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ABSTRACT
The use of managed, type-safe languages such as Java in
real-time and embedded systems is advantageous, as it offers
productivity and especially safety and dependability bene-
fits over dominating unsafe languages. A Java Virtual Ma-
chine (JVM) has to provide an implicit memory manage-
ment system such as a garbage collector (GC), for example,
as explicit memory management through allocation and re-
lease operations by the application developer is prone to
programming errors and may result in a violation of the
type system properties. Real-time systems have specific re-
quirements regarding space and time bounds and a GC has
to ensure that these defined upper limits will not be ex-
ceeded. A proper solution to address this issue is, for ex-
ample, employing fragmentation-tolerant garbage collection
as proposed by Pizlo et al. [16]. Their approach is called
SCHISM/CMR. Based on their work, we developed an alter-
native fragmentation-tolerant GC variant called RT-LAGC,
which is supported by our compiler jino and is part of the
KESO JVM [18]. RT-LAGC is a cooperative GC, that is,
the real-time system developer and the compiler assist the
GC through system configuration (e.g. enough slack time
for the GC to run) and program analyses, respectively. This
is achieved by integrating the GCs in the design process of
the whole system just as any other user application. In RT-
LAGC, we designed a new bidirectional fragmented object
layout. Furthermore, we implemented latency-aware man-
agement of fragmented memory as well as an alternative col-
lection technique for array meta-information. Moreover, the
execution properties of an exemplary application were im-
proved by jino’s extended escape analysis. RT-LAGC is eval-
uated against KESO’s purely incremental non-fragmentation-
tolerant GC called IRRGC and a throughput-optimized stop-
the-world collector named CBGC. A classification of typical
memory patterns for Java objects supports the predictabil-
ity of the examined embedded system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
JTRES ’14, October 13–14 2014, Niagara Falls, NY, USA
Copyright 2014 ACM 978-1-4503-2813-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2661020.2661031

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and Objects; D.4.7 [Operating
Systems]: Organization and Design—Real-time Systems and
Embedded Systems

General Terms
Reliability, Design, Languages

Keywords
KESO, Java, garbage collection, memory management, em-
bedded systems, real-time systems

1. INTRODUCTION
Java is a rather uncommon language in (deeply) embed-

ded systems, though it provides a series of advantages such
as memory safety [1]. As a type-safe programming lan-
guage, Java also provides the foundation for comprehensive
program analyses and runtime system support, which can
be very useful in embedded and real-time systems. Mem-
ory management is an inherent part of such a runtime sys-
tem. Dynamic memory management can be performed in
various ways such as, for example, automated stack alloca-
tion and regional (heap) memory [9] by means of the com-
piler’s escape analysis [5] as well as garbage collection tech-
niques for heap management. Compiler-assisted regional
and stack memories can be managed by low-cost operations,
whose time-predictability can easily be determined. Also,
those techniques are inherently fragmentation-tolerant, since
memory areas are assigned to the respective control flows
and those areas are cleared upon leaving certain parts of
the program. However, some real-time applications exist,
in which the lifetime of objects cannot statically be deter-
mined by the compiler. Moreover, the use of a garbage col-
lector running during the system’s slack time can provide
a better throughput of the application execution, since the
application code itself does not have to perform the mem-
ory release operations. The application developers have to
make sure, for example, that there is enough slack time for
the GC to run. The amount of slack time available can be
determined during system design and by schedulability anal-
ysis [14]. Real-time garbage collection has been addressed
in several projects. Schism [16] implements fragmentation-
tolerant garbage collection on top of a concurrent mark-
region collector. This technique harnesses fragmented al-
location and concurrent replication. We revisited this ap-



proach by combining Schism and latency-aware garbage col-
lection. This garbage collector is called RT-LAGC. The pa-
per is organized as follows: Section 2 presents the KESO
JVM in which RT-LAGC was implemented, as well as the
Schism RTGC. Java objects used in applications are dis-
cussed and categorized in Section 3. Such a classification
is useful to support the design of the embedded real-time
application. Section 4 presents RT-LAGC, its modifications
to Schism and Section 5 evaluates RT-LAGC by contrasting
a throughput-optimized GC, a purely incremental GC and
the fragmentation-tolerant RT-LAGC. The conclusion can
be found in Section 6.

2. KESO AND SCHISM: AN OVERVIEW
In this section, we describe the characteristics of the KESO

JVM that are relevant for the implementation of RT-LAGC
and the basic approach of SCHISM/CMR, which has been
adopted in RT-LAGC.

The KESO JVM.
KESO [18] is designed to be deployed in statically con-

figured embedded systems. In such systems, all relevant
entities of the application as well as the system software
are known ahead-of-time. This type of application covers
many, if not most, traditional embedded applications from
the electronic control units found in appliances to safety-
critical tasks such as the electronic stability program (ESP)
and many other electronic functions found in modern cars.
The important entities contain the entire type-safe source
code of the application and operating-system objects such
as threads (called tasks in AUTOSAR OS [2]), for exam-
ple. Thus, it is not possible to dynamically load new code
or create threads at runtime, which is why KESO is a static
JVM. This scheme allows KESO’s compiler jino to create
a slim and efficient runtime system for Java applications in
embedded systems. Applications can be isolated from each
other by embedding them in so-called protection domains.
Spatial isolation is constructively ensured by the type-safe
programming language and strict logical separation of all
global data (e.g. heap, static class fields). The RPC mech-
anism for communication ensures that object references are
not propagated between domains. The runtime system pro-
vides control-flow abstractions such as threads and inter-
rupt service routines (ISRs) and their respective activation
and synchronisation mechanisms such as alarms and locks
(called resources). KESO’s ahead-of-time compiler jino gen-
erates ANSI C code from the application’s Java bytecode.
While most of the code directly translates to plain C code,
the Java thread API is mapped onto the thread abstrac-
tion layer of an underlying OS. In the case of used JVM,
that abstraction layer is normally provided by AUTOSAR
OS, but the KESO approach can also be transferred to any
other static OS. KESO’s architecture of isolated domains
implicates the strict separation of heaps and static fields,
which leads to disjoint object graphs in the domains. This
allows the memory management strategy to be chosen and
performed individually for each domain.

SCHISM/CMR.
Schism [16] is set on top of a concurrent mark-region

(CMR) GC. It applies fragmented allocation to objects and
arrays if necessary: Objects are allocated in fixed-size non-

moving fragments and larger objects span a set of possibly
non-contiguous fragments. Array meta-data is handled by
a replicated semi-space. Schism achieves heap operations
to be of constant-time complexity by using arraylets that
were previously employed in the Metronome GC [3]: Arrays
consist of a contiguous meta-array called spine, which holds
array meta-information (i.e. pointers to the array fragments
carrying the actual array data). The Schism array layout is
discussed in more detail in Section 4.1.2. Contiguous array
allocation is possible, which is beneficial for throughput as-
pects. In a contiguous array, an element is addressed by

arrayBase + index * elementSize

Using arraylets, the addressing of an element is more com-
plex:

offset = index * elementSize
fragmentIndex = offset / fragmentSize
fragmentOffset = offset % fragmentSize
address = spine[fragmentIndex] + fragmentOffset

Objects are represented as a linked list of fragments as
proposed by the JamaicaVM [17]; object field access is eas-
ily predictable. In Schism, external fragmentation is no is-
sue and fragmentation is bounded due to small fixed-sized
non-moving fragments. Fragments are managed by a CMR
GC. Spines may dynamically adjust their size, thus causing
fragmentation, which is why they are handled by a replicat-
ing semi-space GC. Since spine pointers refer to non-moving
fragments, their information does not need to be updated
during the GC execution. Wait-free barriers for spine ac-
cess can be used. Thus, spines can be copied concurrently
without influencing the application’s performance.

For RT-LAGC, the Schism approach is combined with a
concurrent, incremental and latency-aware mark-and-sweep
GC algorithm we implemented in KESO. Besides a replicat-
ing semi-space collector, a generational collector for spines
has been added. A new fragmented object layout to ef-
ficiently discover references has been designed. The RT-
LAGC can be assisted by jino’s extended escape analysis if
specified.

3. MEMORY PATTERNS FOR OBJECTS
The memory usage of typical Java programs shows specific

traits which should be respected during the design of a real-
time system since information about those usage patterns
can be beneficial. Such application knowledge comprises
the size of an object (Section 3.1) as well as its survivabil-
ity (Section 3.2). Objects can be categorized according to
these characteristics. The categories support the prediction
of the worst-case execution time (WCET) for memory man-
agement, the memory allocation and replenishment rates.
The evaluation of a test application in Sections 5.2 and 5.3
analyses the program according to this classification.

3.1 Object Sizes
In Java, a memory request can clearly be assigned to either

a regular object or an array. Arrays allow random access
to their contents by index, while the position of an object
field is known at compile-time. Usually, Java objects are
relatively small. In contrast to the C++ language, for ex-
ample, Java usually does not store instances by value but
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Figure 1: Value fields (a) and reference fields (b)

rather by reference. Due to this, Java objects are compara-
tively smaller than arrays. Figure 1 illustrates why C/C++
objects are often larger than Java objects: (a) shows ob-
jects (Vector3d position, Vector3d velocity) embedded
in Aircraft. This object placement can be enforced man-
ually by the C/C++ developer, whereas in Java no such
means exists; (b) depicts the normal Java approach, where
position and velocity are put into two separate objects
that are referenced by Aircraft. However, it is possible for
a Java compiler to automatically determine if an object can
be inlined [13] into another object, that means the same
constellation (a) is possible for Java objects as well. This
can have a positive influence on the runtime and memory
consumption, as indirections induced by reference fields are
resolved and administrative data can be omitted. The ex-
istence of the object inlining facility should be respected
during the design of memory management for real-time ap-
plications.

3.2 Survivability of Objects
The overhead imposed by garbage collection significantly

depends on the number of surviving objects. An examina-
tion which objects of a real-time application will definitely
not survive a GC execution helps to both improve upper
space and time bounds and the estimation of those. The
objects are put into categorization classes with respect to
their survivability, that is, if they are able or unable to sur-
vive a GC run1. As jino performs whole-program analyses
on type-safe code, those categories and the objects belonging
to them can automatically be determined: On the one hand,
objects may completely be extracted from garbage collection
according to their categorization. On the other hand, due
to the liveliness criterion and the knowledge of the points in
time the GC is scheduled, the objects’ survivability can be
derived.

3.2.1 Method-Local Objects
Method-local objects are existent for the duration of the

method they belong to and references to them do not leave
the method scope. The information collected by alias anal-
ysis and the computation of the references’ reachability is
used by jino to automatically determine if an object escapes
a method [6], i.e. if the object has to be allocated on the
heap memory or if it can be stack-allocated. Applying es-
cape analysis results in a series of benefits for the real-time

1A GC run or GC execution is one instance of slack time
used for garbage collection.

system:

• Deallocation and allocation are performed by moving
the stack pointer. These are low-cost and time-pre-
dictable operations in a CPU register.

• Method-local objects not residing in a potentially block-
ing method do not survive a GC run, which improves
the upper space and time bounds.

• Only the stacks of potentially blocking tasks need to be
scanned by the GC and this reference search is of com-
plexity linear to the stack’s depth. The stack depth is
known at compile time by computing the call level of
the system call WaitEvent(). However, blocking tasks
must never be invoked in unbounded recursion.

Based on the escape state of an object, we developed the
extended escape analysis (EEA) for extended stack scopes
(ESS): Some method-escaping objects that are allocated in
a method and returned afterwards can be allocated in the
callers’ stack frames (and passed to the original method as
parameters) to further reduce heap objects. The expansion
of the extended stack scope can be configured by the devel-
oper of the real-time application.

3.2.2 Region-Local Objects
Region-local objects escape the method they were created

in, but they are not accessible by other threads. These ob-
jects can be allocated using region-based memory manage-
ment. The safe C dialect Cyclone [9], for example, offers a
region-based type system. Also, the RTSJ [4] specifies man-
ual ScopedMemory. Regions are similar to method frames
and co-exist with them. A region may span multiple method
frames and in turn, a method frame may contain multiple
regions. Region-local objects can have references into their
own and into surrounding regions; however, none of their ref-
erences must refer to an object of a subregion. Like method-
local objects, region-local objects in a blocking method can
survive a GC execution. Extended escape analysis can be
used to fully automatically determine and handle memory
regions: Besides potential stack allocation, objects eligible
for ESS can still be heap-allocated2, but can be managed
on separate bump-pointer heaps which are cleared by reset-
ting the bump pointer whenever the upper method scope(s)
is/are left. We further categorize region-local results as fol-
lows:

• Region-local objects of fixed size

• Region-local objects of variable size

Depending on the configured stack scope expansion, fixed-
size objects can be allocated on the stack or in a separate
region, while variable-size objects are put into a separate
region in the current state.

3.2.3 Thread-Local Objects
Thread-local objects cannot be assigned to regions or ex-

tended stack scopes, but they are never accessed by another

2There are situations where extended stack allocation is not
advantageous, e.g. for some virtual method call constructs:
If the signature of a virtual method is changed due to ESS,
the signature of all other methods that potentially share the
same call site must be changed as well.



thread than the thread they were created by. They have
to be handled by a heap management strategy. In case the
respective control flow does not block, thread-local objects
do not survive a GC run. The average runtime and WCET
of the application in general can also be reduced if an ob-
ject can definitely be determined to be thread-local by the
compiler. Synchronization of the mutator threads of the
application(s) is not needed anymore, which also improves
latencies and blocking times of higher-priority threads.

3.2.4 Thread-Escaping Objects
These objects can be accessed by multiple control flows

and further be categorized into

• Consumable objects

• Non-consumable objects

• Chronicle objects

Consumable objects can be released as soon as they are
consumed. In case the thread blocks between creation and
consumption time, the objects die in the next GC execution.
Otherwise, the consumable objects survive. A use case is,
for example, a higher-priority thread sending work assign-
ments to a lower-priority thread. For the definition of proper
upper space and time bounds, the minimum inter-arrival
time [14] of consumable objects should be determined dur-
ing system design, as the lower-priority thread has to have
enough time to process incoming objects. The number of all
possibly surviving objects can be estimated in the same way.
Non-consumable objects are rarely or never released and
fixed-sized objects of their kind can be allocated statically.
One simple use case for this category is a shared-memory
object expressing a state. Revisiting the above example, the
work assignments could be put as reusable objects into an
non-consumable queue. Chronicle objects allow the appli-
cation to store information on the past. As these objects
survive several GC runs, an upper bound of such objects
has to be determined and they might also be allocated in
a specific heap part to encourage contiguous allocation. As
an example, automotive real-time applications employ AU-
TOSAR diagnostic system modules implementing the UDS
(unified diagnostic services) protocol according to ISO 14229
by using chronicle memory. Also, the CDx application pre-
sented later uses chronicle objects by storing byte arrays in
a bounded buffer for diagnostic purposes.

3.2.5 Uncategorized Objects
By means of the aforementioned categories, it should be

possible to construct type-safe real-time applications. An
upper bound to the number of objects surviving GC runs
is possible. The survivability of other uncategorized ob-
jects should be predictable. Moreover, undead objects –
objects which are referenced but not used by the applica-
tion – should be avoided. They are created when references
to unneeded objects are not reset to null.

4. A LATENCY-AWARE REAL-TIME GC
This section describes the adoptions made from Schism,

how the ideas are integrated into KESO, and the new fea-
tures of RT-LAGC.
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Figure 2: Fragmented bidirectional object layout

4.1 Object Layout
The object layout describes the arrangement of objects in

memory, that is, the position and sequence in which their
instance fields are stored. Instance fields can be subdivided
into primitive-value fields and reference fields pointing to
other objects. In KESO, each non-inlined object contains
an object header that holds information such as the class ID
or a color bit used by the GC for marking objects. Arrays
additionally hold information about their length.

4.1.1 Fragmented Bidirectional Object Layout
The fragmented allocation of objects results in a redesign

of KESO’s current object layout which we call fragmented
bidirectional object layout (FBOL). FBOL is based on the
approach proposed by SableVM [8]. Figure 2 shows exem-
plary Java classes and the resulting fragmented objects as-
suming a 16-byte fragment size on a 32-bit host. The first
lineup (a) illustrates an object of class A with no fragmenta-
tion since it fits entirely into a single fragment. All reference
fields are located above the object header, while primitive
fields are put below. As class A is marked final, no sub-
classes are possible. Since KESO is a static JVM, the final

property of the class can also be implicitly determined by
the compiler. In the second illustration (b), subclasses can
be derived from class A, which necessitates another fragment
and a next pointer referring to it. It should be noted that
next does not point to the beginning of the fragment, but
rather to the last reference field in that fragment. This is the
location of the object header in case of an non-fragmented
object. The last lineup (c) shows a subclass B, whose ref-
erence fields are inserted into the fragment from above and
the primitive ones from below, with next pointing to the
location behind the last reference. Since B has no further
subclasses, no third fragment is needed. The access to an
instance field is of constant complexity: The access to the
A.r0 field resembles the non-fragmented bidirectional lay-
out, while field B.r2 is located in the second fragment. To
get B.r2, one indirection through the next pointer has to
be taken and afterwards two address slots have to be sub-
tracted. Since regular Java objects usually have a small size,
they do not occupy more than a couple of fragments, so the
overhead imposed by indirections is acceptable. By means
of compile-time heuristics or runtime profiling, hot fields can
be placed into fast front fragments for longer chains to opti-
mize the throughput. However, some compiler optimizations
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Figure 3: Fragmented Spine Arrays

may have a negative influence on RT-LAGC and the effects
have to be kept in mind: Object inlining inflates object sizes
but reduces reference accesses during the application execu-
tion. For such large objects, one possible solution is the use
of spines instead of a linked list for fragments to avoid long
chains. Another possibility is to host a separate heap with
an enlarged fragment size that holds the pointers to the re-
maining fragments in-place in the first memory chunk. The
tradeoff between the usual linked-list version using sparse
chain pointers, in-place fragment pointers and spines has
yet to be determined.

4.1.2 Array Layout
The array layout using spines was adopted from Schism.

As mentioned before, arrays are managed by spines. To
avoid updating all references referring to a spine in case of
moving a spine, an unmovable sentinel element which points
to the spine is allocated in the fragment memory. Moving a
spine entails an update to the sentinel fragment only. Figure
3a shows a fragmented vector. Both the sentinel fragment
and the spine contain a length attribute as it is still possible
to allocate contiguous arrays. A zero-length attribute in the
sentinel indicates a fragmented vector and a non-zero value
a contiguous array, respectively. Statically allocated fixed-
size arrays can be stored contiguously and the spine can be
omitted. This procedure saves spine space and speeds up ar-
ray accesses. Execution time and saved space degrade with
an increasing number of fragmented arrays. Alternatively,
contiguous arrays may not be supported at all by using em-
bedded spines as illustrated in Figure 3b. In case of using
this array layout, all arrays have a spine. The choice of em-
bedding a spine depends on the array’s size and saves spine
space.

4.2 Latency-Aware Fragment Memory
Fragments are handled by a latency-aware collection algo-

rithm called LAGC. LAGC is a precise, non-moving mark-
and-sweep GC. It proceeds incrementally, i.e. it can be inter-
rupted at any time except for short and predictable critical
sections as well as stack scanning. In order to ensure the

consistency of memory management data structures, criti-
cal sections are protected by write barriers. Critical sections
are short and of constant complexity to keep the worst-case
reaction time to external events as low as possible, which
is why we name this approach latency-aware. RT-LAGC is
handled by a dedicated control flow called GCTask, which is
assigned the lowest priority in the system so that the task is
scheduled at slack time, that is, other tasks are either inac-
tive or blocked. This is a good moment to perform the GC-

Task, as most tasks will be suspended3 and only the stacks
of blocked tasks need to be scanned. A GC run is per-
formed in the two typical phases of mark-and-sweep GCs.
In the scan-and-mark phase, the live set of objects is de-
termined by scanning all the reference values present in the
application, and the parts of the heap occupied by these live
objects are marked using the traditional tricolor scheme [7].
In the beginning of the scan phase, all objects are white.
When the GC discovers an object reference reachable from
the root set of the application, the memory occupied by the
object is marked as being used and the object becomes gray.
After having scanned all references within the object (and
having colored all referenced objects gray), the object be-
comes black. Upon completion of the scan-and-mark phase,
all objects on the heap are either white or black. In the sub-
sequent sweep phase, the memory of all still-white objects
is reclaimed.

Reference Scanning and Fragment Size.
The LAGC is able to easily discover references: The root

set is defined by static reference fields and local references
on the stacks of blocked tasks. Static reference fields of a
protection domain are managed by an array and local refer-
ences in stack frames are handled by linked stack frames [10].
FBOL is used to physically group references of fragmented
objects. To compute the beginning of the object from a ref-
erence pointing to that object, the number of fragments and
references has to be known. The fragment count is stored
in the runtime type information table. It would be possi-
ble to also put the reference count of each fragment there,
but this would result in a higher memory consumption. In-
stead, the start address of fragment memory is aligned to
the fragment size to be divisible by the fragment size. Pro-
vided the fragment size is a power of two, the start address
of a fragment referred to by the next pointer can be easily
computed: The least-significant bits of the pointer are filled
with zeros according to the fragment size. The fragment size
should be chosen carefully: Too large fragments will result
in large internal cutoff, whereas too small fragments will in-
flate external fragmentation and cause increased overhead
for accesses. Thus, the average object size for the individual
real-time application should be determined e.g. by profiling.

Write Barriers and Atomic Scanning of Task Stacks.
The latency-aware GC uses Yuasa write barriers [19], which

cause an object to be colored gray whenever a reference to it
is overwritten. This approach keeps up the last discoverable
path to a living white object. Write barriers are generated
by our compiler for static references, reference fields in ob-
jects and field writes in an array of object references only,
since they do add noticeable overhead to write operations.

3Consequently, only few objects will survive the GC execu-
tion.



As write barriers are not active on local variables, the task
stacks have to be scanned atomically. To allow for a precise
detection of references, linked stack frames are used for all
methods which do not have run-to-completion semantics –
that is, methods during whose lifetime the GC task may run
because they perform a blocking operation. This property
can be determined at compile time. The stacks of blocked
tasks (being in the waiting state) need to be scanned only,
as other tasks in the suspended state have empty stacks,
since garbage collection is performed at slack time. Scan-
ning the stack of a task has a complexity linear in its stack
size, which is predictable at the time the stack is scanned
by the GC: The GC will scan the task’s stack when it is in
the waiting state, which is only the case in few well-known
locations, where the WaitEvent() function of the operation
system is invoked. Recursive calls complicate the prediction
of the stack size. However, they can be identified at compile
time and the programmer is advised to check the real-time
capability of the application code.

The simple solution of interrupt disabling for the entire
stack scanning phase results in a high interrupt latency,
which depends on the stack size and consequently on the
user application. It would also negate the low interrupt la-
tency accomplished by optimized critical sections in other
parts of the GC. However, it is not necessary to scan all task
stacks atomically: Only the task whose stack is currently
being scanned has to be delayed until stack scan comple-
tion. During stack scan, all discovered objects are merely
colored gray, that is, the references are pushed onto a sep-
arate working stack. The scanning of the objects referred
to by the references on the working stack is performed after
stack scanning.

For synchronization, AUTOSAR OS resources are used.
Instead of disabling the scheduling similar to the non-pre-
emptive critical section protocol [15] – which may cause a
high-priority task to be delayed by garbage collection, even
though its stack is currently not being scanned – AUTOSAR
OS resources are employed in a fine-grained manner: A
garbage collector resource (GCR) is assigned to each task
that uses the system call WaitEvent(). This is statically de-
termined by jino. During stack scanning of a blocked task,
the GCR of the task is occupied and the AUTOSAR OS
priority ceiling raises the priority of the GCTask to the ceil-
ing priority of the GCR, which is the priority of the waiting
task. This still allows any other higher-priority task, ISRs
and alarm callback routines to interrupt the GC during stack
scanning. Tasks assigned a lower priority than the ceiling
priority of the GCR are delayed, which is necessary to pre-
vent unbounded priority inversion. Employing a GCR for
each task that invokes WaitEvent() is the finest synchroniza-
tion granularity for stack scanning and results in a minimum
number of tasks being deferred. If this is not needed due to
the user application, it is possible to define synchronization
groups for a coarser level of synchronization. It is important
that the stacks of the blocked task are scanned before the
remaining parts of the root set. Otherwise, the only refer-
ence to a white object on a task stack could, for instance, be
written to a static reference field that was already scanned
and removed from the stack. Since write barriers only color
the object to which a reference is overwritten, they do not
color the object in this case: the reference is overwritten on
the stack where write barriers are not active.
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Figure 4: Replicating Spine Memory
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Figure 5: Generational Spine Memory

4.3 Management of Spines
Spines can be managed by replicating memory as pro-

posed by Schism. In addition to that, RT-LAGC offers gen-
erational spine memory : A huge share of the GC effort is
caused by long-living objects as they have to be marked and
searched for references. At once, it can be noticed that most
objects exist for a short period of time only. Generational
collectors address this observation by reducing the work on
long-living objects and focusing on young ones. The heap is
divided into multiple generations and these generations can
be managed by several memory strategies such as, for ex-
ample, a replicating technique. The collection phase for the
young generation is triggered more often than that for the
older generation. An object surviving a determined number
of GC runs is moved to the old generation. Allocation and
collection of the replicating and generational spine memory
are described in the following.

4.3.1 Allocation
Spines are placed contiguously by bump pointer alloca-

tion, which is guarded by a lock (i.e. disabling interrupts
for uni-processors or a spinlock for multi-processors in our
current implementation) due to the possibility of overlap-
ping allocations. The guarded allocation could also be im-
plemented using an atomic addition operation; however, this
is not supported by many target platforms. Bump pointer
allocation leads to a constant, short and predictable allo-
cation time and reaction time to external events with no
fragmentation.



Replicating Spine Memory.
Replicating collectors divide the heap into an active and

an inactive semi-space as depicted in Figure 4. Alloca-
tions are handled by the active semi-space. A single in-
dex is shared between the semi-spaces, but only accessed
by the currently active area. The request for the currently
active semi-space does not face concurrency issues, as the
lowest-priority GC task will never interrupt an allocation.
All reachable (black) objects in Figure 4 are copied to the
inactive area and the semi-spaces switch parts. As both
semi-spaces cannot be used at the same time, the manda-
tory heap space is doubled.

Generational Spine Memory.
The RT-LAGC spine memory is divided into three areas

– young generation, active and inactive old generation as
depicted in Figure 5 – which correspond to three managing
indices. If the allocation does not interrupt the GC run, the
spines are placed in the young generation, which is similar
to replicating memory. In case the GC’s marking phase is
interrupted, spines are allocated in the inactive old genera-
tion and are moved to the young generation at time of the
completion of the GC run.

4.3.2 Collection
Spine memory is cleaned up by copying reachable spines

from the sweep area to the escape area, while unreachable
ones are left behind. The pointers stored in the spine remain
constant after initialization, since the referenced fragments
do not move. Thus, the consistency of spines is automati-
cally ensured during the copy process. Allocations of higher-
priority tasks interrupting the GC execution are performed
in the allocation area. The location of the respective areas
is dependent on the implementation of the spine memory.
If an arraylet is marked reachable, the GC task allocates a
new spine in the escape area, in case the reachable arraylet
was located in the sweep area. The contents of the old spine
are copied to the new one and the spine pointer is redirected
to the new spine.

Replicating Collection of Spines.
To prepare the mark phase, the active semi-space becomes

the inactive semi-space and vice versa. The inactive area
is the sweep area and the currently active area is both es-
cape and allocation area. Regardless of whether the marking
phase is currently in progress or not, spines are allocated in
the active semi-space, which is also true for the spines being
copied from the sweep to the escape space.

Generational Collection of Spines.
Figure 5 illustrates the generational collection of spine

memory: During the collection of generational spine mem-
ory, surviving objects from the young generation are moved
to the old one, which turns the young generation into the
sweep area, while the escape area resides in the active old
generation semi-space. In contrast to the replicating col-
lector, the generational GC has to treat spines differently
in the mark phase: The allocation in the young generation
may lead to

• Lost spines as references may escape marking

• Instant spine aging, which can in turn result in a pre-
mature exhaustion of old generation memory.

Thus, instead of allocating spines in the young generation,
they are put into the inactive semi-space of the old gener-
ation, which becomes the allocation area as can be seen in
line 2 in Figure 5. Since the inactive old generation is used
for allocation, all spines allocated during the mark phase
have to fit into this area. Therefore, the slack time avail-
able must be chosen according to the allocation rate4 to
complete the mark phase. Otherwise, the space for the old
generation has to be increased. This approach is compli-
ant to KESO’s cooperative memory management approach.
For the preparation of the mark phase, the number of sweep
phases is recorded. According to a configurable number of
sweep phases, the collection of the old generation is trig-
gered: the meaning of the color bit of the old generation is
inverted and a reachable spine in the old generation is col-
ored accordingly. After the marking phase, the allocation
area is assigned to the young generation again. Spines allo-
cated in the old inactive generation during the mark phase
are moved to the young semi-space and the spine reference
of the respective arrays is adjusted (Figure 5, line 3). If nec-
essary, the old generation is collected by traversing spines of
the old active generation. A reachable spine is moved to the
other semi-space (illustrated in line 4), the spine reference
is adjusted and the semi-spaces of the old generation switch
parts (line 5/6).

5. EVALUATION
In this section, we evaluate the costs and benefits im-

posed by real-time garbage collection. For this, we employ
the real-time Collision Detector (CDx) benchmark, which is
available in a C (CDc) and Java (CDj) variant. We only
evaluated the CDj version for this work, a detailed compar-
ison of CDj on KESO and CDc can be found in a separate
paper [18]. A brief introduction to CDx is presented in Sec-
tion 5.1. Section 5.2 shows the analysis results for the typi-
cal Java object profiles presented earlier in Section 3 in the
context of CDj . An incremental evaluation of the garbage
collection mechanism is given in Section 5.4.

5.1 The CDj Benchmark and KESO’s Setup
The core of the CDj application is a periodic task that de-

tects potential aircraft collisions from simulated radar frames.
A collision is assumed whenever the distance between two
aircraft is below a configured proximity radius. The detec-
tion is performed in two stages: In the first stage (reducer
phase), suspected collisions are identified in the 2D space
ignoring the z-coordinate (altitude) to reduce the complex-
ity for the second stage (detector phase), in which a full
3D collision detection is performed (detected collisions). A
detailed description of the benchmark is available in a sep-
arate paper [12]. Since CDj allocates temporary objects
and uses collection classes of the Java library, it requires the
use of dynamic memory management. In this evaluation,
three garbage collection algorithms are compared against
each other to determine the costs caused by RT-LAGC. A
throughput-optimized stop-the-world GC (CBGC) is turned
into an incremental latency-aware GC (IRRGC) that uses
write barriers to synchronize with the mutator. On top of

4The allocation rate is composed of the minimum inter-
arrival time of events and the size and number of objects
allocated in the wake of this event. The execution of a peri-
odic task can also be seen as an event.



the latter, the fragmentation-tolerant variation RT-LAGC
is set up. We employ CDj in the onthegoFrame variant.
The configuration uses six airplanes, the collision detector
processes 10000 frames and the detector task is periodically
released with a period of 30 ms. The GC task is assigned
the lowest priority in the system and uses the slack time for
garbage collection that the detector tasks leaves in each pe-
riod. A heap size of 600 KiB is used for CDj . The object in-
lining transformation has been disabled. The generated code
is deployed on an Infineon TriCore TC1796 board (150 MHz
CPU clock, 75 MHz system clock, 1 MiB SRAM). The ap-
plication is compiled with GCC (version 4.5.2) and bundled
with KESO and an AUTOSAR OS implementation. The
code is executed from internal flash memory. CDj runs in
a single protection domain. We also ported a multi-domain
version of CDj to KESO; however, this variant does not fit
onto the TC1796 device in the current state.

5.2 Object Categorization for CDj

The object categories presented in Section 3.2 are revisited
in the context of CDj . The results were computed by jino
ahead of time.

Method-Local Objects.
On per-frame computation, 57 of 146 (39.04%) of all allo-

cations in CDj are marked as local. 47 objects (32.19%) es-
cape their methods and 42 allocations (28.77%) are marked
as global-escaping. Overall, 44 of 146 (30.14%) allocations
in CDj are eligible for stack allocation.

Region-Local Objects.
For this experiment, we simulated smaller regions by using

extended stack scopes. Method-escaping objects are candi-
dates for such scopes. In CDj , 44.00% of all allocations
can either be performed in the own or the caller’s stack
frame. Other region definitions for both stack or separate
heap memories are possible. Such heaps can be managed by
simple bump-pointer allocation, but this approach was not
selected for this evaluation.

Thread-Local and Thread-Escaping Objects.
36.30% of all allocations are non-thread-local, that is, the

created objects are accessed by more than one task. In con-
trast to this, jino computes 42.55% of all allocations to be
non-thread-local for the multi-domain CDj . The increase
can be traced back to data transferred between the protec-
tion domains. In summary, 56–70% of all objects – depend-
ing on the use of extended stack scopes – are managed by
RT-LAGC for the single-domain CDj .

5.3 CDj Profiling
To profile CDj , we implemented object lifetime tracing for

KESO. Figure 6 shows the frequency of object sizes occur-
ring in CDj . Objects sized 12 bytes appear most frequently,
where 4 bytes are occupied by the object header and 8 bytes
by the instance fields, respectively. As object inlining is
turned off, the average object size is 12–16 bytes. Thus, the
fragment size should be at least 16 bytes to avoid unneces-
sary runtime overhead caused by the linked-list structure of
fragmented objects. By setting the fragment size to 32 bytes,
all objects fit into a single fragment at the cost of a certain
internal cutoff. Figure 7 depicts the objects’ lifetimes: Most
of the objects (81057) are released after the first GC cycle,
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so CDj confirms the weak generational hypothesis [11].

5.4 RT-LAGC and CDj

In the context of CDj , we evaluated the runtime, heap
usage and footprint of RT-LAGC. We contrasted it by op-
posing KESO’s other available heap strategies.

Runtime.
Table 9 and Figure 8 (100 frames are visualized) show an

excerpt from our experiments The five RT-LAGC configu-
rations are distinguished by either using:

• Generational (Gen) or replicating (Rep) spines

• Force fragmented arrays (FFA)

• Extended escape analysis (EEA)
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RT-LAGC Gen Rep FFA EEA F16 F32 Ov
RT-LAGC32 X – – X – X 0%
RT-LAGC32 X – – – – X 25.0%
RT-LAGC32 – X – – – X 27.4%
RT-LAGC16 X – – – X – 27.8%
RT-LAGC16 – X – – X – 27.9%
RT-LAGC32 – X X – – X 35.3%
RT-LAGC16 – X X – X – 36.3%

Figure 9: CDx runtime overhead of RT-LAGC collectors
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Figure 10: Runtime of the fastest RT-LAGC in contrast to
KESO heap strategies RDS, CBGC, IRRGC

• Fragment size of 16 or 32 bytes

The baseline is formed by an RT-LAGC32 variant with
enabled extended escape analysis to source out short-living
objects to stack memories. Furthermore, it uses 32-byte-
fragments, generational collection of spine memory and sup-
ports contiguous array allocation. Using a 16-byte frag-
ment size instead of 32 bytes increases CDj ’s runtime by
1–4%, which is attributed to the fragmented object lay-
out. The number of linked fragments an object consists of
was bounded to three. Configuring a 32-byte fragment size
causes all regular objects to fit into a single fragment. In
KESO’s system configuration, the maximum number of tries
to contiguously allocate arrays can be defined to constitute
an upper time bound. Our experiments have shown that
contiguous array allocation often instantly succeeds, which is
attributed to CDj ’s missing fragmentation behaviour. There-
fore, we introduced the FFA option to always force frag-
mented array allocation to examine the costs: This GC
variant shows a 35.3% runtime overhead to the baseline RT-
LAGC. Allowing contiguous array allocation speeds up the
execution time of CDj by approximately 10% due to bet-
ter data locality and fewer indirections. Generational spine
memory is slightly faster (1–3%) than the replicating semi-
space. The huger benefit of generational memory is that
half of the spine memory can be saved in contrast to repli-
cating variant. The biggest benefit is gained by using EEA
(approximately 25–27%) to swap out short-living objects to
extended stack scopes.

Table 11 and Figure 10 contrast RT-LAGC configured

RDS CBGC IRRGC RT-LAGC
Overhead -15.4% 0% 6.8% 23.5%

Figure 11: Runtime overhead of the fastest RT-LAGC in
contrast to KESO heap strategies RDS, CBGC, IRRGC

Heap Type text data bss
RDS 40132 1925 655822

CBGC 45088 1993 661262
IRRGC 49816 1994 661294

RT-LAGC32 (Rep/F32/FFA) 57775 4049 814894
RT-LAGC16 (Rep/F16/FFA) 58251 2721 817294

RT-LAGC32 (Rep/F32) 58695 3345 814894
RT-LAGC16 (Rep/F16) 59167 2449 817294
RT-LAGC32 (Gen/F32) 59559 3361 814894
RT-LAGC32 (Gen/F16) 59071 2737 817294

RT-LAGC32 (Gen/F32/EEA) 60157 3361 814894

Figure 12: Footprint in bytes of CDj using KESO heaps

with generational spine memory to KESO’s other heap strate-
gies. EEA has been enabled for all variants and the baseline
is defined by the stop-the-world collector CBGC. To get an
impression of the overhead imposed by garbage collection in
general, pseudo-static allocation (RDS) is also contrasted.
Pseudo-static (bump-pointer) allocation is comparable to
ImmortalMemory specified in the RTSJ. RDS is 15.4% faster
than CBGC, but it runs out of memory after 23 iterations.
The incremental collector IRRGC has a higher overhead for
the mutator (6.8% on average, 30% in the observed worst
case), which is caused by the added overhead of write barri-
ers and due to the complex linked-list implementation used
to manage the free memory that allows a list traversal to be
interrupted by higher-priority mutators. Disabling the syn-
chronization code in the incremental collector shows indeed
a very similar allocation performance to that of the stop-the-
world GC. Adding the fragmented object and array layout
to IRRGC causes an additional overhead of 16.7% (23.4%
compared to CBGC).

Heap Usage.
The spine size can be reduced from 96 KiB to 48 KiB when

using generational instead of replicating spine memory. The
young space is set to 42 KiB, while 6 KiB are used for ma-
ture spines. EEA reduces the heap usage of CDj by 42.6%
on average. Comparing RT-LAGC16 in generational mode
(fragment size of 16 bytes, contiguous arrays are allowed) to
the IRRGC16 (allocation unit is 16 bytes), the heap usage
increases by 0.7%, whereas forcing fragmented arrays will
exalt the heap usage by 45%. Resizing RT-LAGC’s frag-
ments from 16 to 32 bytes engrosses the heap with a 44.7%
rise.

Footprint.
Table 12 shows a comparison of the footprint for CDj

using different heap management strategies, distinguishing
between the size of the text and data (data, bss) segments.
The incremental IRRGC and RT-LAGC have a more com-
plex implementation than CBGC and introduce write barri-
ers in the application code. Comparing IRRGC and CBGC,
the text segment is thus inflated by 9.5%. Due to the frag-
mented object layout, the size of the text segment for the
RT-LAGC variants is increased by 13.8–17.8% in contrast
to IRRGC. The access to instance fields of a fragmented ob-
ject is more expensive, as indirections have to be followed to
get the desired field. The RT-LAGC16 (Rep/F16) and RT-
LAGC32 (Rep/F32) confirm this, since all objects of CDj fit
into a fragment sized 32 bytes. By using generational instead



of replicating spine memory, the code size of the application
does not change. However, the GC code is slightly more
complex due to special handling of the marking phase. This
procedure leads to a moderate growth (1.5%). With FFA,
contiguous arrays are not supported at all, which leads to a
smaller text segment (1.6%). Support for contiguous arrays
claims an additional allocator function. Moreover, in the
mark phase and the application code, fragmented and con-
tiguous arrays have to be distinguished. The data segment
inflates due to a certain cutoff for alignment demanded by
RT-LAGC depending on the fragment size. On the contrary,
the IRRGC requires a 4-byte alignment. As an example, an
8-byte-sized global object and a 32-byte fragment leads to a
24-byte cutoff. The transition from a 16-byte to a 32-byte
fragment increases the data segment by 0.1%. Taking IR-
RGC as base, the data segment size grows approximately
19% for the shown RT-LAGC configurations. In summary,
for CDj a RT-LAGC variant using generational spine mem-
ory, EEA and a fragment size of 16 bytes is a good con-
figuration as it combines a moderate runtime overhead in
contrast to a fragment size of 32 bytes with an acceptable
heap usage behaviour.

6. CONCLUSION
For RT-LAGC, we applied the Schism technique on top of

the incremental and cooperative LAGC that offers a short
and predictable reaction time to external events. Our ap-
proach features an alternative object layout called FBOL for
the easy discovery of references. In addition to replicating
spine memory, generational spine memory is available in RT-
LAGC, which results in a relevant reduction of spine mem-
ory. KESO’s compiler jino is able to assist runtime memory
management with its extended escape analysis. Further-
more, jino classified objects of the exemplary CDj bench-
mark according to their survivability and size. This ap-
proach supports the machine-independent upper time and
space bounds analyses for memory management of real-time
applications. By combining the analyses of jino and RT-
LAGC, a space-efficient and latency-aware solution for real-
time runtime management has been developed.
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