A Practitioner‘s Guide to
Software-based Soft-Error Mitigation Using AN-Codes

Peter Ulbrich

151 |EEE International Symposium on High Assurance Systems Engineering
January 09, 2013

NG§

oV T2

< ® 7
— o) A
L]]
_—— = = 0 = .
] A % L L C
————— w= == == FRIEDRICH-ALEXANDER “ZA &
== oeeemwm == UNIVERSITAT _
== == == = ERLANGEN-NURNBERG System Software Group Embedded Systems Initiative

htto:/Avww4 .cs fau.de

Soft Errors — A Growing Problem

—
)
@)

4'\ I, x A *
oZ : *
B 3
e

. , o %
Aircraft e

—
O
w

Failure rate
‘» Boeing E-3 (1990s)

&&‘ﬂ A& L & | .7
- 10

—
O_L

1
—

—
O]
w

| o
(U,01/Y) 814 BIN|IERY BAIOBYT

—
(@)

m Soft-Errors (Transient hardware faults)
m Caused by (cosmic) radiation

O Peter Ulbrich — ulbrich@cs.fau.de 2

Soft Errors — A Growing Problem

;'\ T * . . >*x :
’".* : *. : X .

Failure rate
w Boeing E-3 (1990s)

Aircraft e

Technology 1992 1994 1997 1999 2002 2005 2008 2011

m Soft-Errors (Transient hardware faults)
m Caused by (cosmic) radiation
m Performance (technology) vs. reliability

(U,01/Y) 814 BIN|IRY BAIOBYT

|
~

0 Peter Ulbrich — ulbrich@cs.fau.de

Soft Errors — A Growing Problem

—
)
@)

Ty ? e * ») * '

Failure rate
W Boeing E-3 (1990s)

—
O
w

Aircraft e

—i
O_L

|
—

Fault-Tolerance

—
o]
w

| o
(U,01/Y) 814 BIN|IRY BAIOBYT

—
(@)

¥

—
(@)

Technology 1992 1994 1997 1999 2002 2005 2008 2011

m Soft-Errors (Transient hardware faults)
m Caused by (cosmic) radiation
m Performance (technology) vs. reliability

m Software-based fault-tolerance
m Selective and resource-efficient (costs!)
= Vital component: Arithmetic error coding (AN codes)

0 Peter Ulbrich — ulbrich@cs.fau.de 2

O

Combined Redundancy Approach CoRed

4)

Replica 1
/
w— i
Sensor 2 Replica 2 CoRed Voter
C) L

Sensor 1

_

4)

Sensor 3

Network
Interface

Remote Node

Replica 3

\ /

[] Isolation domain [[.] Encoded operation [] Sphere of redundancy (SOR)

The Combined Redundancy Approach (CoRed) [1]

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat, Wolfgang:
“Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de 3

O

Combined Redundancy Approach CoRed

4 N
() ()
Ee) . ©
W S | Replical | 8
[} =
o (i}
Sensor 1 [Encode Decode
J _ Y
4)
L s || (B 1| p—
© . ©
Sensor 2 |Encode = CoRed Voter § Replica2 | 8 CoRed Voter
) [T L _JHR)
\ / =
o
\1 4) z
Sensor 3 EncodeJ o © W %
S . g Network
o o S
o Replica 3 < Interface 2
o L
A\ /

[] Isolation domain [[.] Encoded operation [] Sphere of redundancy (SOR)

The Combined Redundancy Approach (CoRed) [1]
/

Triple Modular
Redundancy

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat, Wolfgang:
“Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de 3

Combined Redundancy Approach

CoRed

Sensor 1 |Encode

Sensor 2 | Encode

(
g o §

1S
[V}
+—
(%
>
(Vp)]
—
(]
(%)
c
(<}
(%]

Sensor 3 | Encode

/

- N
(] (]
e . Ee)
S | Replical | 8
(O] [
o [

_ %
a N
(] ()

Ee) . Ee)

3 | Replica2 | 8
(] =
o I}

_ /
4 N
(] ()

Ee) . Ee)

8 | Replica3 | 8
() =
(e [Iw}

_ /

Decode

[CoRed Voter }
Network

Interface

Remote Node

[] Isolation domain [[.] Encoded operation [] Sphere of redundancy (SOR)

The Combined Redundancy Approach (CoRed) [1]

Triple Modular
Redundancy

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat, Wolfgang:

O\

Arithmetic Error
Coding

O “Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de

Combined Redundancy Approach CoRed

4 N
() ()
Ee) . ©
e W S | Replical | 8
a S
Sensor 1 [Encode Decode
J _ Y
\
4 N
e WAl 3 p—
© . ©
Sensor 2 |Encode = CoRed Voter § Replica2 | 8 CoRed Voter
\ RN L _JEN)
\ / =
o
w 4) =z
Sensor 3 EncodeJ o © W %
S . g Network
o o S
o Replica 3 < Interface 2
o L
A\ /

[] Isolation domain [[.] Encoded operation [] Sphere of redundancy (SOR)

The Combined Redundancy Approach (CoRed) [1]
< O\

Triple Modular Arithmetic Error
Redundancy Coding

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat, Wolfgang:
O “Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de 3

Combined Redundancy Approach CoRed

4 N
(] (]
Ee) . ©
3 | Replical | 8
a S
Sensor 1 [Encode Decode
J \ Y
4 N
B 0| p—
© . ©
Sensor 2 |Encode = CoRed Voter § Replica2 | 8 CoRed Voter
) N | |18 N)
\ / -
o
\W 4) =
Sensor 3 EncodeJ o © W %
g . g Network
o o (S
D Replica 3 c Interface 2
(e [Iw}
\ /

[] Isolation domain [[.] Encoded operation [] Sphere of redundancy (SOR)

The Combined Redundancy Approach (CoRed) [1]
< O\

Triple Modular Arithmetic Error
Redundancy Coding

— Key element: CoRed Dependable Voter

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat, Wolfgang:
O “Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de 3

Problem Statement

Goals:
= Full 1-bit fault coverage
= Get what you’re paid for

Implementation:

= UAV Flight-Control

= DanceOS - Safety RTOS
» KESO Embedded JVM

0 Peter Ulbrich — ulbrich@cs.fau.de

Problem Statement

Goals:
= Full 1-bit fault coverage
= Get what you’re paid for

Implementation:

= UAV Flight-Control

= DanceOS - Safety RTOS
» KESO Embedded JVM

Problems:

= Experiments showed discrepancies
(in line with [3])

= |mplications on error probability?

0 Peter Ulbrich — ulbrich@cs.fau.de

Problem Statement

Goals:
= Full 1-bit fault coverage

| é@i:ﬁii—i::f, - fffiﬂlli—:'i

Implementation:

= UAV Flight-Control

= DanceOS - Safety RTOS
» KESO Embedded JVM

Problems:

= Experiments showed discrepancies
(in line with [3])

= |mplications on error probability?

— Practitioners cannot blindly rely
on coding theory!

0 Peter Ulbrich — ulbrich@cs.fau.de

Agenda

Encoded Voter

= Background

m The CoRed Dependable Voter
m Arithmetic Error Coding

= Think Binary
m Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

ane _Z_t>

template<typename X_t, typename _Y_t, typen:
lass Voter

rivate:
g - 7 t::8) + LY.
enum h - A
mebe
Z_ti:B),
: $ - "z tuB),
cision

= Know Your Compiler & Architecture
m Pitfall 2: Inter-Instruction State
m Pitfall 3: Undefined Execution Environment
m Multi-Bit Faults — A Glimpse

nDe

= Conclusions & Lessons Learned

O Peter Ulbrich — ulbrich@cs.fau.de

The CoRed Dependable Voter — Basics

|
1
1
Replical X :
1
|
1
Replica2 Y Encoded Voter :
1
1
Replica3 Z :
1
|
TMR Provider " AN Code Protection Domain ' TMR Consumer

= Complex encoded comparison operation

= Data-flow integrity
= |nput: Variants (X., Ye, Z¢)
= Qutput: Constant signature (B) and encoded winner (W)
= \alidation: Subsequent check (decode)

= Control-flow integrity

m Static signature (expected value): Compile-time
— Used as return value E

= Dynamic signature (actual value): Runtime
— Applied to winner W,

O Peter Ulbrich — ulbrich@cs.fau.de

Arithmetic Error Coding — Basics

Value Space Code Space

Valid Code Word
® o

.,/E)istance

Encode

o
Valid Data Word

= General coding theory
= Data word + redundant information = code word
= [Fault detection — distance between code words

O Peter Ulbrich — ulbrich@cs.fau.de 7

Arithmetic Error Coding — Basics

Value Space Code Space

Valid Code Word

/5|stance

\g\\ °
= General coding theory

= Data word + redundant information = code word
= [Fault detection — distance between code words

Valid Data Word

Arithmetic Operation

= Arithmetic error codes

= Can cope with computational flaws
» Arithmetic operators (+, -, x, =, ...)

P2

‘O Encoded value Constant (Key) Value

Peter Ulbrich — ulbrich@cs.fau.de 7

Arithmetic Error Coding — Basics

Value Space Code Space

Valid Code Word

Encode

Arithmetic Operation

/5|stance

\g\\ °
= General coding theory

= Data word + redundant information = code word
= [Fault detection — distance between code words

Valid Data Word

= Arithmetic error codes

= Can cope with computational flaws
» Arithmetic operators (+, -, x, =, ...)

U, ey + B +D

1%

//\ NN

‘O Encoded value Constant (Key) Value Signature Timestamp

Peter Ulbrich — ulbrich@cs.fau.de 7

What to Expect? — Residual Error Probability

‘\
\

.

—_

o

I
w

—

o

|
IN

1
ppred (Z)

10—°

Psdc (residual error probability)

—_
o
|

»

2 8192 16384 32768 61440
values of A (16-bit constant key)

= Silent Data Corruption (SDC)
= Undetectable code-to-code word mutation

®m Residual error probability
= Chance for a SDC
m Fundamental property for safety assessment

valid code words _ l

“ " bossible code words A

—The bigger key A, the better?

O Peter Ulbrich — ulbrich@cs.fau.de

Agenda

= Think Binary
m Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

ZtB

“rStode>

= Know Your Compiler & Architecture
m Pitfall 2: Inter-Instruction State
m Pitfall 3: Undefined Execution Environment
m Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned

O Peter Ulbrich — ulbrich@cs.fau.de

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance

= Distance (d) between code words (# unequal bits)

m d-1 bit error detection capabilities

Q=X

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance

= Distance (d) between code words (# unequal bits)

Q=X

m d-1 bit error detection capabilities

= Brute force
= 1.4x10' experiments for all 16 bit As

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance

= Distance (d) between code words (# unequal bits)

Q=X

m d-1 bit error detection capabilities

= Brute force

= 1.4x10' experiments for all 16 bit As
A = 58,368 dpin = 2 #errors detectable = 1

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance

= Distance (d) between code words (# unequal bits) ;
m d-1 bit error detection capabilities g
= Brute force
= 1.4x10' experiments for all 16 bit As
A = 58,368 dpin = 2 #errors detectable = 1
58,831 3 2

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance

= Distance (d) between code words (# unequal bits) ;
m d-1 bit error detection capabilities g
= Brute force
= 1.4x10' experiments for all 16 bit As
A = 58,368 dpin = 2 #errors detectable = 1
58,831 3 2
58,659 6 5

O Peter Ulbrich — ulbrich@cs.fau.de

10

Think Binary — Choosing Appropriate Keys?

= Theory: prime numbers [4]
m |ntuitively plausible
= Non-primes suitable as well? [3]

= Practitioner’s approach: min. Hamming distance
= Distance (d) between code words (# unequal bits)

(O L
=
=
o
o

m d-1 bit error detection capabilities

= Brute force
= 1.4x10' experiments for all 16 bit As

A = 58,368 dpin = 2 #errors detectable = 1
58,831 3 2
58,659 6 5

—The bigger the better is misleading!

O Peter Ulbrich — ulbrich@cs.fau.de 10

Double Check — Implementation in the Spotlight

|
\

—_
o
|
w

template<typename X_t, typename _Y_t, typename L
class Voter

—
o
|
IS

1
ppred (Z)

—_
o
|
(6]

Psdc (residual error probability)

—
o
|
[e2)

2 8192 16384 32768 61440
values of A (16-bit constant key)

= Fault-simulation — entire fault-space
m Fach and every A, v and fault pattern
m 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

O Peter Ulbrich — ulbrich@cs.fau.de 11

Double Check — Implementation in the Spotlight

|
\

[
o
I

w

template<typename X_t, typename _Y_t, typename L
class Voter

—

o

|
N

1
Ppred (A)

Pora (borderline bit errors)

—_t

o

|
[$)]

Psdc (residual error probability)

—_
o
|

»

2 8192 16384 32768 61440
values of A (16-bit constant key)

= Fault-simulation — entire fault-space
m Fach and every A, v and fault pattern
m 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

— Excess of predicted residual error probability

O Peter Ulbrich — ulbrich@cs.fau.de 11

Double Check — Implementation in the Spotlight

|
\

[
o
I
w

_X_t, typename _Y_t, typename At

template<typename
class Voter

—
o
|
N

1
Ppred (A >

Pora (borderline bit errors)

—_t
o
|

[$)]

Psdc (residual error probability)

—_
o
|

»

2 8192 16384 32768 61440
values of A (16-bit constant key)

= Fault-simulation — entire fault-space
m Fach and every A, v and fault pattern
m 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

— Excess of predicted residual error probability

— Mismatch with Hamming distance experiments

O Peter Ulbrich — ulbrich@cs.fau.de 11

Pitfall 1: Mapping Code to Binary

16-bit Machine Word

32-bit Machine Word

—

~——

Code Space

] —
o
Encode
@leee® q//\ﬂ .
@ ®/e @@+ Decode
Value Space
o (]
\\ //

= Pitfall 1: Binary representation of code words
= Coding theory is unaware of machine word sizes

— Dangerous over- and underflow conditions

O Peter Ulbrich — ulbrich@cs.fau.de

12

Pitfall 1: Mapping Code to Binary

16-bit Machine Word

32-bit Machine Word

—

—

/@de Space

®

0

@

Value Space

| I~
/ ‘
/
Encode A @
(] (]
Decode
V\ .
N
N ® °
\\ //

= Pitfall 1: Binary representation of code words
= Coding theory is unaware of machine word sizes
— Dangerous over- and underflow conditions

= EAN Patch: decode(v., A, B, D)
m Additional range checks — Prevent code space violation

O Peter Ulbrich — ulbrich@cs.fau.de

12

= Think Binary
m Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

= Know Your Compiler & Architecture
= Pitfall 2: Inter-Instruction State \
m Pitfall 3: Undefined Execution Environment
m Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned

Peter Ulbrich — ulbrich@cs.fau.de 13

Analysing the Assembly

= Fault-Injection with FAIL* [5]
= Based on Bochs simulator

= [Fach and every register, flag,
instruction and execution path

m Fault-space pruning — Feasibility

- -t
-

.

e
-

O Peter Ulbrich — ulbrich@cs.fau.de 14

Analysing the Assembly

= Fault-Injection with FAIL* [5] ¢
m Based on Bochs simulator

= Each and every register, flag,
instruction and execution path

= Fault-space pruning — Feasibility

= Experimental setup

= |mplementation: C++
= Compiler: GCC 4.7.2-5 (I1A32), -O2

= Footprint:
CoRed Voter Simple Voter
Instructions 92 38
Memory (Bytes) 301 112

RTOS: Spatial and temporal isolation

O Peter Ulbrich — ulbrich@cs.fau.de 14

Analysing the Assembly

= Fault-Injection with FAIL* [5]
= Based on Bochs simulator

= [Fach and every register, flag,
instruction and execution path

m Fault-space pruning — Feasibility

= Experimental setup

= |mplementation: C++
= Compiler: GCC 4.7.2-5 (IA32), -O2

= Footprint:
CoRed Voter Simple Voter
Instructions 92 38
Memory (Bytes) 301 112

m RTOS: Spatial and temporal isolation

— Violation of predicted fault-detection capabilities

O Peter Ulbrich — ulbrich@cs.fau.de 14

Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost

/* if (a ==
cmp eax, ebx
je Lequal

b) */

O Peter Ulbrich — ulbrich@cs.fau.de

15

Know your Compiler and Architecture

= Pitfall 2: Architecture specifics

= Example: Absence of compound test-and-branch

= Control-flow information is stored in single bit

— Redundancy is lost

= EAN Patch: apply (v, sigpyw)
= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

/* if (a ==
cmp eax, ebx
je Lequal

b) :':/

O Peter Ulbrich — ulbrich@cs.fau.de

15

Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost

= EAN Patch: apply(vc,Sigpy)

/* if (a ==
cmp eax, ebx
je Lequal

b) 7':/

= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

= Pitfall 3: Undefined Execution Environment
= Compiler laziness leaves encoded values in registers
= Zombie values — leaking from caller to voter function
— |solation assumptions violated

0 Peter Ulbrich — ulbrich@cs.fau.de

15

Know your Compiler and Architecture

= Pitfall 2: Architecture specifics
= Example: Absence of compound test-and-branch
= Control-flow information is stored in single bit
— Redundancy is lost

= EAN Patch: apply(vc,Sigpy)

/* if (a ==
cmp eax, ebx
je Lequal

b) 7':/

= Malicious control-flow — Signature overflow — Additional check

Encoded Voter

= EAN Patch: vote(Xc, Yc, Zc)
m (Cleaning the local storage restores isolation

= Pitfall 3: Undefined Execution Environment
= Compiler laziness leaves encoded values in registers
= Zombie values — leaking from caller to voter function
— |solation assumptions violated

O Peter Ulbrich — ulbrich@cs.fau.de

15

Fault-Injection Campaigns — Final Results

Instructions

Registers and Flags

Program Counter

Simple CoRed Simple CoRed Simple CoRed
OK 784 2772 1040 3204 127 267
Detected (Code) - 995 - 1435 - 420
Detected (Trap) 93 246 8 41 21 241
Detected (Isolation) 825 1834 1825 3736 2804 6240
Detected (Timeout) 0 1 0 0 0 0
Undetected (SDC) 450 0 807 o) 152 0

= 3 Fault-Injection Campaigns:

m |nstructions and

= General purpose registers and CPU flags

= Program counter

O Peter Ulbrich — ulbrich@cs.fau.de

16

Fault-Injection Campaigns — Final Results

Instructions Registers and Flags Program Counter

Simple CoRed Simple CoRed Simple CoRed
OK 784 2772 1040 3204 127 267
Detected (Code) - 995 - 1435 - 420
Detected (Trap) 93 246 8 41 21 241
Detected (Isolation) 825 1834 1825 3736 2804 6240
Detected (Timeout) 0 1 0 0 0 0
Undetected (SDC) 450 o) 807 o) 152 o)

= 3 Fault-Injection Campaigns:
® |nstructions and
= General purpose registers and CPU flags
= Program counter

— CoRed dependable voter performs as EXPECTED!

O Peter Ulbrich — ulbrich@cs.fau.de

Multi-Bit Faults — The Good, the Bad and the ...

Good A =58,659 BadA =58,368
OK 38639 38639

Detected (Code) 21596 21519
Detected (Trap) 47 47
Detected (Isolation) 60438 60438

Detected (Timeout) 0 0
Undetected o) 77

= 2-bit Fault-injection experiments
= Full fault space coverage
= Triple check fault-detection capabilities

= Distances: dy,,q = 6, dyypg = 2

O Peter Ulbrich — ulbrich@cs.fau.de 17

Multi-Bit Faults — Tighten the Rules

3-bit faults 4-bit faults 5-bit faults
OK 33.742% 33.605% 33.544%
Detected (Code) 18.209% 18.356% 18.431%
Detected (Trap) 0.001% <0.001% 0% |
Detected (Isolation) 47.993% 48.030% 48.023%
Detected (Timeout) 0% 0% 0%
Undetected 0 0 0
Fault Space 359x 106 1.03x108 2.90 x 10°

Coverage 16.13% 0.59% 0.04%

O Peter Ulbrich — ulbrich@cs.fau.de

= Think Binary
m Choosing Appropriate Keys
m Pitfall 1: Mapping Code to Binary

= Know Your Compiler & Architecture
= Pitfall 2: Inter-Instruction State \
m Pitfall 3: Undefined Execution Environment
m Multi-Bit Faults — A Glimpse

= Conclusions & Lessons Learned

Peter Ulbrich — ulbrich@cs.fau.de 19

Conclusions & Lessons Learned

Soft Errors — A Growing Problem

* .

W

o)
U:01/Y) o182 2anj1e) sanosyg

Aircraft e

e ———— - : —
Failure rate
W Boeing E-3 (1990s)

,—-, Fault-Tolerance

—k
Q_A

- Software-based fault-tolerance
is hard to implement

= Missing tool support

(

10
05 2008 2011

N

= Soft-Errors (Transient hardware faults)
= Caused by (cosmic) radiation
® Performance (technology) vs. reliability

= Software-based fault-tolerance
= Selective and resource-efficient (costs!)

= Vital component: Arithmetic error coding (AN codes)

20

O Peter Ulbrich — ulbrich@cs.fau.de

Conclusions & Lessons Learned

O —

pPitfall 1: Mapping Code to Binary
32-bit Machine Word

16-bit Machine Word
IIIFE——EEIIII
Code Space

h impact of encoding parameters

— Hug
agnitude!

s Pitfall 1:1 Improvement by orders of m
s Codi

— Dangerous over- and underflow conditions

A, B, D)

= EAN Patch: decode(Vv¢,
Prevent code sp

= Additional range checks — ace violation

C
O
Peter Ulbrich — ulbrich@cs.fau,de

O Peter Ulbrich — ulbrich@cs.fau.de

20

Conclusions & Lessons Learned

K
Know

your Compiler and Architectyre
® Pitfall 2: Architecture Specifics

" Example: Absence of
Control-flow informati
- Redundancy is lost

compound test-and—branch
On is stored jn single bit

® EAN Patch: appiy(vc, i

" Malicioys control-flow i

— Little obvious Source of vulnerabilities

= Tight feedback loop with Fi required
— Isolation ang (013

-Support Mandatory
= EAN Paton danceCS

= Cleanin
® Pitfall 3: y TS

® Compiler laziness leay

= Zombie values —

leaking from caller to
= Isolation assumpti

voter function
ONs violateq

O Peter Ulbrich — uibnch@cs.fauvde

15
mer o

O Peter Ulbrich — ulbrich@cs.fau.de

Con |
clusions & Lessons |earned

KnOW VOIIr M-

Multi-Bit Faults — Tighten the Rules N
3-pit faults A-bit faults 5-bit faults
oK 33.742% 33.605% 33.544%
Detected (Code) 18.209% 18.356% 18.431%

petected (T rap 00040 A O0L% 0%

Detected (50| - Tooling speed is cruicall

petected (T i
Undetected 0
9

Fault Space
Coverage

O -

Pe

G
O Poter Ulbrich - Llorich@cs fau-de s g - 18
/ 2
Pet i
er Ulbrich = ulbrich@cs.fau.de 15

20

Conclusions & Lessons Learned

Combined Redundancy Approach CoRed

@
/@
@

S’

Sensor System

CoRed Voter

Network
Interface

Remote Node

ion [| Sphere of redundancy (SOR)

The Coml (CoRed) [1]

Trig rror
Reﬁ - s

— Key element: CoRed Dependable Voter

-
t. (1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schréder-Preikschat, Wolfgang:
- 0 “Eliminating Single Points of Failure in Software-Based Redundancy”, EDCC 2012.

Peter Ulbrich — ulbrich@cs.fau.de

peter Ulbrich = Ulbrich@cs.1au-

0 Peter Ulbrich — ulbrich@cs.fau.de

Implementation and further experimental results:
http://wwwd.cs.fau.de/Research/CoRed

