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Abstract
Embedded real-time control systems generally have a dedicated
purpose and fixed set of functionalities. This manifests in a large
amount of implicit and explicit static knowledge, available already
at compile time. Modern compilers can extract and exploit this
information to perform extensive whole-program analyses and inter-
procedural optimizations. However, these analyses typically end
at the application–kernel boundary, thus control-flow transitions
between different threads are not covered, yet. This restriction stems
from the pessimistic assumption of a probabilistic scheduling policy
of the underlying operating system, impeding detailed predictions of
the overall system behavior. Real-time operating systems, however,
do provide deterministic and exactly specified scheduling decisions,
as embedded control systems rely on a timely and precise behavior.

In this paper, we present an approach that incorporates the RTOS
semantics into the control-flow analysis, to cross the application–
kernel boundary. By combining operating system semantics, the
static system configuration and the application logic, we determine a
cross-kernel control-flow–graph, that provides a global view on
all possible execution paths of a real-time system. Having this
knowledge at hand, enables us to tailor the operating system kernel
more closely to the particular application scenario. On the example
of a real-world safety-critical control system, we present two
possible use cases: Run-time optimizations, by means of specialized
system calls for each call site, allow to speed up the kernel execution
path by 33 percent in our benchmark scenario. An automated
generation of OS state assertions on the expected system behavior,
targeting transient hardware fault tolerance, leverages significant
robustness improvements.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimizations; D.4.7 [Operating
Systems]: Organization and Design—Real-time Systems and Em-
bedded Systems
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1: BufferType buf;
2:
3: TASK(TaskA) {
4: char val = readData();
5: if (val == ’\n’) {
6: buf.finalize();
7: ActivateTask(TaskB);
8:
9: }

10: buf.append(val);
11: TerminateTask();
12: }
13:
14: TASK(TaskB) {
15: buf.print();
16: TerminateTask();
17: }
18:
19: TASK(TaskC) {
20: action_c();
21: TerminateTask();
22: }

dispatch

resum
e

app.c app.oil

TASK TaskA {
PRIORITY = 0;
TYPE = BASIC;
AUTOSTART = TRUE;
SCHEDULE = FULL;

};

TASK TaskB {
PRIORITY = 10;
TYPE = BASIC;
SCHEDULE = FULL;

};

TASK TaskC {
PRIORITY = 1;
TYPE = BASIC;
SCHEDULE = FULL;

};

Figure 1: A small OSEK system with three tasks. TaskA receives
data and fills a buffer, which is processed by TaskB. TaskC is never
activated. The right hand side shows the according, static system
configuration.

1. Introduction
Embedded real-time control systems are special-purpose systems:
The built-in computers are dedicated to specific, predefined tasks [14,
7]. Hence, it is possible (and common practice) to tailor both, the
hardware and system software of an embedded system to its specific
needs in order to keep per-unit hardware costs as low as possible [6].

In the software, the “special-purposeness” of an embedded con-
trol system manifests in the large amount of implicit/explicit static
knowledge we have available already at compile time: The structure
of the application code is typically static by nature. With respect to
predictability, standards for embedded software development, such
as MISRA-C [9], favor static data over stack-based or heap-based
memory allocation, prohibit the use of function pointers, and suggest
to use constants whenever possible.

Thanks to whole-program analyses (WPAs), modern compilers
can extract and exploit this static structure of the application to
perform a great deal of inter-procedural optimizations, such as
constant folding, caller-site inlining, or elimination of dead code and
data. Such optimizations become particularly effective if they are
applied per thread [22], that is, if the compiler is made aware of the
OS-managed control flows of the application and their respective
entry points [8]. This is generally possible in embedded real-time
systems, as the set of control-flows is also static: The real-time
operating system (RTOS) itself is tailored towards the specific
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application; all HW/SW events are prioritized and mapped to a
finite set of threads, interrupt-service routines (ISRs), semaphores
or other system objects. This makes it possible to allocate all system
objects at compile-time in static arrays and address them by their
constant index value. The automotive OSEK/AUTOSAR [17, 1]
RTOS standards, for instance, suggest this technique to keep the
RAM overhead as low as possible. Figure 1 exemplifies such an
OSEK-based system consisting of three tasks.

1.1 Problem Statement
Nevertheless, even a control-flow–sensitive WPA cannot provide
a complete picture, as it does not cover control-flow transitions
between different threads. These transitions are executed and man-
aged by the kernel scheduler on behalf of a syscall (e.g., posting a
semaphore) and, thus, outside of the semantics of the programming
language. The common assumption here is that the kernel might
switch at any time to any other thread, so the compiler cannot derive
constraints about inter-thread control-flow transitions.

However, while this pessimistic assumption is true for operating
systems that employ probabilistic scheduling of a dynamically
changing set of threads (e.g., Linux, Windows), the scheduling
decisions of an RTOS are generally deterministic. In Figure 1,
for example, the AUTOSTART thread TaskA sets thread TaskB ready
(ActivateTask(TaskB), line 7). As the static priority 10 of TaskB is
higher than the static priority 0 of TaskA, we know at compile-time
that at this point the kernel of an event-driven RTOS will always
dispatch to TaskB. Furthermore, as TaskB is only activated from
TaskA (and itself does not activate any other task), we also know that
upon termination of TaskB (TerminateTask(), line 16) the execution
will always continue in TaskA. A compiler that is aware of these
facts could optimize the code to not invoke the kernel scheduler at
these points. Even further, the compiler could inline the user-code
of TaskB into TaskA and completely eradicate the respective system
calls and the – then dead – TaskB object. Similarly, such compiler
could detect that thread TaskC is also dead (the kernel will never
dispatch to it), so it could also be eradicated. Eventually, the system
from Figure 1 will be collapsed into a single thread, so that even the
scheduler is no longer needed.

This basic example is, of course, simplistic. It does, for instance,
not contain any ISR that may activate a task at any time. Neverthe-
less, even with ISRs it is typically possible in an event-triggered real-
time system to derive some knowledge about inter-thread transitions
– in order to exploit this knowledge for truly global cross-kernel
control-flow system optimizations.

1.2 About This Paper
In this paper, we describe our approach to construct a global control-
flow graph (GCFG) of a static event-triggered real-time system.
In addition to an ordinary (control-flow–sensitive) control-flow
graph (CFG), the GCFG also incorporates the RTOS semantics,
including interrupts and synchronization primitives, to model the
control flow even across multiple threads and kernel invocations.

We show how, once obtained, the GCFG can be employed to
speed up kernel activations in our benchmark system by 33 percent.
It can also be employed to harden the kernel against transient
hardware faults. Our software-based measure reduces the silent data
corruption count by 49 percent for an already hardened system. The
presented optimizations are novel and only enabled by the whole-
system view of the GCFG. Further measures only applicable on the
system level, like checking for specification conformity are possible.
The GCFG information enables the lifting of optimizations known
from the function level, like dead code elimination, pointer-alias
analysis, or constant propagation, to the system level.

2. System Model
To achieve sound GCFG analyses, the underlying RTOS has to
provide four basic properties: First, a deterministic scheduling
policy, as for example fixed-priority preemptive scheduling. Second,
all system objects must be declared before run time, either in some
dedicated configuration file, or unambiguously in the application
code itself. Third, system-service calls must be explicit, that is,
indirect invocations via function pointers are not allowed. Finally,
system objects must be referenced with compile-time constant
identifiers or link-time constant addresses.

In practice, these requirements are already fulfilled or easy
to achieve for event-triggered real-time control systems – they
are basically a technical consequence of predictability and, thus,
already mandated by the relevant coding standards of the domain.
A large class of systems that fulfills them out of the box are
OSEK/AUTOSAR-based automotive control systems. Without loss
of generality, we therefore describe our approach in the following
on the example of the system model mandated by OSEK-OS [17].

In our current implementation, the GCFG is constructed for a
single core (OSEK-OS specifies a single core system). However,
our approach would also work for multicore systems with strictly
partitioned scheduling, such as AUTOSAR 4.0 [1].

2.1 Overview of OSEK-OS
OSEK-OS [17] has been the dominant industry standard for au-
tomotive RTOS for the last two decades. Originally intended for
single-core single-application systems, it has been extend for spatial
and temporal isolation and multi-core support in AUTOSAR-OS
[1], but the core API and concepts remained unchanged. So all of
the following equally holds for AUTOSAR-OS–based systems.

OSEK specifies terminology and the API for a completely stati-
cally configured event-triggered RTOS. For a specific automotive
application, all system objects and their configuration have to be
declared at compile-time in a domain specific language, the OSEK
Implementation Language (OIL) [16]. From this specification, the
concrete RTOS instance is typically derived by a generator.

At run-time, the application manipulates the operating-system
state by invoking system services, which influences the system
behavior (Table 1 gives a short overview).

Control-Flow Abstractions: ISRs and Tasks
OSEK offers two main control-flow abstractions: ISRs and tasks
(traditionally called threads). ISRs are activated by the hardware and
fall into two classes: category-1 ISRs, which are not allowed to call
system services; and category-2 ISRs, which are synchronized with
the kernel. Tasks have a statically assigned priority, are allowed to
use all system services, and are invoked according to a fixed-priority
preemptive scheduling policy.

On each new activation, tasks start from the very beginning
until their (self-) termination. Each task is configured to be either
non-preemptive (enforcing run-to-completion semantics) or fully
preemptive (see SCHEDULE = FULL in Figure 1). Preemption points
can be either synchronous, for example caused by an explicit
activation of a higher priority task (e.g., ActivateTask(TaskB),
line 7), or asynchronous, if a higher priority task is activated inside
an ISR. Recurring, periodic or aperiodic, task activations can be
triggered with the help of statically configured Alarms.

Synchronization Primitives: Global Lock and Resources
Inter-task synchronization can be realized either by a coarse-grained
global interrupt lock, or more fine-grained Resource objects. Based
on a stack-based priority-ceiling protocol, OSEK resources ensure
mutual exclusion while preventing deadlocks and priority inversion.
Through the acquisition of a resource, a task raises its dynamic
priority to the ceiling priority of the resource – the highest static



System Service Arguments Brief Description

ActivateTask TaskID Task – TaskID – is activated. If the current task is preemptable, an immediate rescheduling takes place.
TerminateTask – The current task terminates itself. An immediate rescheduling takes place.
ChainTask TaskID The atomic combination of ActivateTask(TaskID) and TerminateTask().
GetResource ResID Acquires the resource identified by ResID.
ReleaseResource ResID Leaves the critical region associated with the resource ResID. The dynamic priority of the calling task

is changed and a reschedule takes place for preemptable tasks.
DisableAllInterrupts – Disables all interrupts
EnableAllInterrupts – The inverse operation to DisableAllInterrupts.

Table 1: (Incomplete) list of system services provided by the OSEK API. Not all control flows are allowed to invoke all system services.

priority of all tasks that can obtain the resource, according to the
OIL file. The OSEK specification further defines four conformance
classes (BCC1, BCC2, ECC1, ECC2), which describe minimum
requirements about optional features provided by the system. In
contrast to basic tasks (BCC1/2), extended tasks (ECC1/2) are
allowed to use Event objects to block and enter a waiting state.
In this work, we target the conformance class BCC1 (i.e., only
basic tasks and only one task per priority) plus the aforementioned
resource concept. In principle, the other conformance classes could
be supported as well, however, we have not yet implemented this.

Sources of Information
With these system objects at hand, we can construct real-time
systems, composed of ISRs and tasks, which are activated by
external or software signals and coordinated using interrupt blocks or
resources. The OIL file statically defines and configures all objects,
providing coarse-grained application knowledge. To achieve more
fine-grained knowledge on the overall system behavior, a detailed
analysis of the kernel–task interaction is necessary.

3. Fine-Grained Interaction Knowledge
One piece of fine-grained knowledge about the application is inter-
action knowledge: How does the application interact with the kernel
and what is the kernel’s reaction. In this section we describe the
global control-flow graph (GCFG) and present methods to extract it
from the application’s structure and the system configuration.

3.1 Global Control-Flow Graph
In many modern compilers, CFGs [2] are the vehicle to capture the
program logic of single functions. CFGs are directed graphs with
basic blocks (BBs) as nodes and a single entry node. The functions’
code is partitioned into BBs, where the code in one BB can only
be executed linearly. From a high-level perspective, an edge in the
CFG between two BBs has an execution-order semantic; in every
execution trace two BBs can only follow each other, iff there is an
edge in the CFG.

We develop the GCFG semantic from the observation that the
CFG expresses the BB execution order within a function. With a
function call, control is transferred from the caller’s to the callee’s
CFG. The interprocedural control-flow graph (ICFG) is formed by
connecting all BBs in a program; it captures the execution order
on program level and respects control transfers caused by function
calls. From the operating-system perspective, the ICFG expresses
the execution order on task (or thread) level. By rescheduling, the
operating system switches control between two tasks, and therefore
between their ICFGs. The GCFG is one level higher; it expresses
the execution order on the system level. Iff there is an edge in the
global control-flow graph between two basic blocks, they may be
executed directly after each other on the real hardware. Nevertheless,
like regular CFGs, also the GCFG can include infeasible paths.

In Figure 2, an example GCFG is shown for the application from
Figure 1. TaskA has been assigned a low, while TaskB has a high

TaskA (priority: 0) TaskC (priority: 1)

TaskB (priority: 10)

val = readData();

if (val != ’\n’)

Ê

buf.finalize();
Ë

ActivateTask(...);
Ì

(empty)
Í

buf.append(val);
Î

TerminateTask();
Ï

action_c();
Ð

TerminateTask();
Ñ

buf.print();
Ò

TerminateTask();
Ó

GCFG CFG Computation System Call

Figure 2: The GCFG representation of the system shown in Figure 1.
Dotted lines are part of the local CFG, but not part of the GCFG.
The “dead” TaskC is not part of the GCFG at all.

priority. When the application does not interact with the kernel,
the GCFG corresponds to the CFG execution order (e.g., Ê→ Ë,
Ê → Î). Any system-service invocation (Ì, Ï, Ñ, Ó) requires
the kernel to react. In case of ActivateTask (Ì), a task with higher
priority is activated. According to the OSEK specification, the kernel
scheduler chooses TaskB and dispatches to its entry block. After
TaskB has terminated itself with TerminateTask (Ó), the execution
of TaskA is resumed. Here, we can observe, that edges, present in
the CFG (Ì→ Í), are not necessarily part of the GCFG: Block Í
cannot execute directly after block Ì on the underlying hardware.

For the construction of the GCFG, we have to answer two
questions: (1) How to partition the application code into blocks? (2)
What edges have to be drawn between these blocks?

For the code partitioning, we use an adaptation of the atomic
basic block (ABB) concept introduced by Scheler and Schröder-
Preikschat [20]. An ABB is a control-flow super structure that
subsumes one or more basic blocks (BBs) forming a single-entry–
single-exit (SE-SE) region; it has exactly one distinguished entry BB
and one exit BB. Besides these two blocks, no BB has a preceding or
succeeding block outside of the ABB region. Every BB is member
of exactly one ABB. As an adaption of the original ABB concept,
we construct and connect the ABBs differently, for the whole
application at once:

1. A function that contains a system call is a system-relevant
function. Each function that calls a system-relevant function
is a system-relevant function itself.



2. We iterate over all basic blocks of all functions in the application:
each basic block that contains system calls and/or calls to system-
relevant functions is split directly before and after those locations
into subsequent parts (see ABBs Ë, Ì and Í in Figure 2).

3. Depending on their content, we assign a type to each basic block:
system-call block, function-call block, or computation block.

4. We collect adjacent computation blocks into single-entry–single-
exit regions.

5. Each system-call block is an ABB, which contains a single
system-call; each function-call block is an ABB, which contains
a single function call; and each SE-SE region of computation
blocks is an ABB.

6. Within a function, the ABBs are connected into a local control-
flow graph corresponding to the connections of their entry and
exit BBs.

After this construction, we have a local ABB-graph for each
function within the application code. By the distinction of system-
relevant functions, calls to system-irrelevant functions and subsys-
tems are fully subsumed into computation ABBs. This subsumption
not only reduces the number of blocks we have to consider, but
also sharpens the focus on the application logic that is visible to
the operating system. Interaction with the kernel is only possible in
system-call blocks. Each system-call block has only computation
blocks as direct neighbors.

In Figure 2, each green block represents an ABB. In the example,
readData() is no system-relevant function, therefore block Ê is not
split before and after the function call, subsuming the internal logic
of readData(). The empty ABB Ë is the result of the split operation
that was performed because of the ActivateTask system call.

3.2 System-State Enumeration
To construct the GCFG, we combine three sources of information:
(1) The system semantics, as defined by the OSEK specification. (2)
The static system configuration, which is specified in the OIL file,
and (3) the application logic, described by the local ABB graphs.

As a combination method, we present the system-state enumera-
tion (SSE). Briefly explained, the SSE computes all possible system
states ahead of time and creates a state-transition graph. The result-
ing states are partitioned into groups depending on the ABB they
are currently executing. A GCFG edge between two ABBs exists,
iff at least one state in the state group of the source ABB has an
edge to a state in the state group of the target ABB.

Abstract System State Representation
The basis of the SSE analysis is the abstract system state (AbSS)
representation, which subsumes all relevant behavioral information
of the system for single points within the control flow. Figure 3
depicts a single system state for the system from Figure 2. Each task
declared in the OIL file is assigned a record with fields capturing its
current task state and dynamic priority. For OSEK, each task can also
hold zero or more resources, which are used to calculate the dynamic
priority. The resume-point field contains the ABB to be executed
next in the context of the task. Preempted tasks will continue their
execution at this point. The resume point of the currently running
task is the next block to be executed in the system context; the next
ABB. The return stacks store return ABBs, which are pushed on
function calls. Interrupt block indicates whether interrupts (ISR2s)
are currently enabled, which is a system-wide information.

SSE Algorithm: Basic Concept
The enumeration of all system states is achieved by the repetition of
a step function until a fix point is reached (no new AbSSs appear).
The step function pops one state from a working stack, calculates

AbSS1

ready

TaskA

Task
State

running

TaskB

suspended

TaskC

0Priority 10 1

{}Occupied
Resources

{} {}

ABB Í
(empty)

Resume
Point

ABB Ó
TerminateTask()

ABB Ð
action_c()

–
–
–

ABB Return
Stack

–
–
–

–
–
–

not blockedInterrupt
Block

ABB Ó
Next
ABB

systemSemantics : AbSS1 7−→ { AbSS2 AbSS3 }

Figure 3: A detailed view on an abstract system state (AbSS). The
systemSemantics function maps an input AbSS to a set of follow-up
states.

all subsequent states, inserts edges into the AbSS graph, and pushes
the follow-up states onto the working stack, if they were newly
discovered. The calculation of follow-up states is based on three
functions:

systemSemantics : State 7−→ {State}
schedule : State 7−→ State

execute : State 7−→ {State}

The systemSemantics function maps the input state to a set of
follow-up states and is composed of the execute and the schedule

function:

systemSemantics(x)→ {schedule(y) | y ← execute(x)}
The schedule function updates the dynamic priorities, according

to the resource occupation states, and chooses the next running task,
according to the scheduling rules mandated by OSEK. The execute

function captures the influence of executing the next ABB. For each
of the three block types, different rules apply:

For system-call blocks, all non-terminating system calls set
the resume point of the currently running task to the computation
block following in the local CFG. In Figure 3, the resume point
of TaskA was set by the ActivateTask in ABB Ì. Afterwards,
execute transforms the input state according to the system-call type
and arguments. This is enabled by the constraint that all system
calls must be constant in location, type, and their arguments. In
the example, execute evaluates the TerminateTask system call and
returns a single state: TaskB is suspended and its resume point is
reset to the task’s entry block (Ò). The schedule operation marks
TaskA as the running task and ABB Í will be executed next.

Function-call blocks push their single CFG-successor block onto
the ABB return stack. When the execution of the function reaches a
computation block without CFG-successors (exit node), an ABB is
popped from the stack and used as the resume point.

Although computation blocks seem harmless, their execute

semantic is the most complex. While all system-call and function-
call blocks have a single successor, due to the ABB split operation,
computation blocks may have several successors. For every CFG
successor, execute emits a single follow-up state where the next
ABB is set to the successor block.
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Figure 4: The abstract system states in the state-transition graph are partitioned into state groups according to their “Next ABB” field. A GCFG
edge links two ABBs, if any state Sn in the ABB’s state group has at least one successor in the other’s group.

Furthermore, interrupts (alarms and ISR2s) occur only in compu-
tation blocks. With function-call and system-call blocks, we capture
only the uninterruptible, atomic moment of control transfer between
system-relevant functions or tasks. Therefore, all asynchronous sig-
nals are handled within computation blocks.

Interrupt Handling
In order to support interrupts in the system analysis, we create a
virtual task for every ISR defined in the OIL description. These tasks
are configured as non-preemptable tasks, with fully disabled inter-
rupts, and with the highest possible priority in the system. Therefore,
our ISRs cannot be nested, which is one possible implementation
according to the OSEK specification. For each declared alarm, we
create an ISR containing a single ActivateTask() call.

The activation of an interrupt that is synchronized with the
kernel can be treated like an asynchronous system call made by the
hardware. If interrupts are enabled in the input state, execute emits
one follow-up state for each ISR and alarm, where the virtual ISR
task is set to ready. The resume point of the interrupted task is not
changed; the interrupt will return exactly to the same computation
block. Afterwards, schedule will always jump to the entry of the
handler function, which is executed in a run-to-completion semantic.

With firing every interrupt source in every computation block
we are on the safe side, if no information is available about timing,
minimal inter-arrival times, and execution times of computation
blocks or interrupt handlers. By leaving the resumption point
untouched, we capture multiple activations of a single interrupt
and activations of multiple interrupts. Nevertheless, this approach
has the drawback of a significant state-explosion.

To ease this shortcoming, we provide the possibility to give ad-
ditional coarse-grained information about the system configuration.
The developer can declare groups of tasks that are used to handle
a single physical event. Until not all tasks in the task group have
finished their execution, the interrupt that activates this group cannot
fire again. Providing this information is a qualitative statement about
the execution time; the deadline of task group’s execution is shorter
than the minimal inter-arrival time of the activating interrupt. As
future work, quantitative timing information, like the block worst-
case execution times (WCETs) and precise interrupt timings, could
be used to rule out some interrupt activations from the analysis.

Final GCFG Construction
After the stepping function has reached a fix point, we have enumer-
ated all possible system states. Based on the resulting state graph, we
can construct the GCFG by partitioning all system states into state
groups depending on their next ABB field. In each group, all states
will execute the same ABB next. We add GCFG edges between the
ABBs A and B if any state in group A has at least one successor
in the state group of ABB B . The GCFG edge expresses: After A
has executed, it is possible to execute B next.

Figure 4a shows a state-transition graph for a system consisting
of three ABBs. This graph is the direct result of the SSE stepping
function. In Figure 4b, the state groups are drawn next to their ABBs;
S3 and S6 belong to the state group of ABB B . Since a state–state
transition exists between S1 and S3, we insert a GCFG edge between
ABB A and ABB B . ABB C has a self-loop, since S2 can directly
be followed by S4.

The fusion of all states within an ABB state group represents the
expected system behavior at the entry of the respective ABB. The
resulting predictive abstract system state is a union of the individual
(task) information fields of each involved AbSS. If a field provides
different values in different states, we insert a “no information”
marker leading to an imprecise state for this task field; otherwise
the task’s state is unambiguous at this point. To give an example: if
a task is marked as ready in S3, but suspended in S6, the predictive
AbSS cannot provide information about this task; the task’s state is
not predictable at ABB B . On the other hand, if a task is denoted
as suspended in each AbSS of a group, it is surely known to be
suspended on entry of the corresponding ABB. The resulting fine-
grained prediction of the system behavior, finally, leverages various
cross-kernel optimization strategies.

4. Application Scenarios
With the system analysis, we have gained two pieces of fine-
grained knowledge about the interaction between application and
kernel: First, GCFG edges, with system-call blocks as sources,
represent all possible scheduling decisions after returning from
the system call. Second, the predictive system states, computed for
every ABB, describe the system before the block is executed. With
this fine-grained information, we can optimize the whole system
towards different non-functional properties. In the following, we
present two different optimizations that are enabled by the fine-
grained information. The measures are discussed in detail next; the
evaluation follows in Section 5.

4.1 System-Call Specialization
Most OSEK implementations are shipped as library operating
systems. The operating-system library, which might be tailored with
the coarse-grained knowledge from the OIL file, is linked against
the application to generate the system image. Each system service is
a function in this library and a system call boils down to a function
call into the operating system library (see Figure 5a). This approach
forces the system-service implementation to be generic, since the
OS developer has no control where the function is called.

With fine-grained interaction knowledge at hand, we can tailor
the system calls more specifically to the application behavior in
order to speed up the kernel execution paths. Instead of calling the
generic system service, we insert a specialized service at the call
site. This decoupling enables us to use the interaction knowledge
for selecting the minimum necessary functionality at that point.
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Figure 5: System-call specialization uses the GCFG to extract possible scheduling decisions and generate a tailored system service instances for
each call site. In our example, TaskB is known to be the highest priority task at ABB Ì and can be dispatched without invoking the scheduler.

In Figure 5b, the ActivateTask system call from the running
example is specialized. Since ABB Ì has only one direct successor
at TaskB, we do not have to call the scheduler; we already know the
result in all cases and can directly dispatch TaskB. Even more, from
the fact that all GCFG edges lead to the entry block of TaskB, we
will never resume but always start TaskB from the beginning. As the
references to system objects are inserted as constants, the compiler
might even inline the dispatching mechanism, here. In cases, we do
not have enough information to insert a specialized version of the
system service, we fall back to call a default implementation.

Not only scheduler invocations can be avoided. Other, complex
system operations can be substituted by mechanisms that only
update the system state with a pre-calculated result of the operation.
For example, if the dynamic priority of a task is unambiguous after a
ReleaseResource system call, we do not have to determine it at run
time, but can update the OS state with a constant value. This might
even boil down to a single memory write to a constant address.

However, even if the result of a scheduling operation cannot
be calculated completely at compile time, it might be worthwhile
to insert a partial specialization of the schedule operation. From
the GCFG edges we can tell all possible scheduling outcomes.
This information can then be used to tailor a scheduling operation
that checks only for potentially runnable tasks. As their number is
typically much lower then the number of all tasks, this particularly
pays off if the scheduler’s computational complexity depends on the
number of tasks (e.g., O(n)). The downside of this tailoring is an
increased code memory use, due to the extensive specialization.

4.2 Assertions on the Predicted System State
Besides the kernel execution time, also the resilience against tran-
sient hardware faults is a nonfunctional property of the operating
system; can the kernel detect, or even recover from, a bit flip in
its data structures? Caused by shrinking hardware structure sizes
and lower operating voltages, the problem of transient hardware
faults becomes increasingly important for automotive and other
safety-critical control applications.

Software-based dependability measures allow for selective and
resource efficient robustness improvements. Generally, such mea-
sures, as for example triple modular redundancy and checksumming,
are dynamic by nature; they check integrity by comparison of dynam-
ically computed values. With fine-grained interaction knowledge at
hand, we have compile-time information about the dynamic behav-
ior of the application. Therefore, we can derive constraints that must
hold for all possible execution paths. We enforce these constraints
with run-time assertions at each system call: The predictive sys-
tem states express the knowledge we have about the system before

ActivateTask(...)

/* Enter Hook */

assert ready(TaskA)

assert suspended(TaskB)

assert suspended(TaskC)

/* Leave Hook */

assert suspended(TaskB)

Ì

... Ò

... Í TerminateTask()

/* Enter Hook */

assert ready(TaskA)

assert ready(TaskB)

assert suspended(TaskC)

Ó
PP

TP

pr
ee
m
pt

resume

TaskB

TaskA

GCFG CFG Computation System Call

Figure 6: Kernel enter and leave hooks, which are executed atomi-
cally with the system-call, provide assertions on the system state.

an ABB is entered. Checkable pieces of the system state are, for
example, the task state or the resumption points of preempted task.

These assertions not only allow to detect corruptions in the kernel
memory, but also errors in the control-flow. Undesired, faulty jumps
beyond the next expected system call, or even into another task’s
control-flow, are detectable, if the predicted system state does not
match the current kernel state. This allows to collect different types
of constraints for each system-call block, and generate code that is
executed atomically with the system call. We achieve atomicity by
substituting the invocation at system-call site with a code sequence
that is enriched by kernel enter and kernel leave hooks. Figure 6
depicts such hooks, as well as the assertions on the tasks’ states
for ABB Ì and ABB Ó of our running example. We extract the
constraints for a system call by inspecting different system states for
enter and leave hook. The enter hook is filled with the predictions of
the system-call block itself. Since the leave hook is executed only
after the preemption point (PP), we use the predictive system state
of the system-call’s local CFG successor. In the example (Figure 6),
the enter hook is filled with constraints from ABB Ì, while the
leave hook uses the predictions from ABB Í.

The independent collection of constraints for enter and leave
hooks leads to duplicate assertions. We can avoid double checks
during a kernel activation to save run time and code size. Each
synchronous kernel activation consists of the system-call’s enter
hook, the system call itself, and a leave hook of the resumed task.
In the example, we return control from the termination point (TP) to
the preemption point (PP) of TaskA. Therefore, the TerminateTask()
activation consists of enter hook Ó, TerminateTask(), and leave
hook Ì. We eradicate all assertions from leave hooks which are



surely checked in all resuming enter hooks. In the example, we do
not check TaskA’s and TaskC’s task state in leave hook Ì, since it is
already checked in enter hook Ó.

4.3 Further Use Cases
Besides the system-state asserts, we developed a control-flow mon-
itoring mechanism on the system level to detect faulty execution
paths. Shortly sketched, we use a system-wide dominance analy-
sis [13] to identify control-flow regions in the GCFG. These regions
can only be entered through a single system call; a constraint we
can enforce at run time. Furthermore, we are planning to encode the
state-transition graph as a finite state machine, which implements
exactly the scheduling behavior of the OS for each particular appli-
cation. Another direction of future research is the improvement of
WCET analysis by the fine-grained interaction knowledge.

5. Evaluation
As evaluation platform, we use the existing dOSEK operating-
system generator. It is designed as a dependable operating system
that is resilient against transient hardware faults in memory and
registers [10]. The generative approach of dOSEK is a perfect fit for
the presented analysis and optimizations. dOSEK is available in two
basic configurations: unprotected and protected. Only the protected
variant includes dependability measures against transient hardware
faults. The presented analyses and optimizations were integrated
into dOSEK, which is available as free software.

5.1 Scenario
Our evaluation scenario is based on a realistic system workload
considering all essential OS services. We use a setup resembling a
real-world safety-critical embedded system in terms of a quadrotor
helicopter control application. The tasks are activated both periodi-
cally and sporadically by an interrupt. Inter-task synchronization is
realized with OSEK resources and a watchdog task, observing the
remote control communication.

Checkpoint markers replace the application logic, since we are
only interested in the interaction between application and OS. The
substitution does not change the GCFG or the analysis, but only
touches the contents of the computation blocks. In total, the scenario
consists of eleven tasks, three periodic interrupts (alarms), one
sporadic interrupt, and one resource. The first analysis step emits 91
ABBs, and 53 system-call blocks.

5.2 SSE Effectiveness: GCFG Sparseness
With our system analysis, we gather fine-grained knowledge about
the interaction between application and the operating system. We
will quantify the amount of knowledge we can gather with different
methods by comparing their predictive power regarding all system
execution sequences. The higher the predictive power of a method,
the more impossible execution sequences are sorted out.

For each method, all possible execution sequences are combined
in a GCFG with ABBs as nodes. The lesser edges this graph has,
the lesser execution sequences are possible and the higher is the
predictive power. For example, the least informative GCFG, with
the worst predictive power, is the fully connected graph. It proposes
that every block–block transition is possible; every ABB can be
followed by any other ABB.

Table 2 shows different degrees of knowledge we can gather for
the evaluation scenario. The fully connected graph consists of 91
nodes and 8,281 edges including self loops. Its transitions can be
constructed without any knowledge of the application logic nor the
system’s configuration. If we include the application logic and the
system-call locations, we get a sparser graph: Every computation
block can only be followed by its CFG successors or an ISR entry

GCFG Edges w/o Annotation w/ Annotation

No Information 8,281
+ Application Logic 2,809
+ System Configuration 1,642 1,580

System-State Enumeration 373 304

Table 2: Sparseness of different GCFGs with 91 ABBs. With more
detailed application knowledge, we can construct sharper GCFGs.
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Figure 7: Average kernel runtime of dOSEK system calls (n=420).

block, each system-call block can resume to every computation
block. For the scenario, this reduces the number of edges to 2,809.

The system configuration, like it is specified in the OIL file,
reduces the number of edges even further: Every computation
block can followed by its CFG successors and those ISR entry
blocks that are activatable in this block. Each system-call block
that terminates a task can proceed to every computation block of
another task. Non-terminating system calls can dispatch to their
CFG successor and blocks of higher priority tasks. Without the
qualitative information about the interarrival time of interrupts,
which was discussed in Section 3.2, the resulting graph has 1,642
edges. With the annotations, which prohibit the reactivation on an
interrupt within an annotated task group, the graph has 1,580 edges.

With the presented SSE method, lesser edges are emitted as
possible block–block transitions. The analysis results in 373 edges
and removed 95.5 percent of all possible block–block transitions
from the fully connected graph. With additional information about
interrupts, the graph size reduces even further to 304 edges.

The user-supplied annotations do not only decrease the number
of edges, but also reduce the analysis time significantly. With task-
group annotations, the analysis, which is implemented in the Python
scripting language, drops from 453.32 seconds to 1.62 seconds. The
resulting state-transition graph shrinks from 2,068,143 states and
2,497,541 transitions to 16,263 states and 18,513 transitions.

5.3 Runtime of Specialized Kernel Fragments
The presented method increases the amount of application knowl-
edge significantly. But what influence can we take on the nonfunc-
tional properties of the system? First, we quantify the time the
dOSEK kernel takes to execute. Therefore, the system executes for
three hyperperiods on an IA-32 emulator, while, at the same time,
an execution trace is recorded. During the benchmark, 420 system
calls are issued.

Figure 7 shows the average time the system remains in the kernel
for a system call. We measure the time in instructions, although
this number is not linearly correlated to execution time on modern
pipelined, out-of-order processors. Nevertheless, instruction counts
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are more comparable over different hardware versions. Further,
many of the mentioned CPU features are not yet available for
embedded platforms, which are mainly used for real-time systems.

The unprotected dOSEK needs, in average, 68 cycles for a
system call. If we enable the system-call specialization without
support for instantiating a partial scheduler, we gain 16 percent.
Additional support for partial schedulers, which are instances of the
scheduling function that check not all tasks for readiness, we reduce
the number of cycles by 22 percent.

The improvement for the protected dOSEK is even larger, since
the protected kernel operations are much more expensive than in
the unprotected system. It starts on average with 270 cycles for the
unmodified, but protected, dOSEK system. Specialization, without
touching the scheduler, reduces the kernel time by 18 percent. If
incorporating partial scheduler instances, we decrease the run time
by 33 percent, compare to the unmodified version.

Inlining the system service into the system-call sites has an
impact on the code size. dOSEK always creates an inlined instance
of the system service for each call site. This inlining increases the
resilience against hardware faults, by avoiding function calls within
the kernel execution. For the benchmark, baseline dOSEK requires,
in average, 75 bytes per system-call site for the unprotected, and 189
bytes for the protected variant. Compared to this, the system-call
specialization reduces the code size for each system call to 66 bytes
(unprotected), respectively 161 bytes (protected).

Of course, when integrated into a commonly developed library-
based OSEK, the system-call specialization will in general not
reduce the code size. Nevertheless, the code overhead per system-
call site will be in the same range as for dOSEK.

5.4 SDC Count Decrease
The enrichment of the system with system-state assertions is a
measure against transient hardware faults. Therefore, we used the
FAIL* [21] fault injection framework for an extensive injection
campaign on the presented evaluation scenario. We used a single-
event, single-bit fault model, which can, for example, be caused by
transient hardware faults due to radiation or voltage fluctuations.
According to our fault model, a single-bit flip occurs at one point in
time in one location that is visible on the instruction set architecture.
As locations, we do not only examine the memory, but also general-
purpose registers, flag register, and the instruction pointer.

The benchmark scenario, which was augmented with checkpoint
markers, runs for three hyperperiods, while, at the same time, visits
172 checkpoints. It is the operating system’s task to adhere this
checkpoint sequence, even in the presence of hardware faults. If the
kernel cannot provide the correct activation order or corrupts the
application data, and is not able to detect the fault, we record a silent

data corruption (SDC). If the fault was not benign, but the kernel
detected it, we hand over control to the application; the fault is not
counted as a SDC.

With FAIL*, we executed the system 3.95 · 106 times with the
deterministic BOCHS [12] IA-32 emulator. Into each execution, we
injected a single single-bit flip into the operating systems’ memory
or registers and observed the system’s reaction. Due to this focus on
the OS execution, the replacement of the application logic does not
influence the results. For the benchmark, the injected faults cover
the entire effective fault space, which consists of 6.1 · 1010 faults.
Over all versions, 96.6 percent of the fault space was either benign
or detected by the systems.

In Figure 8, we present the results of the injection campaign in
absolute SDC counts for four different configurations. We start with
the unprotected baseline dOSEK with 1,391.51 · 106 SDCs for the
scenario. Nearly all of these SDCs stem from faults in the main
memory, since this variant does not protect the OS state at all.

The system-state assertion optimization inserts 748 assertions
into 48 system-call sites; 639 assertions were introduced into enter
hooks and 109 assertions into the leave hooks. The insertions add
in average 203 bytes of code to a system-call site and increase its
runtime by 25 percent (see Figure 7). By spending these overheads,
we reduce the SDC count by 51 percent. These improvements
originate mostly form the protective nature of the measure on the
OS state in memory. In total, faults in registers, instruction pointer,
and flags are negligible for the unprotected dOSEK.

The protected dOSEK has several magnitudes better starting
conditions. For the baseline, the system reveals 0.15 · 106 SDCs for
the benchmark. Due to encoded operations, memory SDCs dropped
significantly, while the other fault locations remain on the same level
as in the unprotected system.

If we insert the same number of assertions into the protected
dOSEK, we can further reduce the number of SDCs by 49 percent.
Here, the improvements stem from reducing register faults that occur
during the kernel operation. The system-state assertions are able to
detect incorrect results directly after they have been written back to
memory in the kernel leave hooks.

6. Discussion
One of the main challenges in analyzing OSEK systems with the
presented approach is the size explosion of the state-transition graph,
which is generated by the system-state enumeration. Potentially, a
system can have an exponentially higher amount of states compared
to the number of tasks and basic blocks. Therefore, measures to ease
this exponential burden are crucial. Furthermore, they will, as we
believe, also give insightful design principles for real-time systems
in general.



6.1 Design Recommendations to Tackle the State Explosion
With the atomic basic block (ABB) abstraction, we reduce the
number of blocks in the system significantly. Subsuming blocks
that do not interact with the kernel sharpens the focus on the
application–kernel interaction and abstracts from the application’s
microstructure. Whole library hierarchies and algorithms can be
hidden within a single ABB. As a general design principle, we
further recommend to avoid system calls that modify the kernel
state, deep in the call hierarchy. Although deeply buried system
calls do not impede our analysis, they still result in many split basic
blocks and thus complex and confusing GCFGs. Often, such hidden
system calls reveal surprising side effects and activation sequences.
In order to reduce the complexity of the analysis – and thereby of the
entire system – we suggest to plan the real-time application in large
computation blocks, which are not sliced by synchronous syscalls.

6.2 Interrupt Handling
The other main drivers of state explosion are interrupts. Interrupt
requests fork the state-transition graph in every computation block.
Nevertheless, in real-time systems, interrupts normally are not to-
tally unpredictable. In order to maintain analyzability, developers
already determine minimal and maximal inter-arrival times. Further-
more, parts of the application are synchronized with these signals.
With the task-group annotation, we let the developer express this
knowledge about signal–signal-handling causality. In all cases, the
system architect should answer some questions: What is the han-
dling task group for a physical signal? Where does the handling end,
and how are different groups synchronized?

It is also conceivable to take further knowledge of the peripheral-
device behavior regarding interrupts into account. Here, a logic of
actions on application level could be derived. For example, it could
be defined, that a “send buffer empty” interrupt can only be triggered
within a specific time after the associated SendMessage() function
was invoked.

6.3 Scalability of the Analysis
As a rough estimation, we can assume that the SSE will scale
linear in run-time to the number of system states. Of course, we
cannot deduce how large a system may be, to remain manageable.
Nevertheless, we already can handle real-world scenarios without
having further assistance by the developer. As a topic of further
research, methods from the symbolic-execution community could
be applied to cut down on the analysis run time, and other methods
could be developed to construct the global control-flow graph.

6.4 Threats to Validity
The major threat to validity of the experimental findings is that they
are based on single case study only. The flight control of a quadrotor
flying vehicle is a real-world safety-critical system. Therefore, we
consider it representative for these kinds of applications, not only in
its size, but also regarding operating system interaction.

As threat to the approach in general, we consider the limitations
that were put on the applications. System calls must be fixed in
their locations, types, and arguments. We forbid the invocation of
system-calls through pointers with variable arguments. Nevertheless,
we consider this flexibility of kernel API usage unnecessary and
undesirable for (safety-critical) real-time systems, where predictable
behavior and analyzability is mandatory.

Current restrictions, like event support, multiple tasks per priority
as well as multiple task activations are no conceptual problem for
our analysis. Event support is currently under development. Multiple
task per priority can be mapped to the existing model by letting all
tasks of one priority share a common resource to serializes their
execution. Multiple task activations can be modeled by an activation
queue within the AbSS, finally leading to a larger state graph.

Another aspect is the necessity of an unambiguous description of
the OS behavior to derive an accurate systemSemantics function,
which is the key to our analysis. This dependency on a clear
specification, or at least description, seems inconvenient in the first
place. However, embedded real-time operating systems generally
provide enough information to deduce the necessary information.
Regarding safety-critical systems, the use of a strictly specified
operating system is often prescribed, anyway. Here, our approach
can even support the development process: Incorrect API usage
within the application code, violating the specified OS semantic, is
immediately uncovered by the GCFG analysis.

7. Related Work
Bertran et al. [5] proposed a global view on the interaction between
operating system and application. They constructed a global control-
flow graph for a complex embedded system, which was built on
top of Linux. System-call entry points and library entry points were
connected to the corresponding call sites. On this GCFG, dead
code elimination in terms of removing uncalled system calls and
unreferenced library functions resulted in a reduced code size of
the system image. In contrast to this work, their analysis was flow-
insensitive and did not take the semantic of system calls into account.
Basically, they extended the CFG into the kernel, but not out of it.

Barthelmann [3] makes use of the static semantics of an OSEK
system to minimize the task contexts to be saved at specific preemp-
tion points. A static analysis reveals an interference graph describing
mutual preemptions of basic blocks, based on the tasks’ static priori-
ties. With this knowledge, an optimized inter-task register-allocation
is performed including context-switch code generation. Similar to
our approach, application knowledge is used to influence a non-
functional property of an OSEK kernel. In contrast to our work,
the scheduling semantic of OSEK was used in a flow-insensitive
manner. That means, the interference graph includes superfluous
preemptions that are actually impossible according to a GCFG anal-
ysis. This approach corresponds to the “System Configuration” case
from Table 2. Nevertheless, the paper describes a first approach of a
generative whole-system optimization taking both the application
and the operating system into account.

The OSEK semantic also found attention in the area of formal
methods and verification: Waszniowski and Hanzálek [23] designed
a model of the OSEK standard targeting the UPPAAL model checker.
They modeled all components as timed automata, also taking
inter-process communication (OSEK events) into account. Their
main focus was the verification of different application properties
and schedulability analyses. Huang et al. [11] modeled OSEK
as communicating sequential processes (CSP). The application
subtasks were modeled without considering the internal application
structure; interrupts were excluded entirely. With this model, they
could verify different properties of their OSEK system, like dead-
lock freedom and freedom of priority inversion. Regarding our
approach, these models could provide a more formal definition of
the systemSemantics function.

System specialization was already discussed by the operating-
system community for general-purpose operating systems. Pu,
Massalin, and Ioannidis [19] developed the Synthesis kernel, which
included a code synthesizer that produced optimized code paths
at run time for often invoked system calls, like for example read

or write. Due to manual implementation of code templates, which
are then filled by the synthesizer, huge performance benefits arouse
from shorter kernel execution paths. In comparison to the dynamic
Synthesis system, our approach of the system-call specialization
also takes the in-depth application knowledge into account but is
executed off-line. Pu et al. also mention the problem of code-size
explosion. McNamee et al. [15] used Tempo, a partial evaluator for C
programs, and a set of specialization predicates to identify functions



automatically for specialization within the kernel. In their approach,
the specialization was also done dynamically at run time, omitting
detailed static application knowledge.

Several approaches towards control-flow monitoring were de-
veloped for application logic. Benso et al. [4] employ regular-
expression automata to check the correctness of executed basic
block sequences of an application. Oh, Shirvani, and McCluskey
[18] presented an approach with software signatures. Each basic
block is assigned a unique number; when the basic block is entered
or left, a global variable is xor’ed with this number. Without control-
flow errors, the global variable contains always exactly the unique
number of the currently executed basic block. Yau and Chen [24]
divided the control-flow graph into loop-free regions. For each re-
gion a database of possible paths is encoded and checked during the
execution. All mentioned approaches only consider the control-flow
graph of a single function or task, but could be extended to catch
control-flow errors on the ABB and GCFG level.

8. Conclusion
Real-time systems include a large amount of concealed static knowl-
edge about their dynamic behavior. With the presented methods, we
make this knowledge accessible for OSEK-like systems and exploit
it to optimize nonfunctional system properties. The system-state
enumeration computes the global control-flow graph, which cov-
ers all possible system execution paths, by combining application
logic, the system configuration, and the operating-system specifica-
tion. We employ the fine-grained interaction knowledge to inline
specialized system services into the system-call sites. Furthermore,
system-state asserts check statically derived constraints at run time.
With these applications of our fine-grained knowledge, we could
speed up the kernel execution path by 33 percent and decrease the
soft-error vulnerability by 49 percent.

Source Code and Raw Data
The analysis source code, which is published as free software under
GPLv3+, is available at github.1 The results that lead to the numbers
in this paper were calculated by an automated experiment workflow.
The raw results are available at our website.2
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