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ABSTRACT
Despite intensive research in the field of mote-class Wireless
Sensor Networks in recent years, real-life deployments are
still challenging and systems are prone to failures. This can
typically be attributed to fragile hardware or misbehaving
software. Issues caused by software, often induced by the
inherent constraints of resources, can be countered using
simulations. However the simulation results often do not
reflect those of the specific deployment.

We suggest analyzing the actual environment conditions
of a deployed network and map them to a simulator. Then,
based on simulations, software and parameters can be tailored
to the specific deployment.

We developed two tool chains, RealSim and DryRun, and
compared results from simulation runs to those acquired from
two different testbeds using Tmote Sky nodes. This was done
in two campaigns, each altering 2 configuration parameters
from the hardware to the application layer. The presented
data is based on over 1100 experiments, respectively over
270 h, on real hardware and almost 7000 simulations. The
close relation of simulation and real measurements shows
that our DrySim approach is feasible.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; I.6.0
[Simulation and Modeling]: General
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Wireless Sensor Networks; Simulation; Testbed; Deployment

1. INTRODUCTION
Despite more than one decade of intensive research in the

field of mote-class Wireless Sensor Networks (WSNs), real-
life deployments are still considered difficult and systems are
fragile in many ways. In fact there is a substantial record of
failed experiments [2, 4]. The reasons are multifold, ranging
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from fragile hardware to faulty and misconfigured software.
These issues are aggravated, and to a certain extent caused,
by the serious resource constraints of the nodes.

Although the typical mote evolved only slightly in terms
of memory and computing power during the last decade, the
software running on these nodes had a great leap of its own
technology. For example, providing an IPv6-based web-server
is not out of the ordinary. WSN Operating Systems (OS) like
Contiki [10] or TinyOS [20] provide a huge set of libraries,
protocols and services. These OS target highly specialized de-
ployments and therefore support many configuration options
to tune the system to the specific needs.

Estimating the exact impact of changing a certain config-
uration parameter or choosing a different network protocol
is difficult, even for a domain expert. Often the impact can
only be determined by testing the different versions in the
target environment. This is especially the case as the results
are influenced by the network topology, the quality of the
connections and the interactions between different software
modules. If a specific configuration performs well in a certain
environment (testbed), there is no guarantee that it will also
perform well in another environment (real deployment).

A way of getting sound results is to test different configura-
tions in the final environment. Alternatively one can choose
a configuration that performs well in similar environments
(testbed) and hope that it performs as expected in the final
environment, too. While the first solution is suitable for a
specific deployment, the second will work only if a generic
solution is required (e.g. house automation). Both have in
common that running the required amount of experiments
is very laborious. The possible configurations quickly multi-
ply up to huge numbers, and experiments must be repeated
multiple times to get sound results. Not only changing en-
vironmental conditions, but also subtle effects like boot-up
order, random offsets, packet loss and clock skew may have
a significant impact on the outcome. For a real wireless
deployment running a sufficient number of experiments is
often not feasible.

Unlike the typical WSN mote, the average computer has
developed tremendously. This provides us with the ability to
simulate resource-constrained sensor nodes faster and more
accurately than ever. If the simulator resembles a concrete
network, it enables us to run a huge number of experiments
and find a suitable setup for that specific deployment. To
support this, we developed two tool chains, RealSim to map
a deployment to the simulator and DryRun to support set-
ting up experiments to test combinations of multiple different
configuration options. Both are publicly available [8].



Protocol Boolean Numeric
ConitikiMAC 9 19
IP 8 8
UDP 1 1
TCP 2 8
ARP 0 2
6LoWPAN 2 2
RPL 2 11

24 51

Table 1: Configuration options per network protocol

The paper is structured as follows: In the problem state-
ment we go into detail why it is necessary to run many
experiments in the target environment to get a good setup
and why this is not feasible (Section 2). An overview of our
idea of simulating the target environment to gain a suitable
setup is given in Section 3. This is followed by the imple-
mentation details (Section 4). We then discuss related work
(Section 5). Our approach is evaluated by comparing re-
sults acquired from the simulation to those from the testbed
(Section 6). In discussion we look at the current limits and
opportunities of our approach (Section 7), before we end
with a conclusion (Section 8).

2. PROBLEM STATEMENT
Modern WSN operating systems like Contiki and TinyOS

usually provide a huge amount of possible configuration
options. They are supposed to provide maximum flexibility
and to allow tailoring the system to the requirements (e.g.,
bandwidth, power, memory, network size, network topology,
network protocol, timeliness, and many others). In this
context configuration does not only include adjustments
of parameters but also selecting alternative code paths or
modules (e.g. MAC-Protocol). Although most configuration
options are within the network layer, they can be found in
all layers of the system. As a result, one has to be an expert
on all layers of a system to get optimal results. Based on
the failed deployments in the past [4] this is a challenge
even for an experienced WSN-system developer, let alone an
application developer.

For example Contiki’s IPv6 over Low Power Wireless Per-
sonal Area Network (6LoWPAN) stack consists of 7 protocols,
providing a total of 75 configuration options (Table 1). This
does not include flags that adjust the code due to other
features like debugging, tracing and encryption, but only the
protocol specific options.

Interactions.
The situation of having many configuration options is ag-

gravated by the fact that different options closely interact
with each other. These interactions are not only within a cer-
tain layer but often also cross-layer: Increasing the sampling
frequency of a sensing application is likely to also require
adjustments at the network layer. This can include having
to change to a network protocol that is better suitable for
more traffic. Not always obvious to see, these dependen-
cies between the configuration options make it inherently
complicated to adjust them.

Network Portability.
It is not only necessary to adjust the network stack to the

application but also to the underlying network. A big network

usually needs a different configuration (e.g. bandwidth, size
of the routing table) than a small one. In addition to the
size of the network, the topology and link attributes have a
big impact on the performance of a network. Consequently,
experiences gained in one environment can only be transferred
to another environment with great care.

Running Trials.
The most reliable way to find a good configuration is run-

ning trials. In a testbed, flashing different firmware versions
and collecting data can normally be done using a reliable,
wired connection. It is still time-consuming, as testing 25
different configurations for 20 min each will take over 8 h. If
repeating them four times to get more robust results, this
already takes more than a day. As we show in our evaluation,
a detailed analysis that is supposed to uncover interactions
requires testing a lot more configurations and they must be
repeated more often.

When testing in a real, wireless deployment, Over The Air
(OTA) programming is required. To the additional overhead
of reliably distributing different firmware to all nodes, the
risk of bringing the network into an indeterminate state or
even bricking a node is added. The additional overhead and
possible manual interactions make this approach unfeasible.

3. OVERVIEW
We aim at a generic approach that allows tailoring the

software system to a specific deployment. As discussed before,
achieving this for complex software requires a rather large
testing campaign that cannot be executed on the target
deployment. We therefore propose trace-based simulation
for deployment-specific testing of WSN software. It can be
structured in five consecutive steps:

RealSim

DryRun

Collect DataMap

RealSim

Plugin

Visualize/

Analyze

Test

Generator
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Figure 1: Simulation-aided deployment-specific tailoring of
WSN software at a glance

1 Of course our approach does not eliminate thorough
testing before deploying a WSN, but it does target the
phase during or right after a deployment; therefore
deploying the WSN is the first step.

2 After that the connectivity between the deployed nodes
is profiled to obtain the network topology.

3 The acquired data are used to configure a simulator in
a way that it resembles the tested network.

4 Running multiple Monte Carlo simulations in parallel
allows testing a huge configuration space within a short
time.

5 After evaluating the simulation, a suitable configuration
can be chosen and programmed to the nodes.



Simulation 4 .
The selection of the simulator is crucial for our approach,

as its accuracy has a direct impact on the results. One of
our goals is to show the effects of tuning certain parameters
while taking the whole software system into account. Using a
WSN simulator that is able to emulate the mote’s hardware,
it is possible to run the same binary code as on the real
nodes. It is therefore ignorant of the implementation and
is not dependent on a certain OS or library. Further on
it allows uncovering hardware specific issues like unaligned
reads or problems caused by the tool chain. These are not
necessarily triggered when compiling for a different target.

Due to the simplicity of the RISC-based micro controllers
used in mote-class WSNs, these simulators are also very
timing accurate. Therefore the side effects caused by concur-
rency or by using algorithms that perform badly on a specific
platform and then miss timing constraints, can be observed
as well.

Based on these considerations we chose the Cooja Sim-
ulator [24]. While the network models are rather simple
compared to some sophisticated network simulators like NS2
or OMNeT++, it integrates MSPSim [12], which supports
emulating the Sky mote we used in our testbed, including its
CC2420 radio hardware. By setting the seed of Java’s Pseudo
Random Number Generator (PRNG), Cooja supports repro-
ducible Monte Carlo Simulations. In our setup the PRNG is
used to determine start-up offsets and whether a packet is
received based on the Packet Reception Ratio (PRR).

Data Acquisition 2 .
There are multiple ways of acquiring connectivity data

[6, 18, 22, 28]. Most of these have a rather sophisticated
underlying protocol, often triggering measurements. For
RealSim, of which we already presented an early version [26],
we decided to choose a simple approach that does not rely
on any synchronization between nodes.

Each node sends beacons with increasing IDs. When a
node receives such a beacon it obtains the Received Signal
Strength Indication (RSSI) and Link Quality Index (LQI)
from the radio chip and derives the PRR from the ascending
order of the ID packed into the beacon. While a node is
not receiving data, it regularly samples the RSSI of the
background noise.

Mapping data 3 .
As Cooja provides a Direct Graph Radio Medium (DGRM),

it is the perfect target for our data. It allows us to set PRR,
RSSI and LQI for each directed connection. Additionally we
extended Cooja to support setting the background noise for
each node.

Using the RealSim tool chain it is possible to extract a
certain time frame and load it into the simulation. The
RealSim plugin then replays the sample by adjusting the
DGRM.

Testing Configurations 4 .
While RealSim is responsible for making the simulation

more realistic, DryRun supports running large campaigns,
testing many configurations. To create a campaign DryRun
provides a test generator. As input, the test generator takes
a script that describes how to set up the test environment
and which configuration options to test. For each experiment
a shell-script is generated, which initiates an isolated test

environment (e.g. copy files), executes the experiment and
collects the results. Setting up separate environments is
necessary to be able to run the experiments in parallel or even
distribute them to multiple machines without side effects.

The experiment scripts collect only the raw logs. The
dataextractor extracts the relevant information, brings it in
correlation with the input parameters of each experiment
and saves them in a format that can be processed using
tools like R. As the area of interest depends on the specific
research question and due to the volume of the data there
are currently no tools to further automatically analyze the
data.

4. IMPLEMENTATION DETAILS

Challenges.
Developing a tool like RealSim is not as trivial as it seems,

even if major parts of the infrastructure are already provided
by Cooja, MSPSim and Contiki. For RealSim to work, all
components of a huge software stack have to work together
seamlessly. If the results are not as expected, this might
be because the model is not accurate enough, or there is a
bug somewhere in the tool surveying the network, the OS
it is built upon, the processing tools, MSPSim, Cooja, the
RealSim plugin, the experiment setup tools or the scripts
evaluating the results; maybe our hypotheses that it is possi-
ble to simulate real networks was wrong.

To demonstrate this we will discuss the way of a packet’s
RSSI-value from acquisition to simulation. The radio hard-
ware averages the signal strength over the first 8 symbol
periods. It then calculates RSSI value that corresponds to
the signal strength in dBm with an offset as signed byte. In
Contiki it is handled as unsigned word, which must be casted
back, before pre-processing the data in the node. After pass-
ing through the serial and being processed, the RealSim
plugin sets the DGRM configuration in dBm. The averaging
over the 8 symbols is done by Contiki’s MSPSim adaption
layer, before it is passed to MSPSim and written to the
virtual register of the CC2420 emulator.

Data Acquisition 2 .
To allow a random distribution, as well as a constant

beacon rate, we randomly distribute the points of time to
send a beacon over a certain time frame/episode (e.g. 6
beacons within 80 s). For each received packet we extract
the RSSI and LQI provided by the radio chip. Based on the
ID we detect whether a new episode started and calculate
the PRR and average RSSI and LQI for that neighbor node
and episode. It is possible to either send the aggregated data
to a sink using the network, or print it directly to the serial.

We sample the background noise at a rate of 300 ± 50 ms,
unless the radio chip indicates that it is currently sending or
receiving. At the end of the local episode, the average RSSI
value is calculated.

For some nodes in our testbed we were able to observe a
background noise ranging from a RSSI value of −52 to −15.
This roughly maps to −97 to −60 dBm. Considering that a
delta of 37 dBm represents a factor of over 5000, averaging
the RSSI value instead of the corresponding energy levels
gave quite accurate simulation results. It is also much simpler
and requires fewer resources.



1 implicit val exp = new Experiment
2

3 val files = new GetFile("src/*")
4 exp.addstep(files)
5

6 val mk = new Make
7 mk.addConf("CCA_THRESH",-54, -20, 2)
8 mk.addConf("TEST_RATE", 5, 30, 5)
9 exp.addstep(mk)

10

11 val cooja = new Cooja("test1.csc")
12 cooja.addRandRange(0, 9)
13 exp.addstep(cooja)

Listing 1: Example experiment setup

Mapping Data 3 .
The data acquired by the nodes is printed to the serial

and then saved together with a time stamp in a log file.
From the log a certain time span can be selected, which is
then converted to simple format supporting commands (e.g.
setedge, rmedge) and a time when they are to be executed.
At the beginning of a simulation RealSim loads this data
and executes the commands at the given simulation-time.

Experiment Generator 4 .
The main part of the DryRun toolkit is the experiment

generator. The generator uses the Scala runtime compiler to
script the setup. Listing 1 shows a simplified setup. First a
new Experiment object is created (l. 1). Then all the files
from the src directory are copied to the build environment
(l. 3). Explicitly adding it to the experiment ensures the
correct order (l. 4). Lines 6 to 9 configure the experiment to
be built using Make with CCA_THRESH ranging from −54 to
−20 in steps of 2, and TEST_RATE from 5 to 30 in steps of
5. Finally Cooja is run with test1.csc as configuration file
using 10 different seeds for Cooja’s PRNG.

The listing will create a campaign of 850 experiments.
Each experiment consists of a folder containing the configu-
ration of the experiment and a shell-script. The shell-script
sets up the environment in the temporary directory, runs
the experiment and copies the resulting logs back to the
experiment-folder. As the scripts are self-sufficient they can
be executed in parallel or distributed over multiple machines.
Additional functions include creating symbolic links, checking
out files from git and retrieving additional information from
the experiment environment. It is also possible to select a
certain length of a network trace using different start offsets.

For our evaluation we used the same infrastructure to
generate the experiments run on the testbed. Instead of
running the simulation we flashed the firmware and collected
the serial output.

5. RELATED WORK
Similar approaches have been published before. For exam-

ple Marchiori et al. traced their testbed and developed their
own simulator called WsnSimPy to replay these traces [22].
There are also quite some other works that tried to repro-
duce testbed results based on generic network simulators
like NS2 or OMNeT++ [14, 17, 23] or the WSN Simulator
Castalia [3, 19,25]. As opposed to our approach, all of them
only focus on simulating the network layer. It is therefore
possible to quickly make a conceptual evaluation of a network
protocol, but effects caused by the concrete implementation,
OS, libraries used, timing and hardware are neglected.

In their position paper Greg et al. give an overview of
different approaches for realistic simulations [13]. As op-
posed to us they suggest improving trace-based simulation
in OMNeT++/MiXiM and TOSSIM. Both simulators do
not emulate the target nodes but are directly interfaced.
As TOSSIM is implemented as target platform for TinyOS,
it is at least possible to see effects caused by the actual
implementation and OS, but not the platform itself.

Using a very simple setup, Gama et al. show that the code
running on the node does influence the results [1]. Instead of
emulating the node, they add delays to the different process-
ing layers (Hardware, Media Access Control (MAC), Appli-
cation, etc.) to improve their simulation results. Though this
approach provides a better performance than emulating each
instruction, it has the drawback of inaccuracy and side-effects
caused by concurrency, which cannot be detected.

Besides our generic approach of testing the whole system,
there are also approaches that target certain layers. pTunes
[28], for example, continuously optimizes the MAC layer.
While these approaches probably yield better results for
supported use-cases, they must be specifically adjusted to
the code in use. Our solution, in contrast, is able to test any
compile time parameter, independent of the code it addresses.

In [16] He et al. use simulation to predict the PRR for
the connections in an office environment before the deploy-
ment. Considering the strong fluctuations and the effects
we monitored when changing the position of a node, we do
not think it possible to get reliable results without actual
measurements. Their approach seems promising to gain a
good initial setup, though.

The WiseML-plugin [21] for Cooja also supports adjusting
the DGRM and is very similar to our RealSim plugin. The
WiseML format itself is more generic and supports detailed
descriptions of the environment and nodes. This includes,
for example, positions and sensor data. Although the plugin
does support setting the temperature read by a node, it can
only set the PRR, but not LQI and RSSI. As we show in our
evaluation the RSSI has a significant impact on sophisticated
network protocols like ContikiMAC.

6. EVALUATION
To verify our approach, we did not evaluate the approach

itself, but evaluated the crucial point: Does the network that
is mapped to the simulator resemble the traced, real network?
For this we chose four different configuration parameters
and compare the simulation results to two testbeds. The
parameters were not selected by the expected novelty of the
results, but because they are often used for system tuning.
With our experiments we want to show that the simulation is
able to yield results that are similar to those of the testbed,
and that these results differ between testbeds. Therefore the
results in general are probably not surprising for a domain
expert.

As code base we used Contiki’s UDP server/client example,
where each client regularly sends data to the sink. We ex-
tended the code to allow querying the Energest [11] statistics
at the end of an experiment. Energest, is part of Contiki
and accounts the time of the system being in a certain state.
For example, the time of the CPU being in low power mode
or the radio being turned on. Multiplied with the energy
input of the system being in that specific state, the energy
consumption can be estimated.



(a) Erlangen (b) Brunswick

Figure 2: The testbed in Brunswick is larger and closer meshed. The solid lines represent good, the dashed line a flaky
connection. The sink is marked with a black border.

In our evaluation we tested the following parameters:

CCA Threshold The Clear Channel Assessment (CCA)
threshold is a hardware configuration parameter of the
CC2420 radio chip. Based on its value the hardware decides
whether the channel is clear to send data. The current
CCA status can also be queried via a hardware pin; a
feature used by the ContikiMAC protocol.

RDC/MAC Contiki distinguishes between the MAC and
Radio Duty Cycling (RDC) layer. Currently Contiki sup-
ports four different RDC options: ContikiMAC [9], CX-
MAC, an adjusted version of the X-MAC protocol [5],
SICSLoWMAC that puts packets into 802.15.4 frames and
nullrdc which passes the data on to the MAC layer. Choos-
ing an RDC does not only change a simple parameter, but
also includes different code into the binary.

CCR The Channel Check Rate (CCR) is the rate at which
the RDC layer wakes up and checks for other nodes to send
data. A low CCR lets the receiver wake up less frequently
while the sender must potentially send more packets until
the receiver wakes up to receive the packet.

Packet Rate In our test application we altered the packet
rate, at which the “user”-program sends data to the sink.

At the end of each experiment we collected energy and
network statistics for each node – over 50 parameters in total.
When investigating why the specific configuration behaves
the way it does, these can be very helpful. As we want to
compare simulation and testbed, rather than understand the
behavior of a specific protocol, we chose two metrics that
are important for WSN deployments: The time spent with
the radio turned on (rx and tx) and the number of packets
that arrive at the sink. The CC2420 radio chip is one of the
biggest energy consumers and uses about the same amount of
energy for sending and receiving when in the default settings.

To aggregate the data, we took the mean of all nodes
except the sink. We excluded the sink because it distorts the
two metrics we chose: It does not send any packets and, in
the example we derived our experiments from, the radio is
always on.

As discussed we try to circumvent the limitations of run-
ning multiple experiments on a real deployment. Yet, to get
a sound ground truth for our evaluation we had to do exactly
that. Consequently all our experiments were run in a testbed

and we used the serial as convenient method of gathering
data.

When running experiments on real hardware, it is not
unlikely that the results show artifacts caused by random
effects like packet loss or changes of the environment. We
tried to mitigate this by running each experiment several
times and executing them in a random order. In this way
each configuration had the same chance of being executed at
daytime or at night, when conditions were typically more sta-
ble. We tried to reconstruct this behavior for our simulations
by not only using a different PRNG-seed for each repeated
simulation, but also a different snippet from our trace. For
each configuration we used the same seeds and snippets.
Thus the simulation yielded the same results for different
configurations, if the change had no impact on the behavior
of the node. This effect can be seen if Figure 3a where the
best result for SICSLowMAC at the Brunswick-testbed does
not change for a CCA threshold above −39.

6.1 Testbeds
Our two testbeds are located in an office environment at

the universities in Erlangen and Brunswick, Germany. Both
testbeds are managed using Wisebed [7]. Due to network
delays and the Wisebed infrastructure, it is not possible
to accurately control the node bootup order. To minimize
the effects of nodes booting in a system-inherent order, we
randomly delayed the reset command of each node at the
beginning of an experiment.

Erlangen.
The network in Erlangen (Figure 2a) consists of 9 Sky

nodes that were placed as far apart as possible while still
providing a stable connection. The room in the middle is
a lecture hall with stronger walls, blocking the connectivity.
Solid lines typically have a PRR of 100 % while the dashed
line has around 10 %. The short ranged connections have a
RSSI value of about −40 dB while the long range connections
are at around (−85 ± 5) dB. This sink is marked with a black
border.

Brunswick.
The testbed in Brunswick is also located in an office en-

vironment and consists of 17 Sky nodes. Figure 2b shows
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Figure 3: Impact of the CCA threshold on different RDC layers in simulation and test bed. Each dot represents the mean of
the nodes of one run. The line connects the median of all runs with the same configuration.

the good connections between the nodes. In comparison to
Erlangen the network is meshed much closer. We chose a
sink (dark border) outside the central mesh to increase the
number of packets that must be routed. The figure also shows
that, especially in an office environment, the distance is not
necessarily related to the connectivity. In the center there
is a node marked with black dot, which has extraordinary
connectivity in all directions, while the node right next to it,
to the lower left, is only connected to two nodes. Similarly
the node to the top right of the sink has better connectivity
than the sink itself.

6.2 CCA vs RDC
In this campaign we investigate the impact of changing the

hardware-configurable CCA as well as the RDC network layer.
We tested the three available RDC layers (ContikiMAC, CX-
MAC and SICSLoWMAC) and configured the CCA threshold
from −55 to 25 in steps of 2. The runtime of an experiment
was 20 min. We simulated each configuration 50 times, which
resulted in a total of 2400 simulation runs for each location.
In Erlangen each configuration ran 10 and in Brunswick 5

times. Unfortunately this also means that the jitter had a
stronger impact. In Erlangen it took over a week to run
the campaign and in Brunswick almost 4 days, flashing each
node 480 and 240 times, respectively .

Figure 3 shows the results of the experiment. Every point
shows the mean of all nodes except the sink. The results
from the simulation are shown as cross and are placed to the
right, while the results from the testbed are represented as
square and placed to the left of the corresponding discrete
value. The median of the experiments are connected with
a line that is solid for the simulation and dashed for the
testbeds.

The results show that although there are deviations, there
is a clear similarity between simulation and testbed. Part of
deviation can be accounted to the insufficient noise model.

The impact of this flaw in the radio model can be seen
in the average number of packets received from each node
(Figure 3a). If the measured noise is higher than the CCA
threshold, the hardware does not send any data. Therefore no
packets are sent if the CCA threshold is too low. This can be
seen for all three protocols. While this matches quite well in
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Figure 4: If the number of packets being sent is too high or the CCR too low, the networks starts losing packets. Each dot
represents the mean of the nodes of one run. The line connects the median of all runs with the same configuration.

Erlangen, there is an offset of about two between simulation
and testbed in Brunswick. In Brunswick, measured peaks
of the background noise were not as high as in Erlangen
and therefore the average value was lower. This allowed
the simulated hardware to send packets at a lower CCA
threshold.

The strong variation of the background noise in Erlan-
gen is also accountable for the strong drop of the simulated
ContikiMAC for higher CCA thresholds in Erlangen. Con-
tikiMAC also uses the CCA threshold to test whether any
other node is sending data. If the measured noise level is
below the threshold, the radio is turned off right away, not
being turned on long enough to receive a packet. In the
noisy environment in Erlangen, the radio was kept on due to
the noise and then received a packet by chance. Half of the
nodes had a direct connection to the sink, which did not do
any radio duty cycling. It was therefore sufficient to receive
a single packet from the sink, to get the routing information
and send data to the sink for the rest of the experiment. In
Brunswick there was no such drop in the simulation because
the nodes were placed closer together and therefore their
signal was strong enough to keep the receiving radio on. If
we extend our campaign to higher CCA thresholds we can
probably see this effect in Brunswick as well. This cannot be
seen for CX-MAC and SICSLowMAC, which only evaluate
the CCA threshold when sending packets.

We did not investigate why CX-MAC outperforms the
simulation in Erlangen and SICSLowMAC performs so much
worse in the testbed. Nonetheless there are some effects of
SICSLowMAC that can be seen in both the simulation and
the testbed. For example, in Brunswick the results are better
than in Erlangen. For CX-MAC we do see a slight positive
trend towards higher CCA thresholds. A similar trend was
also observed on the testbed.

As the SICSLowMAC has no duty cycling the radio is
turned on all the time (Figure 3b). Besides the offset of the
CCA threshold by two in Brunswick, which we already dis-

cussed, one can see that especially in Erlangen the simulated
radio on time is significantly higher around a CCA threshold
of about 37. This again is caused by the non-existing fluctua-
tion of the radio signals in the simulation. In the simulation
the signal strength is only adjusted every episode (≈ 80 s in
our setup). Thus, if the signal strength oscillates around the
CCA threshold, the sending node must wait at least until
the next episode to be able to successfully send its packets.
In the testbed the next change, and therefore the chance to
receive the packet, typically is in the next RDC and thus
within less than a second.

6.3 Application vs. MAC
To show the interactions of application, MAC and testbed

we varied the rate at which the packets are sent to the sink.
To avoid the effects already discussed, we chose to use Con-
tikiMAC with a CCA threshold of −45, which performed well
in both testbeds and the simulation. As second parameter
we chose the CCR value. It tells ContikiMAC how often per
second to check the channel for other nodes sending data.
If it is too high, a lot of energy is spent checking for radio
traffic, while if it is too low, the bandwidth is reduced and
packets might be dropped.

For the CCR the lowest value supported is 2 Hz and the
default is 8 Hz. We therefore chose 2, 4, 8 and 16 Hz. For
the packets we chose a rate of 10, 15, 20, 30 and 60 min−1.
Based on the high number of packets we reduced the time of
the experiment to 5 min. Each configuration was simulated
50 and tested 10 times on both testbeds.

The results are presented in Figure 4. We prepared the
data the same way as in the previous trial: We calculated
the average number of packets received and the average
radio time for each experiment and plotted a cross for the
simulation and a square for the testbed results. We then
connected the median of the experiments with a line – solid
for the simulation and dashed for the testbed.



Figure 4a shows the percentage of sent packets that were
received. Even in a perfect environment, chances are high
that not all packets arrive at the sink, as some are likely to
be on their way when the experiment is ended. As expected,
the much larger testbed in Brunswick goes into an overload
situation much earlier than Erlangen. As the radio model
drops all packets in case of a collision, the testbed outper-
forms the simulation in the overload situation. Considering
the jitter of the measurements the results are quite close,
though and the point clouds almost always overlap.

In terms of radio on time (Figure 4b), the testbed always
outperforms the simulation, not only in an overload situation.
We also account this to the radio model, as packets need
to be re-transmitted more often. Even though, there is a
clear correlation between simulation and testbed, and the
dot clouds typically overlap.

7. DISCUSSION
Our evaluation shows that it is possible to get quite re-

alistic results, even with a very simple radio model and
simplified assumptions when tracing the network. To the
best of our knowledge it was also the most comprehensive
comparison between testbed and simulation using such a
holistic approach. Actually, due to the many trials preceding
the presented numbers, we found multiple bugs in all layers
of the system. One of them, located in the implementation of
the radio hardware, ignored the configured CCA threshold.
Before we started varying the threshold in our experiments,
it caused the simulations to yield unexplainable discrepancies
to our real world experiments and was quite hard to find.
Although we are certainly not the first to suggest verifying
simulators using testbeds, with our tools this can now be
accomplished by running a sufficient number of experiments
with reasonable efforts.

We see multiple leverage points to improve our results.
One is a more dynamic model for the background noise
and the signal strength. This will likely have a significant
influence on protocols like ContikiMAC, which heavily rely
on the RSSI. To allow tracing networks outside a testbed,
such a model must also be suitable to aggregate the data on
the nodes themselves, though.

Further on, the signal strength is currently only evaluated
by the radio hardware, but not the radio model. Therefore
weak signals can interfere with strong ones. In this context
Halkes et al. had very promising results with a Signal-to-
Noise Ratio (SNR)-based model [15].

Yet another problem we faced while comparing the simula-
tions with the testbed was the amount of data we collected.
The numbers presented show only 2 of the over 50 different
attributes we collected. With simulators the amount of data
that can be collected suddenly becomes unlimited. They
allow monitoring state that is too complex or changes too
often to be printed to the serial [27]. While this provides
great opportunities, it also requires the support of specialized
tools to handle the data.

The amount of data that can be collected, as well as the
huge number of different configurations when combining
multiple parameters requires further tooling support. Once
our simulation results are accurate enough, it is possible to
use machine learning and evolutionary algorithms to find
better configurations.

As soon as the number of experiments is only limited by the
available processing power, many other things to investigate

come to mind. For example, it is possible to test each node
with an individual configuration. This might allow leaf-nodes
to save more energy. It is also possible to derive scenarios
from the traces, for example to test whether failing nodes
can be tolerated. Yet another possibility is to enrich the
simulation with an energy model and try to increase the
network lifetime opposed to node lifetime.

Currently we are only targeting the pre-deployment stage.
Extracting the required information from the packets sent
over the network anyway would make this approach even
more powerful. It would allow running simulations on an
updated model of the network, without having to flash a
special firmware. It is then possible to detect potential issues
caused by the changed environment, or just test the next
firmware version to be deployed.

8. CONCLUSION
To gain a reliable, robust and long-living mote-class WSN

network, it is often not sufficient to use the default configu-
ration, but the system must be tailored to the specific used
case and deployment. This is likely to become a tedious
task, even for a domain expert. We therefore presented our
DrySim-approach of first mapping a deployment to the simu-
lator and then tailoring the system based on simulations. By
parallelizing the simulations it is possible to systematically
test a huge number of different configurations.

To verify our approach we created a set of tools called
RealSim that we used to trace testbeds and map them into
the Cooja WSN simulator. We chose the Cooja simulator
because it allows us to emulate binary code and to execute it
in simulation time. To allow testing different parameters by
instrumenting Cooja and RealSim we developed a second
set of tools, DryRun, which simplify setting up campaigns
to test different configurations.

In the evaluation we made a comprehensive comparison
between the testbed and the simulation. Although there is
plenty of room for improvements, it shows that our DrySim-
approach is feasible and can support finding a suitable con-
figuration for a specific deployment using simulation.
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