews that rely on the
participants’ statements, which might be subjective. To limit this
effect, we based our findings exclusively on statements that are
confirmed by multiple interviews. Furthermore, interview questions
might be interpreted differently by researchers and interviewees.
To address this, we reflected the notion of decentralized software
engineering to their projects and discussed collaboration at the be-
ginning. Regarding completeness, we closed each session with open
discussions to check if there are challenges we were not aware of.

Threats to internal validity concern co-factors that could influence
our results. In our case, interviewees might have given answers that
do not fully reflect reality as they were recorded. To address this, we
guaranteed anonymity and assured that we will seek for feedback on
conclusions to avoid misunderstandings. In addition, results might
be biased as we only interviewed architects but no other roles. Due
to the number of organizational units this was necessary to keep the
effort manageable. However, all architects were well experienced, in
central positions and worked closely together with product managers
and developers. We asked them to consider all viewpoints.

Threats to conclusion validity concern the relation between treat-
ment and results. As this is a qualitative study, data analysis depends
on our interpretation. The main work was performed by the first
researcher but results were carefully checked by the two others.
Additionally, as described in Section 2.2, we used recommended
methods to improve validity, such as triangulation, study protocols,
member checking and spending sufficient time with the cases.

Threats to external validity concern the generalization of our re-
sults. We investigated only two of the largest ISECOs at Siemens.
Hence, there is the possibility that some results are specific to them.
However, our findings stem from characteristics of the respective
collaboration models and do not depend on technologies, program-
ming languages or tools. Each finding is confirmed by data of
multiple independent organizational units, and the interviewees’ av-
erage professional experience was more than two decades. Thus,
we believe that most of our findings do also hold for other ISECOs
that employ similar collaboration models.

Implications for practitioners. Software reuse has been a long
standing ambition of the software industry. ISECOs are a pow-
erful approach to enable intra-organizational reuse across various
products developed by multiple self-contained organizational units.
However, they require a range of specific architectural measures to
enable effective software engineering in such a decentralized envi-
ronment. Practitioners who follow our collaboration models, either
adopting new ISECOs or transforming existing ones, can consider
our findings to carefully reason on suitable architectural measures in
advance. If they do not, according to our results, it is likely that they
will face those challenges later on and need to employ counteractive
measures reactively, which generally results in increased efforts.

Implications for researchers. Software engineering aims at pro-
viding design principles, methods and tools for improving software
development. Research in software engineering is dependent on

input from industry to identify crucial real-world problems worth
to explore. We have outlined a broad field of real-world challenges
faced by practitioners in two large-scale projects that involve various
self-contained organizational units. We hope that this also inspires
other researchers to address these challenges.

6. RELATED WORK

Rommes et al. [27] discuss architecture, process and organization
aspects of their medical imaging product line, which involves a
set of independent product groups that are distributed across their
organization. Van Ommering et al. [22] coin the term product
population for their decentralized software product line. Toft et
al. [31] present a community-driven approach that allows to share
components across their products without involving a central plat-
form organizational unit. Dinkelacker et al. [10] depict the adoption
of open-source software development practices within their orga-
nization. There are a couple of further researchers who analyze
large-scale intra-organizational development [2, 7, 25, 30].

All of them investigate projects where the development takes
place in several self-contained organizational units. Based on ex-
perience, they discuss challenges they face and approaches that are
applied to counter them. However, they do not study different modes
of collaboration nor do they relate resulting architecture challenges
to them. We carried out an in-depth case study to this end.

Grinter et al. [13] study four models that are applied to coordinate
geographically distributed R&D work. They describe the respective
benefits and difficulties as well as general challenges. Based on
action research, Bosch et al. [6] present architecture, process and or-
ganization challenges as well as success factors of five collaboration
models for large global software development.

While their work focuses on product lines, global development
and open ecosystems, we focus on intra-organizational projects
that involve independent spheres of authority. In this sense, our
investigation on ISECOs complements their work.

There are also some studies that investigate the emerging disci-
pline on software ecosystems. For example, Hanssen [14] studies
a software product line organization and its transition towards a
software ecosystem. Greiler et al. [12] conduct a study of testing
practices for the Eclipse ecosystem. They identify the need to in-
volve ecosystem partners in platform testing, which is in line with
our findings 3.3 and 5.3. Robbes et al. [26] analyze the impact of
API deprecations on developers. These studies do investigate open
software ecosystems that are quite different from ISECOs.

7. CONCLUSION

Intra-organizational, yet decentralized software projects that in-
volve multiple self-contained organizational units require suitable
architectural measures instead of detailed managerial orders to co-
ordinate development. We conducted an in-depth case study on
collaboration and architecture challenges for two of the largest (500
and 950 developers) decentralized software projects within Siemens.
We found three collaboration models, ranging from high to low
coupling. For each collaboration model, we have identified a range
of recurring issues and condensed them to a total of 18 key findings.
These allow practitioners who find themselves in one of the collabo-
ration models to carefully reason on suitable architectural measures
in advance. In addition, they outline a broad field of real-world
challenges that need to be investigated by the research community.

8. ACKNOWLEDGMENTS

We thank all participants of our study, especially the 17 interview-
ees, for spending their valuable time. The authors would also like to
thank the anonymous reviewers for their valuable feedback.

9.
(1]

(2]

[3

—

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. Bosch. Design and Use of Software Architectures: Adopting
and Evolving a Product-Line Approach. ACM Press Series.
Addison Wesley Publishing Company Incorporated, 2000.

J. Bosch. Software product lines: Organizational alternatives.
In Proceedings of the 23rd International Conference on
Software Engineering, ICSE 01, pages 91-100, Washington,
DC, USA, 2001. IEEE Computer Society.

J. Bosch. The challenges of broadening the scope of software
product families. Communications of the ACM, 49(12):41-44,
Dec. 2006.

J. Bosch. From software product lines to software ecosystems.
In Proceedings of the 13th International Software Product
Line Conference, SPLC ’09, pages 111-119, Pittsburgh, PA,
USA, 2009. Carnegie Mellon University.

J. Bosch. Architecture challenges for software ecosystems. In
Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA 10, pages 93-95,
New York, NY, USA, 2010. ACM.

J. Bosch and P. Bosch-Sijtsema. Softwares product lines,
global development and ecosystems: Collaboration in
software engineering. In I. Mistrik, J. Grundy, A. Hoek, and
J. Whitehead, editors, Collaborative Software Engineering,
pages 77-92. Springer Berlin Heidelberg, 2010.

L. G. Bratthall, R. van der Geest, H. Hofmann, E. Jellum,

Z. Korendo, R. Martinez, M. Orkisz, C. Zeidler, and J. S.
Andersson. Integrating hundred’s of products through one
architecture: The industrial it architecture. In Proceedings of
the 24th International Conference on Software Engineering,
ICSE 02, pages 604-614, New York, NY, USA, 2002. ACM.
P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures: methods and case studies. SEI series in
software engineering. Addison-Wesley, 2002.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. The SEI series in software
engineering. Addison Wesley Professional, 2002.
J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson.
Progressive open source. In Proceedings of the 24th
International Conference on Software Engineering, ICSE *02,
pages 177-184, New York, NY, USA, 2002. ACM.

K. M. Eisenhardt. Building theories from case study research.
Academy of Management Review, 14(4):532-550, 1989.

M. Greiler, A. v. Deursen, and M.-A. Storey. Test confessions:
A study of testing practices for plug-in systems. In
Proceedings of the 34th International Conference on Software
Engineering, ICSE °12, pages 244-254, Piscataway, NJ, USA,
2012. IEEE Press.
R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: Dealing with distance in R&D work. In
Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work, GROUP *99, pages
306-315, New York, NY, USA, 1999. ACM.
G. K. Hanssen. A longitudinal case study of an emerging
software ecosystem: Implications for practice and theory.
Journal of Systems and Software, 85(7):1455-1466, July
2012.
R. Harrison and T. O. Group. TOGAF Version 8.1.1
Enterprise Edition. Togaf Series. Van Haren Publishing, 2007.
S. Jansen, M. Cusumano, and S. Brinkkemper. Software
Ecosystems: Analyzing and Managing Business Networks in
the Software Industry. Edward Elgar Publishing, Incorporated,
2013.

[17] R. Kazman, M. Gagliardi, and W. Wood. Scaling up software
architecture analysis. Journal of Systems and Software,
85(7):1511-1519, July 2012.

[18] K. Manikas and K. M. Hansen. Software ecosystems - a
systematic literature review. Journal of Systems and Software,
86(5):1294-1306, May 2013.

[19] P. Y. Martin. Grounded Theory and Organizational Research.
The Journal of Applied Behavioral Science, 22(2):141-157,
Apr. 1986.

[20] J. D. McGregor. Ecosystems, continued. Journal of Object
Technology, 8(7):7-23, Nov. 2009. (column).

[21] D. G. Messerschmitt and C. Szyperski. Software Ecosystem:
Understanding an Indispensable Technology and Industry.
The MIT Press, July 2005.

[22] R. C. v. Ommering and J. Bosch. Widening the scope of
software product lines - from variation to composition. In
Proceedings of the Second International Conference on
Software Product Lines, SPLC 2, pages 328-347, London,
UK, UK, 2002. Springer-Verlag.

[23] K. Pohl, G. Bickle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.

[24] K. Popp and R. Meyer. Profit from Software Ecosystems:
Business Models, Ecosystems and Partnerships in the
Software Industry. Books on Demand, 2010.

[25] D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski,

Y. Natchetoi, B. Naveh, and T. Odenwald. Open collaboration
within corporations using software forges. Software, IEEE,
26(2):52-58, March 2009.

[26] R. Robbes, M. Lungu, and D. Réthlisberger. How do
developers react to api deprecation?: The case of a smalltalk
ecosystem. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 56:1-56:11, New York, NY,
USA, 2012. ACM.

[27] E. Rommes and J. G. Wijnstra. Implementing a reuse strategy:
Architecture, process and organization aspects of a medical
imaging product family. In Proceedings of the Proceedings of
the 38th Annual Hawaii International Conference on System
Sciences - Volume 09, HICSS ’05, pages 312.1—, Washington,
DC, USA, 2005. IEEE Computer Society.

[28] P. Runeson and M. Host. Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering, 14(2):131-164, Apr. 2009.

[29] C. B. Seaman. Qualitative methods in empirical studies of
software engineering. [EEE Transactions on Software
Engineering, 25(4):557-572, July 1999.

[30] J. Sherrill, J. Averett, and G. Humphrey. Implementing a
product line-based architecture in ada. In Proceedings of the
2001 Annual ACM SIGAda International Conference on Ada,
SIGAda ’01, pages 39-46, New York, NY, USA, 2001. ACM.

[31] P. Toft, D. Coleman, and J. Ohta. A cooperative model for
cross-divisional product development for a software product
line. In Proceedings of the First Conference on Software

Product Lines: Experience and Research Directions, pages
111-132, Norwell, MA, USA, 2000. Kluwer Academic
Publishers.

[32] F. van der Linden, K. Schmid, and E. Rommes. Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Springer, 2007.

