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Soft Errors — A Growing Problem

—
)
@)

4'\ I, x A *
oZ : *
B 3
e

. , o %
Aircraft e

—
O
w

Failure rate
‘» Boeing E-3 (1990s)

&&‘ﬂ A& L & | .7
- 10

—
O_L

1
—

—
O ]
w

| o
(U,01/Y) 814 BIN|IERY BAIOBYT

—
(@)

m Soft-Errors (Transient hardware faults)
m  Caused by (cosmic) radiation
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m Soft-Errors (Transient hardware faults)
m  Caused by (cosmic) radiation
m  Performance (technology) vs. reliability

m Software-based fault-tolerance
m  Selective and resource-efficient (costs!)
= Vital component: Arithmetic error coding (AN codes)
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“Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.
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— Key element: CoRed Dependable Voter
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Problem Statement

Goals:
= Full 1-bit fault coverage
= Get what you’re paid for

Implementation:

= UAV Flight-Control

= DanceOS - Safety RTOS
» KESO Embedded JVM
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Problem Statement

Goals:
= Full 1-bit fault coverage
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Implementation:

= UAV Flight-Control

= DanceOS - Safety RTOS
» KESO Embedded JVM

Problems:

= Experiments showed discrepancies
(in line with [3])

= |mplications on error probability?

— Practitioners cannot blindly rely
on coding theory!
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Agenda

Encoded Voter

= Background

m The CoRed Dependable Voter
m  Arithmetic Error Coding

= Think Binary
m  Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

ane _Z_t>

template<typename X_t, typename _Y_t, typen:
lass Voter

rivate:
g - 7 t::8) + LY.
enum h - A
mebe
Z_ti:B),
: $ - "z tuB),
cision

= Know Your Compiler & Architecture
m  Pitfall 2: Inter-Instruction State
m Pitfall 3: Undefined Execution Environment
m  Multi-Bit Faults — A Glimpse

nDe

= Conclusions & Lessons Learned
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The CoRed Dependable Voter — Basics
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|
TMR Provider " AN Code Protection Domain '  TMR Consumer

= Complex encoded comparison operation

= Data-flow integrity
= |nput: Variants ( X., Ye, Z¢)
= Qutput: Constant signature (B ) and encoded winner (W)
= \alidation: Subsequent check (decode)

= Control-flow integrity

m  Static signature (expected value): Compile-time
— Used as return value E

= Dynamic signature (actual value): Runtime
— Applied to winner W,
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Arithmetic Error Coding — Basics

Value Space Code Space

Valid Code Word
® o
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Encode

o
Valid Data Word

=  General coding theory
= Data word + redundant information = code word
= [Fault detection — distance between code words
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What to Expect? — Residual Error Probability
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= Silent Data Corruption (SDC)
= Undetectable code-to-code word mutation

®m  Residual error probability
= Chance for a SDC
m  Fundamental property for safety assessment

valid code words _ l

“ " bossible code words A

—The bigger key A, the better?
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Agenda

= Think Binary
m  Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

ZtB

“rStode>

= Know Your Compiler & Architecture
m  Pitfall 2: Inter-Instruction State
m  Pitfall 3: Undefined Execution Environment
m  Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned
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Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]
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Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance
= Distance (d) between code words (# unequal bits)

(O L
=
=
o
o

m d-1 bit error detection capabilities

= Brute force
= 1.4x10' experiments for all 16 bit As

A = 58,368 dpin = 2 #errors detectable = 1
58,831 3 2
58,659 6 5

—The bigger the better is misleading!
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Double Check — Implementation in the Spotlight
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= Fault-simulation — entire fault-space
m Fach and every A, v and fault pattern
m 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors
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Double Check — Implementation in the Spotlight
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= Fault-simulation — entire fault-space
m Fach and every A, v and fault pattern
m 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

— Excess of predicted residual error probability

— Mismatch with Hamming distance experiments
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Pitfall 1: Mapping Code to Binary

16-bit Machine Word

32-bit Machine Word
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= Pitfall 1: Binary representation of code words
= Coding theory is unaware of machine word sizes

— Dangerous over- and underflow conditions
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Pitfall 1: Mapping Code to Binary

16-bit Machine Word

32-bit Machine Word
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= Pitfall 1: Binary representation of code words
= Coding theory is unaware of machine word sizes
— Dangerous over- and underflow conditions

= EAN Patch: decode(v., A, B, D)
m  Additional range checks — Prevent code space violation
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= Think Binary
m  Choosing Appropriate Keys
m  Pitfall 1: Mapping Code to Binary

= Know Your Compiler & Architecture
= Pitfall 2: Inter-Instruction State \
m  Pitfall 3: Undefined Execution Environment
m  Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned
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Analysing the Assembly

= Fault-Injection with FAIL* [5]
= Based on Bochs simulator

= [Fach and every register, flag,
instruction and execution path

m Fault-space pruning — Feasibility
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Analysing the Assembly

= Fault-Injection with FAIL* [5] ¢
m Based on Bochs simulator

= Each and every register, flag,
instruction and execution path

= Fault-space pruning — Feasibility

= Experimental setup

= |mplementation: C++
= Compiler: GCC 4.7.2-5 (I1A32), -O2

= Footprint:
CoRed Voter Simple Voter
Instructions 92 38
Memory (Bytes) 301 112

RTOS: Spatial and temporal isolation
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Analysing the Assembly

= Fault-Injection with FAIL* [5]
= Based on Bochs simulator

= [Fach and every register, flag,
instruction and execution path

m Fault-space pruning — Feasibility

= Experimental setup

= |mplementation: C++
= Compiler: GCC 4.7.2-5 (IA32), -O2

= Footprint:
CoRed Voter Simple Voter
Instructions 92 38
Memory (Bytes) 301 112

m RTOS: Spatial and temporal isolation

— Violation of predicted fault-detection capabilities
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Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost

/* if (a ==
cmp eax, ebx
je Lequal

b) */
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Know your Compiler and Architecture

= Pitfall 2: Architecture specifics

= Example: Absence of compound test-and-branch

= Control-flow information is stored in single bit

— Redundancy is lost

= EAN Patch: apply (v, sigpyw)
= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

/* if (a ==
cmp eax, ebx
je Lequal

b) :':/

O Peter Ulbrich — ulbrich@cs.fau.de

15



Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost
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= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

= Pitfall 3: Undefined Execution Environment
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= Zombie values — leaking from caller to voter function
— |solation assumptions violated
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Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost

= EAN Patch: apply(vc,Sigpy)

/* if (a ==
cmp eax, ebx
je Lequal

b) 7':/

= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

= EAN Patch: vote(Xc, Yc, Zc)
m  (Cleaning the local storage restores isolation

= Pitfall 3: Undefined Execution Environment
= Compiler laziness leaves encoded values in registers
= Zombie values — leaking from caller to voter function
— |solation assumptions violated

O Peter Ulbrich — ulbrich@cs.fau.de
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Fault-Injection Campaigns — Final Results

Instructions

Registers and Flags

Program Counter

Simple CoRed Simple CoRed Simple CoRed
OK 784 2772 1040 3204 127 267
Detected (Code) - 995 - 1435 - 420
Detected (Trap) 93 246 8 41 21 241
Detected (Isolation) 825 1834 1825 3736 2804 6240
Detected (Timeout) 0 1 0 0 0 0
Undetected (SDC) 450 0 807 o) 152 0

= 3 Fault-Injection Campaigns:

m |nstructions and

= General purpose registers and CPU flags

= Program counter

O Peter Ulbrich — ulbrich@cs.fau.de
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Fault-Injection Campaigns — Final Results

Instructions Registers and Flags  Program Counter

Simple CoRed Simple CoRed Simple CoRed
OK 784 2772 1040 3204 127 267
Detected (Code) - 995 - 1435 - 420
Detected (Trap) 93 246 8 41 21 241
Detected (Isolation) 825 1834 1825 3736 2804 6240
Detected (Timeout) 0 1 0 0 0 0
Undetected (SDC) 450 o) 807 o) 152 o)

= 3 Fault-Injection Campaigns:
® |nstructions and
= General purpose registers and CPU flags
= Program counter

— CoRed dependable voter performs as EXPECTED!
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Multi-Bit Faults — The Good, the Bad and the ...

Good A =58,659 BadA =58,368
OK 38639 38639

Detected (Code) 21596 21519
Detected (Trap) 47 47
Detected (Isolation) 60438 60438

Detected (Timeout) 0 0
Undetected o) 77

= 2-bit Fault-injection experiments
= Full fault space coverage
= Triple check fault-detection capabilities

= Distances: dy,,q = 6, dyypg = 2

O Peter Ulbrich — ulbrich@cs.fau.de 17




Multi-Bit Faults — Tighten the Rules

3-bit faults 4-bit faults 5-bit faults
OK 33.742% 33.605% 33.544%
Detected (Code) 18.209% 18.356% 18.431%
Detected (Trap) 0.001% <0.001% 0% |
Detected (Isolation) 47.993% 48.030% 48.023%
Detected (Timeout) 0% 0% 0%
Undetected 0 0 0
Fault Space 359x 106  1.03x108  2.90 x 10°

Coverage 16.13% 0.59% 0.04%
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= Think Binary
m  Choosing Appropriate Keys
m  Pitfall 1: Mapping Code to Binary

= Know Your Compiler & Architecture
= Pitfall 2: Inter-Instruction State \
m  Pitfall 3: Undefined Execution Environment
m  Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned
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Conclusions & Lessons Learned

Soft Errors — A Growing Problem
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= Soft-Errors (Transient hardware faults)
= Caused by (cosmic) radiation
® Performance (technology) vs. reliability

= Software-based fault-tolerance
= Selective and resource-efficient (costs!)

= Vital component: Arithmetic error coding (AN codes)
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Conclusions & Lessons Learned
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— Dangerous over- and underflow conditions

A, B, D)

= EAN Patch: decode(Vv¢,
Prevent code sp

= Additional range checks — ace violation

C
O
Peter Ulbrich — ulbrich@cs.fau,de

O Peter Ulbrich — ulbrich@cs.fau.de

20



Conclusions & Lessons Learned

K
Know

your Compiler and Architectyre
® Pitfall 2: Architecture Specifics

" Example: Absence of
Control-flow informati
- Redundancy is lost

compound test-and—branch
On is stored jn single bit

® EAN Patch: appiy(vc, i

" Malicioys control-flow i

— Little obvious Source of vulnerabilities

= Tight feedback loop with Fi required
— Isolation ang (013

-Support Mandatory
= EAN Paton danceCS

= Cleanin
® Pitfall 3: y TS

® Compiler laziness leay
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Conclusions & Lessons Learned

Combined Redundancy Approach CoRed
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-
t. (1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schréder-Preikschat, Wolfgang:
- 0 “Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.
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Implementation and further experimental results:
http://wwwd.cs.fau.de/Research/CoRed




