
Department Informatik
Technical Reports / ISSN 2191-5008

Gabor Drescher and Wolfgang Schröder-Preikschat

An Experiment in Wait-Free Synchronisation of
Priority-Controlled Simultaneous Processes:
Guarded Sections

Technical Report CS-2015-01

January 2015

Please cite as:

Gabor Drescher and Wolfgang Schröder-Preikschat, “An Experiment in Wait-Free Synchronisation of Priority-Controlled

Simultaneous Processes: Guarded Sections,” Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Computer

Science, Technical Reports, CS-2015-01, January 2015.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.cs.fau.de





An Experiment in Wait-Free Synchronisation of
Priority-Controlled Simultaneous Processes:

Guarded Sections
Gabor Drescher and Wolfgang Schröder-Preikschat

Dept. of Computer Science, University of Erlangen, Germany
{drescher,wosch}@cs.fau.de

Abstract—Wait-free synchronisation gives any process
in the system strong progress guarantees, irrespective of
number and behaviour of other processes simultaneously
competing for shared resources (i.e., data structures and
code sections). It ensures completion of any operation in
a finite number of steps and, thus, provides the basis to
derive bounded above or even constant executions times for
non-sequential programs. This characteristic is of special
meaning for time-dependent processes typical for real-
time (embedded) systems. But wait-free synchronisation
against the background of especially arbitrary data and
code structures is no bed of roses.

This paper is about organising non-sequential programs
to the benefit of wait-free synchronisation. Conventional
critical sections are designed as so called guarded sections.
Unlike critical sections, preferential processes never block
at entrance to a guarded section though only one process at
a time is allowed to pass through. Competing processes are
forced into bypass but, if necessary and by using futures,
they can synchronise on concurrent state changes inside
the respective section. In consequence of this measure,
the execution model of guarded sections constrains the
overlapping pattern of interacting (simultaneous) pro-
cesses. Thereby, efficient wait-free synchronisation of the
“guarding operations” is a gratifying by-product. First
experiments on a 80-way multi-core system show that non-
blocking wait-free synchronised guarded sections outper-
form lock-based protection schemes such as MCS-locks.

I. INTRODUCTION

Multi-core processors have conquered the domain of
real-time systems in general and embedded systems in
particular. The technological change towards the mul-
tiplication of (identical/different) processing units in-
tegrated on a single processor chip was mainly due

An abbreviated version of this document is republished under the
title “Guarded Sections: Structuring Aid for Wait-Free Synchronisa-
tion” in the Proceedings of the 18th IEEE Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2015).

to diminished performance gains in face of increasing
operating frequency, a phenomena that was largely called
forth by three handicaps as to memory, instruction-level
parallelism, and power and summarised as brick wall [1],
[2]. This, in turn, caused software to be confronted with
the problem of exploiting the explicit parallelism made
available by the hardware for being processed with good
or even high-performance. An undertaking that evoked
and still brings “dire straits” to general-purpose comput-
ing, but appears to be much more challenging for special-
purpose computing as to time-dependent systems.

The constraint of real parallelism not only intensified
the already existing problem of non-deterministic oper-
ation, but it also amplified interference with real-time
scheduling decisions due to more difficult synchronisa-
tion methods needed to ensure consistent operation in
the data as well as time domain. A fact that is not only
limited to event-triggered systems but addresses time-
triggered systems equally.

A. Background

Synchronisation of simultaneously interacting pro-
cesses can be blocking or non-blocking, whereby the
latter is inherently free of priority violation, priority
inversion, and process deadlock. By concept, direct
interference with process scheduling is excluded.1 In
addition, non-blocking synchronisation is differentiated
as to the following progress guarantees:
• obstruction-free, if any process eventually in iso-

lation (i.e., absence of simultaneously interacting
processes) can complete any operation in a finite
number of steps [5]

1Disregarding backoff [3], [4] for the resolution of potential
contention at atomic machine instructions, which is an issue for
blocking synchronisation (e.g., to resolve lock contention) but should
also be considered for non-blocking synchronisation. There is no real
difference between both paradigms in this respect.



• lock-free, if “some process will complete an oper-
ation in a finite number of steps, regardless of the
relative speeds of the processes” [6]

• wait-free, if “any process can complete any opera-
tion in a finite number of steps, regardless of the
relative speeds of the other processes” [6]

In respect of real-time capabilities, wait-free synchroni-
sation gives strong progress guarantees in that it ensures
starvation freedom for each single process and bounded
above or constant execution times of the synchronisa-
tion protocols. Also supportive of worst-case execution
time (WCET) analysis [7], all these features are highly
desirable for hard real-time systems. In contrast, lock-
free synchronisation gives a whole system of processes
progress guarantee, yet is prone to starvation of single
processes. As event-triggered, thus, priority-based real-
time scheduling lets low-priority processes starve any-
way, lock-freedom is acceptable but not preferred for
corresponding hard real-time systems. Obstruction-free
synchronisation provides the weakest progress guarantee.
If at all, it becomes an option only for time-dependent
processes being subject to strict cooperative scheduling,
that is, when any process in the system is capable of
processor control in direct responsibility.

For soft/firm real-time systems, wait-free synchroni-
sation is a desirable feature because, on the one hand,
of the much higher quality criteria (e.g. in terms of
process jitter) and, on the other hand, it establishes in
particular predictability. The other side of the coin is the
structural complexity behind wait-free synchronisation
protocols, compared to lock-/obstruction-free solutions
as to the same problem. While non-blocking synchroni-
sation in general is preferable for smaller data structures
or problems compared to blocking synchronisation, the
complexity issue makes wait-free approaches rather suit-
able only for larger or more complex structures [8]—the
exception proves the rule.

Recent discussions about multi-core synchronisation
indicates the importance of hardware, rather than soft-
ware, properties as far as scalability of synchronisation
techniques is concerned [9]. But this examination is
limited to (1) blocking synchronisation, (2) scalability
(“scale out”), and (3) time-independent (general pur-
pose) systems, which makes general transferability of
the outcome largely a realm of speculation. In addition,
even if optimised solutions for “old-fashioned” parallel
processors [10], [11] nowadays no longer differ in results
[9] it will be a hasty conclusion that fundamental prob-
lems as to the coordination of simultaneously interacting
processes disappeared with contemporary hardware plat-

forms. Optimisation for scalability is one aspect, others
are energy efficiency, timeliness, and predictability.

B. Contribution

The paper is about an efficient approach of “guard-
ing” critical sections, so called guarded sections, which
show all benefits of wait-free synchronisation and at the
same time are void of the methodical and technological
complexity [12] of that paradigm in functional and
non-functional terms. Other than conventional critical
sections, preferential processes (i.e., in static or dynamic
terms prior-ranking jobs/tasks) never block at entrance to
a guarded section although only one process at a time is
allowed to pass through. Guarded sections may be active
and, thus, occupied by exactly one process, or inactive
(i.e., unoccupied). When a process approaches an active
guarded section it gets redirected around it while leaving
a passage request that becomes operated by the occupy-
ing process in due time. More specifically, a preferential
process attempting to enter an active guarded section
waits only until the passage request has been composed
and made available (like no-wait send [13]).

If necessary and by using a future [14], a redirected
process can synchronise on concurrent state changes
that have to take place inside the guarded section. In
that case, the passage-request order contains a future
reference that is used by the occupying process in due
time to signal completion of the state change (e.g.,
availability of a computational result). Similar to issuing
a passage request, the process producing the result of a
guarded section waits only until the future value has been
composed (do. no-wait send). Furthermore, signalling
of a future result is not only non-blocking as to the
signaller but also effective even if the signallee is not yet
synchronised on that event (prevention of lost-wakeup
problem).

This processing model of guarded sections results
in a multiple-enqueue/single-dequeue mode of operation
of the passage-request (i.e., guard) queue and, thereby,
paves the way for a highly efficient and wait-free
synchronised dynamic data structure shared by many
producers (i.e., directed processes) and a single consumer
(i.e., occupying process) of passage-request orders. Basis
is a constructional approach that eventually relieves pro-
cesses from potential blocking at critical sections at any
time. More precisely, processes will potentially block
only because of unilateral (i.e., logical or conditional)
synchronisation according to well-defined and explicit
data dependencies, but never by reason of multilateral
synchronisation. This substantially constrains extent and



structure of the group of interacting processes for a
blocking-time analysis, if required.

C. Outline

The rest of the paper is organised as follows. Section II
motivates the presented approach by getting deeper into
the problem of blocking synchronisation. Section III ex-
plains the principle design of guarded sections, followed
in Section IV by a description of the implementation
and, in Section V, an analysis of first experimental
results made with a 80-way multi-core system. Sec-
tion VI discusses related approaches and Section VII
draws conclusions and sketches future work. In order
to demonstrate structure and complexity of a dedicated
and wait-free run-time support system built from scratch,
Appendix A introduces a time-predicatable operating-
system executive for guarded sections that are subject
to logical or conditional, respectively, synchronisation.

II. MOTIVATION

Enforcement of scheduling decisions is an important
aspect in any computing system, but of vital requirement
for real-time computing systems. A critical interfer-
ence factor in this regard is (1) synchronisation of
simultaneously interacting processes and (2) contention
resolution. In case of mutual exclusion for blocking
(multilateral) synchronisation, the former is prone to
priority inversion [15]. As a matter of principle, non-
blocking synchronisation is free of this problem and,
thus, makes counteractive measures [16], [17] such as
non-preemptive critical sections, priority inheritance, or
(stack-based) priority ceiling protocols unnecessary due
to absence of “non-preemptive reusable resources” in
shape of conventional critical sections. As the case may
be, of course, those measures are necessary only to con-
trol sharing of respective resources different from critical
sections. But the use of non-blocking synchronisation
substantially reduces the problem space in this aspect.

Both of the above-mentioned factors may cause prior-
ity violation because of the waitlist of blocked processes
associated with each critical section or retry of an atomic
read-modify-write instruction (e.g., TAS or CAS) applied
to the lock variable, respectively. While management of
the critical-section waitlist can be easily adapted to the
processor waitlist maintained by the process scheduler,
corresponding measures as to contention resolution are
difficult. For the latter, a backoff [3], [4] is common
to disperse repeated execution of an atomic instruction.
Whether static, (truncated) exponential, or proportional
(e.g., ticket spin-lock) backoff, all these methods result

in a serialisation of processes according to arrival time
at the “hot spot.” Similar holds for queueing locks [11].
Such schemes interfere with all but one (FCFS) schedul-
ing discipline, but cause harmful background noise and
disruptive behaviour only in a real-time environment.

As far as obstruction-/lock-free methods are con-
cerned, due to and in the course of retries, even non-
blocking synchronisation is faced with the priority-
violation problem just discussed. If contention resolu-
tion namely becomes necessary, only wait-free synchro-
nisation enables processing free of interference with
real-time process scheduling—but this synchronisation
method is no walk in the park. In a number of cases,
wait-free synchronisation largely benefits from helping
schemes [18]. Normally, these schemes rely on the coop-
erativeness of interacting processes in order to complete
a certain operation in finite time. A supportive measure
can be a “software architecture” that forces interacting
processes into a dedicated overlapping pattern and, thus,
founds the basis for simpler synchronisation protocols.
As explained next, the concept of guarded sections fol-
lows such a constructional approach. Besides providing a
general structuring aid for non-sequential programs, this
concept also provides a migration path towards wait-free
synchronisation as it becomes easily amenable to com-
plex software structures, particularly legacy software.

III. DESIGN

In structural respect, guarded sections are not unlike
conventional critical sections but as to its flow model
very different. Key aspect of the concept is that a
preferential process never blocks incoming a guarded
section, though its request to pass through that section
may be delayed. The model comes up to a conditional
fire-and-forget pattern of orders to execute a particular
program section repeated sequentially. Depending on the
(application-specific) function of this program section,
different types of guarded sections exist: non-blocking,
direct-result, and explicit-blocking.

A. Non-Blocking Guarded Sections

The basic configuration assumes run-to-completion
processes inside a guarded section. Suchlike processes
are free from self-induced wait states as to the possible
non-availability of reusable or consumable resources.
Those processes will never block inside a guarded sec-
tion but they are subject of preemption by high-priority
processes. Fig. 1 shows this basic model.

In Fig. 1(a), requester stands for the process approach-
ing a guarded section and having order to execute a



critical section

sequencer

guard
requester

guarded section

queue

(a) Flowchart.

1: if (task ← VOUCH(guard, order)) 6= 0 then
2: repeat . sequential part
3: handle(task)
4: until (task ← CLEAR(guard, TRUE)) = 0
5: end if

(b) Sample: adopting role as a sequencer.

Fig. 1. Non-blocking guarded section.

critical section. Make out order (line 1(b).1) as an object
that specifies the “actual parameters” of a particular
cycle (line 1(b).3) of a guarded critical section. The
guard takes care of “traffic control” as to that section.
If inactive, the requester is allowed to pass through,
thus, activate the guard, occupy the guarded section and
handle the order (line 1(b).3). In case of an active guard,
the requester’s order gets queued and the requester itself
is forced to bypass the guarded critical section. All steps
necessary for requester control are executed by VOUCH

(line 1(b).1), whose return value is a reference (task) to
the order that shall be processed next.

At the end of a guarded critical section, the occupying
process checks the queue for pending orders. If the queue
is filled, that process removes the next order from the
queue and handles it on behalf of the process having
originally ordered critical-section execution. That is, the
particular process occupying a guarded section takes the
role of a sequencer for pending orders as long as the
guard queue is filled. Sequencer control is the function
of CLEAR (line 1(b).4), whose return value is a reference
to the order that shall be processed next.

In this processing model, only a single process,
namely the sequencer, is in charge of removing or-
ders from the guard queue. In contrast, on the input
side, many requester processes may add orders to that
queue. Thus, the guard queue is invariably accessed
in a multiple-enqueue/single-dequeue style, which sig-
nificantly eases wait-free solutions (cf. Sec. IV) when
compared to more general answers [18].

Obviously, any sequencer potentially incurs a delay
determined by the number and individual processing

time of orders pending in the guard queue. That means, a
process passing through a guarded section can be held up
in making further progress depending on the incidence
of other processes simultaneously approaching this very
section. Such a behaviour apparently provokes lock-free
progress guarantee of a guarded critical section although
underneath of it the “guarding operations” are carried
out in wait-free manner: a sequencer could be prone
to starvation. But with prioritised real-time processing
assumed all these orders must have been issued by high-
priority processes: none of these high-priority processes
was blocked. In priority-based systems, low-priority pro-
cesses always are subject to starvation.

The fact that low-priority requester processes will not
afflict a high-priority sequencer (in a preemptive priori-
tised system) is obvious as to uni-processor mode of
operation—unless the priority-based process scheduler
would favour low-priority processes, which is a contra-
diction in terms. In case of a multi-processor system,
however, low-priority processes residing on processors
different from a high-priority sequencer could indeed
deliver further orders and, thus, cause interference. In
order to prevent potentially unbounded delay, a prag-
matic approach is to conditionally block a low-priority
requester out until the high-priority sequencer leaves the
guarded section. That is to say, low-priority requesters
arriving at a guarded section then will be subject to logi-
cal synchronisation with the high-priority sequencer just
completing this very guarded section. This is considered
as an optional feature to assist a priority-based multi-
processor scheduler in saving priority loyalty, namely
by giving instructions to unschedule simultaneous low-
priority processes for a certain period of time.

In addition to the aforementioned, likewise configura-
tion dependent, a high-priority process (1) occupying a
guarded section and (2) having pre-empted a low-priority
process in the course of clearing a yet filled guard queue
(cf. Sec. IV-B) can refuse role adoption of a sequencer
and, thus, never would be delayed because of order
processing. For low-priority processes, the guard queue
contains as many orders as could have been issued mean-
while by high-priority processes. Based on preliminary
knowledge as to process organisation, priority mapping,
minimal interarrival times of requesters, and WCET of
the guarded section, length of stay of a sequencer can
be computed and, thus, bounded above.

B. Direct-Result Guarded Sections

The basic configuration treated so far forms a pure
fire-and-forget pattern: orders to a sequencer are not only



future

V

P

critical section

sequencer

guard
requester

guarded section

queue

(a) Flowchart.

1: if (task ← VOUCH(guard, order)) 6= 0 then
2: repeat . sequential part
3: data← handle(task)
4: PROVE(task.tobe, data) . promise value
5: until (task ← CLEAR(guard, TRUE)) = 0
6: else . occupied, bypass
7: other(. . .)
8: value← EXACT(order.tobe) . await future
9: end if

(b) Sample: adopting role as a sequencer.

Fig. 2. Direct-result guarded section.

fired but also forgotten by the requester. With VOUCH,
the requester assumes a “warranty claim” as to order pro-
cessing through the sequencer (i.e. oneself, as the case
may be) in due time and continues concurrently. Parallel
operation is improved without the need to meet the
challenge of a redesign of the sequential program section
towards non-blocking synchronisaton. This pattern goes
very well with “void-type” guarded sections, that is, if
the respective program section is not expected to provide
a computational result to the requester. If, however,
the requester needs to interact with the sequencer in
order to receive a concurrently computed value from
some action inside the guarded section, unilateral (i.e.,
logical/conditional) synchronisation becomes necessary.

A minimal extension of the previous configuration
in respect of a “vaule-returning” guarded section is
shown in Fig. 2. The main difference to a non-blocking
guarded section is the use of a future [14] to enable
a requester to capture a value from the sequencer
while going past a guarded critical section. Basically,
a “future value” is of a multi-elementary abstract data
type consisting of a single-assignment container (promise
[19]) as placeholder of problem-specific type consistent
with the guarded critical section, a promise indicator
(kept, broken, pending), and a notification mechanism.
The latter, for example, could be a binary semaphore
[20] set up in a producer/consumer mode of operation
(cf. Fig. 2(a)) or a simple per-process software latch.

Whatsoever, key point is that the mechanism provides
for a “sticky bit” that holds a signal once produced and
gets reset once consumed.

When the sequencer finished computation of a future
value, it keeps the promise to deliver the result and
notify the requester (line 2(b).4). That is, (1) the future
value gets defined, (2) the promise indicator changes
from “pending” to “kept”, and (3) a signal is produced
to prove promise assignment. The requester exacts (i.e.,
probes and, if need be, awaits) the future value in due
course (line 2(b).8), latest when it requires the data for
the own ongoing computation. Thereto, the requester (1)
consumes the signal and (2) makes use of the deposited
value depending on the promise indicator: if “kept”,
unloads the container; otherwise, raises an exception.

Such direct-result guarded sections benefit from any
form of notification mechanism as long as signalling is
(1) still effective (i.e., “sticky”) even in case the requester
is not yet synchronised on receiving the future value
and (2) a throughout non-blocking operation for the
sequencer. The former is to prevent lost-wakeup of the
requester, which is readily facilitated using a semaphore
or latch. The latter is to get around blocking of the
sequencer due to hidden conventional critical sections.
That is to say, in the present case (Fig. 2(a)), V as well
as all operations downward the call hierarchy are void of
mutual exclusion for synchronisation measures (cf. case
study in App. A). According to the idea of guarded sec-
tions, implicit blocking of processes would not only be
counterproductive—purpose is to support non-blocking
synchronised interacting processes—but also prejudice
predictability of system behaviour in general.

C. Explicit-Blocking Guarded Sections

While implicit blocking is made impossible by falling
back on a throughout non-blocking synchronised run-
time or operating-system, respectively, platform for the
processing of guarded sections, explicit blocking of pro-
cesses that need to take the role of a consumer must
be possible indeed. A corresponding scenario would be,
for example, by simply exchanging the use of P and V
in Fig. 2(a), that is, with a sequencer calling P and a
requester calling V . Another, maybe more common use
case, could be an order series that charges the sequencer
with the execution of P and V on its own.

Anyway, explicit blocking within a guarded section
may occur either instantaneously or deferred. The former
assumes that the sequencer (consumer) receives notifica-
tion by some requester (producer). In contrast, the latter
acts on the assumption that the sequencer can also take



a double role both as consumer and producer. Especially
for this particular case, unfavourable line-up of orders
that possibly entail signalling operations could deadlock
the sequencer. A critical sequence, for example, is a P
order and a subsequent V order (1) coexistent on the
guard queue and (2) applied to the same semaphore.
If the P causes the sequencer to block instantaneously,
potential deblocking by downstream execution of the
subsequent V order may be hold off. A way out of this
awkward position is to let the sequencer block only in
case of a drained guard queue, thus, defer blocking until
the sequencer is empty running and would relinquish
guarded-section control in any event.

As the correct procedure is application dependent,
both kinds of explicit blocking are provided.2 A third op-
tion, which is currently investigated, is to create an “on-
the-fly context” for the sequencer to enable awaiting of
notifications concurrently to serialised order processing.
Corresponding to a continuation [21], a minimal activity
medium is spontaneously generated and instructed to
take a part in the further processing of pending orders.
Suchlike sequencer “offspring” then is in charge of
attempting to resume guarded-section execution when
the notification has been produced and the sequencer
“original” proceeds order processing.

Using sequencer continuations instead of sequencer
blocking is attractive as it maintains run-to-completion
semantics of processes inside a guarded section. It also
renders fiddly measures for safely releasing guarded
sections during sequencer wait time unnecessary, such
that lost-wakeup of the sequencer will never occur—and
keeps guarded sections event-based.

IV. IMPLEMENTATION

A dynamic and a static variant of guarded sections
were implemented in a completely wait-free manner. The
former allows for any number of processes (in terms of
threads) and future objects, its implementation is shown
in Fig. 3. Note also that the application-specific code of
the algorithms shown for the non-blocking and direct-
result guarded sections may be wrapped in a subroutine
that gets called indirectly through a pointer (cf. lines
1(b).3 and 2(b).3). This would allow for multiple critical
sections protected by the same guard.

2In a nutshell: made explicit in the guarded-section code, a phase
operation indicates instantaneous blocking and a trail operation defers
blocking to the moment when CLEAR drained the guard queue.

1: function VOUCH(guard, order)
2: ENQUEUE(guard, order)
3: task ← 0
4: if FAS(guard.flag, 1) = 0 then
5: task ← DEQUEUE(guard)
6: end if
7: return task
8: end function

(a) Wait-free entry protocol.

1: function CLEAR(guard, adopt)
2: guard.flag ← 0
3: task ← 0
4: if adopt then . take a part as sequencer
5: if ¬EMPTY(guard) then
6: if FAS(guard.flag, 1) = 0 then
7: task ← DEQUEUE(guard)
8: end if
9: end if

10: end if
11: return task
12: end function

(b) Wait-free exit protocol.

Fig. 3. Sequence control of guarded sections.

A. Sequence Control

VOUCH implements the entry protocol, which main-
tains a linked-list of order objects (line 3(a).2). The
atomic fetch-and-store (FAS)3 instruction in line 3(a).4
ensures that only one thread at a time enters and occupies
the guarded section. The respective occupant receives
the initial set of parameters (task), all other competing
threads get 0 on return and will bypass the guarded
section (cf. lines 1(b).1 and 2(b).1).

CLEAR implements the exit protocol. In line 3(b).2
the guard is released, followed by a check for an empty
guard queue (line 3(b).5). If the queue is filled, the
current thread (now no longer occupant) attempts to
reoccupy the section by means of FAS. In case of
success, this very thread becomes sequencer: the next
task is retrieved from the queue and the outer guard-
loop continues (cf. lines 1(b).4 and 2(b).5). Otherwise,
some other thread entered the guard and, maybe, will be
in charge of further order sequencing.

B. Race Hazard

Overlapped execution of the entry and exit protocols
against the background of such processing patterns has

3GCC intrinsic __sync_lock_test_and_set(ref, val).



potential of the lost-update problem, the prevention of
which needs special care. A lost-update may occur when
an enqueued item is ignored and no thread executes the
outer guard-loop. The implementation shown in Fig. 3
effectively prevents this problem. All threads executing
VOUCH first enqueue their order and strictly after that
try to set the guard flag. On the sequencer side, that is
within CLEAR, the flag is first reset and then the queue
is checked: reverse order would make it possible to have
a refilled queue although the check indicated an empty
queue (lost-wakeup problem). Either an enqueuing thread
enters the guarded section by oneself and dequeues the
next order or the sequencer notices that the queue is not
empty before trying to set the flag.

C. Queue Operations

As mentioned before, the specific processing pattern
of guarded sections supports a wait-free synchronised
queue. This pattern causes a multiple-enqueue/single-
dequeue mode of operation. Fig. 4 shows the corre-
sponding queue operations. Enqueuing (lines 4(b).2–4)
follows the same pattern as the MCS queue-based lock
[11] and uses FAS. To prevent spinning in the dequeue
operation, as with the MCS algorithm, a different de-
queuing technique is used. This technique relies on a
dummy element in the queue. An empty queue therefore
always contains a single element. In DEQUEUE, the head
pointer is advanced if the head element is followed by
another element. Lines 4(b).8–15 take special care for a
possibly dequeued dummy element, which needs to be
put back on the queue (line 4(c).9). Afterwards, if the
queue is still filled, head is advanced to it and the old
head-pointer value is returned.

As there is always exactly one dequeuer, only race
conditions with respect to simultaneous enqueue op-
erations have to be investigated. The critical machine
word that might be accessed simultaneously is the link
pointer in the last item. Critical statement in ENQUEUE

is line 4(b).4, while lines 4(c).3 and 4(c).10 make up
the critical DEQUEUE statements. In both cases the
value read is used to determine if the queue is empty.
Assuming atomic write operations, the dequeuer will
see either an empty queue and return or the next valid
item. As writing to the link pointer is really the last
operation in ENQUEUE, the dequeuer will never see an
invalid item. Further, no dequeue will be performed if
not at least two elements are in the queue (e.g., dummy
plus useful item). Therefore, no data will be written
to already dequeued elements that, thus, can be freed
immediately. This eliminates the need for hazard pointers

1: dummy.next← 0
2: head← ref dummy
3: tail← ref dummy

(a) Queue initialisation.

1: procedure ENQUEUE(item)
2: item.next← 0
3: prev ← FAS(tail, item)
4: prev.next← item
5: end procedure

(b) Add element to the queue (FIFO).

1: function DEQUEUE

2: item← head
3: next← head.next
4: if next = 0 then
5: return 0
6: end if
7: head← next
8: if item = ref dummy then
9: ENQUEUE(item)

10: if head.next = 0 then
11: return 0
12: end if
13: head← head.next
14: return next
15: end if
16: return item
17: end function

(c) Remove element from the queue (FIFO).

1: function EMPTY

2: return head.next = 0
3: end function

(d) Check for drained queue.

Fig. 4. Multiple-enqueue/single-dequeue wait-free queue.

[22] or garbage collection. As can be seen, the discussed
entry and exit protocols forgo direct and indirect loop
constructs and, thus, are completely wait-free.

D. Alternative Solution

In the static variant, the ENQUEUE and DEQUEUE

operations map to bit operations on a fixed-length bitset,
where the bit position is derived from the thread iden-
tification. The necessary bit operations are carried out
by using atomic OR/AND processor instructions. As a
consequence, the provided algorithms are also wait-free
in the static case. Besides the outer guard-loop, no further
loops are used and only a single atomic bit-instruction
is carried out per queue operation.



TABLE I
BASIC OVERHEAD, UNCONTENDED CASE.

Algorithm Cycles
Dynamic 128
Dynamic NB 116
Static 84
MCS-Lock 39
Read-Spinlock 39

As the present dynamic variant is limited to FIFO-
order, scheduling interference may occur. This is not the
case with the static variant, which namely implements a
priority-based protocol. Thereby, the priority of a request
to pass a guarded section corresponds to the bit position
derived from the thread identification and, thus, reflects
the thread priority. The passage request with highest
priority will be executed first.

V. EVALUATION

As a proof of concept, prototype guarded sections are
currently made available as guest-level implementation
above Linux. The overhead of contended and uncon-
tended guarded sections were measured. Timings include
direct-result and non-blocking guarded sections, dynamic
and static variants.4 The static configuration employs
priority-based execution of requests. Measurements were
performed on a 80 core Intel Xeon E5-4640v2 server
running at 2.2 GHz partitioned into four cache-coherent
sockets with 10 physical or 20 logical cores (through
hyper-threading), each.

Since POSIX-semaphores induce a very high over-
head, receive of signals as to future objects was done by
spinning. As a frame of reference, numbers for the MCS
spin-lock [11] are given. These locks shall perform well
under high contention. Table I shows the overhead for
uncontended acquisition and release of a guarded section
and respectively a MCS lock/unlock pair. The critical
section itself was void. Processor cycles were averaged
over 105 executions with hot caches.

Measurements were also performed for high-
contended cases using up to 64 processing elements
(i.e., cores), as the implementation of the static variant
allows for exactly that maximal number of threads.
Fig. 5 shows the results in number of cycles. In general,
performance decreases dramatically for high contention
in all cases. Especially when crossing socket boundaries

4Due to the lack of blocking critical sections in the benchmarks,
blocking guarded sections were not evaluated.

0 10 20 30 40 50 60 70
0

20000

40000

60000

Number of Cores/Threads

E
xe

cu
tio

n
C

yc
le

s

Dynamic
Dynamic NB

Static
MCS-Lock

Read-Spinlock

Fig. 5. High contended case, range 1:64 cores.

as can be seen in more detail in Fig. 6, where an
abrupt rise of the number of cycles can be stated 10
cores off. This boost is known from earlier experiments

0 5 10 15 20
0

5000

10000

15000

20000

Number of Cores/Threads

E
xe

cu
tio

n
C

yc
le

s

Dynamic
Dynamic NB

Static
MCS-Lock

Read-Spinlock

Fig. 6. High contended case, detail, range 1:20 cores.

in which hyper-threaded cores were allocated first
before allocating processors/cores on a different socket.
The overhead seems to be very similar and is within
measurement accuracy.

As can be observed, the overheads for the dynamic
and static variants, when directly awaiting the result of
the guarded section, are higher compared to the MCS-
lock version. However, one has to keep in mind that
guarded sections are not only a drop-in replacement for
locks but rather provide all the benefits mentioned as to
non-blocking synchronisation. MCS-lock is a blocking



technique and, thus, does not feature any of these prop-
erties. Contrariwise, the non-blocking dynamic variant
employs the best performance, since no thread has to
wait on results and threads are either enqueuing further
orders or execute requests in sequence. The static non-
blocking variant could not easily be measured under high
contention, because the number of requests is limited to
the number of threads and therefore no high contention
scenario can be generated for thousands of iterations.
However, as the direct-result version of the static variant
is faster than the dynamic variant, similar behavior can
be expected in the non-blocking high-contention case.

VI. RELATED WORK

The presented concept was inspired by the early
work on guarded commands, which were “introduced
as a building block for alternative and repetitive con-
structs that allow nondeterministic program components”
[23]. But guarded sections are neither a programming-
language construct nor are they supported by a dedicated
compiler. Rather, they can be considered and are very
well suited as run-time system support for a guarded-
command language. Resolution of the boolean expres-
sion that must evaluate to true in order to make a guarded
command eligible for execution would be a typical case
for a guarded section as introduced here.

Synthesis used procedure chaining [24] for seri-
alised execution of program sections when non-blocking
synchronisation proved to be impractical. This con-
cept avoided synchronisation inside chained procedures,
which also applies for non-blocking or direct-result,
respectively, guarded sections described in the present
work. In contrast to Synthesis, by means of explicit-
blocking guarded sections unilateral (logical/conditional)
synchronisation is supported as well. Beyond that, in
Synthesis, procedure chaining fell back on lock-free syn-
chronised queues, whereas guard-queue synchronisation
is wait-free.

Kernel-level synchronisation in the PEACE parallel
operating system was based on the serialised execution
of so called epilogues [25]. Epilogue execution was
triggered by first-level trap/interrupt handling, referred to
as prologue, but carried out synchronous with the current
process in kernel mode. Prologues released and acted
on behalf of user-mode processes caused instantaneous
execution of dedicated epilogues, thus, starting a kernel-
mode process. In contrast, prologues catching a kernel-
mode process caused deferred epilogue execution. In
doing so, the respective epilogue was added to a global
queue and removed therefrom whenever the kernel-mode

process finished execution of a predecessor epilogue.
In contrast to guarded sections, only a single “epilogue
guard” (for the whole PEACE kernel) was supported.

A refinement of epilogue-queue management was
made for the PURE embedded operating system [26].
Dedicated use in an interrupt-handling context, only,
gave rise to a stacking arrangement of multiple-
enqueue/single-dequeue operations. This constrained
overlapping pattern facilitates lock-free synchronisation
of the queue by exclusive use of atomic memory
load/store instructions. In contrast to the present work,
the epilogue-queue implementation did not scale-out to
multi-core/processor systems.

Another similar approach is flat combining [27], which
is based on coarse locking. A single thread holds a
lock when it performs combined access requests to a
critical section, while simultaneously requesting threads
will block at that lock for the duration of the respectively
serialised operations. In contrast, guarded sections never
cause arriving preferential threads to block. Furthermore,
due to its lock-based solution, flat combining is prone to
scheduling interference, priority inversion, and deadlock.

Main motivation behind flat combining was to lower
the cost of synchronisation especially as to fine-grained
shared data-structure operations. A direct consequence of
having several of those operations serialised by a single
thread is a significant decrease in overall cache traffic
because of a reduction in number and frequency of in-
validation messages. This observation led to remote core
locking (RCL, [28]). Very similar to flat combing, RCL
has a single thread in charge of executing a particular
critical section if contention at entrance to that critical
section exceeds a certain threshold. In difference to flat
combing, RCL always seizes a processor/core dedicated
of critical-section execution. In contrast to RCL, guarded
sections are free of implicit blocking of threads at
entrance to an “off-loaded” critical section. But, common
to RCL, a similar approach will be considered next to
roll a sequencer out to a private core for cache-friendly
execution of guarded critical sections subject to high
contention.

VII. CONCLUSION

The uniqueness of guarded sections is that preferential
processes never block at entrance to a critical region
although only one process at a time is allowed to pass
through. Requests for passing a guarded section though
are processed in serial manner, but not necessarily the
processes that issued these requests. This is the funda-
mental difference to conventional critical sections, where



mutual exclusion is realised in a way that bestows any
process a potential delay at critical-section entrance.

Guarded sections are a means to an end, namely to in-
crease parallelism in non-sequential programs of legacy
but also “from scratch” new software. Blocking of pro-
cesses is reduced to logical/conditional synchronisation
and, thus, happens exclusively unilateral according to
the data flows between the processes. Guarded sections
combine the convenience of critical sections in terms
of software structure with the power of non-blocking
synchronisation in terms of performance. They are a
structuring aid by means of which wait-fee synchroni-
sation of the guarding operations is supported.

The absence of multilateral blocking synchronisation
is to the best advantage for real-time systems, above
all of those that follow an event-triggered mode of
operation. All platform operations used for the im-
plementation of guarded sections are void of priority
violation and inversion. Although solutions to these
problems are well-known and very well established,
none of that is needed for non-sequential time-dependent
programs based on guarded sections—unless application
code performs (multilateral) blocking synchronisation on
its own. Doing without reduces complexity as well as
sources of background noise, interference, and overhead
from real-time systems. Direct consequence therefrom is
improved predictability not only of the system software
but also application programs.

Run-time system support for guarded sections is still
in its infancy, just as an operating system built around
that concept. First experiments on a 80-way multi-core
system are encouraging that guarded-section based soft-
ware systems achieve predictable performance as to the
properties of the underlying hardware. Besides tuning,
future work focusses on sequencer “off-loading” to spare
processor cores and real-time capable energy-awareness
of the guarding operations.

APPENDIX A
RUN-TIME SUPPORT SYSTEM

In order to get an impression on the structural as well
as computational complexity of a run-time environment
needed to support direct-result and blocking guarded sec-
tions, the prototype of a mostly native implementation of
a (time-) predictable operating-system executive (POSE)
is sketched in the following paragraphs. This implemen-
tation is suited for a “bare-metal system” that controls
processes of a real processor (e.g., Intel Xeon) as well as
for a “guest-level system” that assumes some host oper-
ating system (e.g., Linux) underneath and whose process

1: procedure PROVE(bond, data)
2: bond.value← data
3: bond.state← {KEPT}
4: V(bond.sema)
5: end procedure

(a) Deliver promised value (no-wait send).

1: function EXACT(bond)
2: P(bond.sema)
3: if bond.state 3 {KEPT} then
4: return bond.value
5: else
6: return undefined
7: end if
8: end function

(b) Retrieve promised value (blocking receive).

Fig. 7. Future control on basis of a signalling semaphore.

instances serve as virtual processors. POSE features
featherweight processes in the form of threads sharing a
single address space, a latch-based signalling mechanism
for the support of logical/conditional synchronisation of
simultaneous processes, full-preemptive process schedul-
ing using static priorities, processor dispatching (i.e.,
context switching), and processor idle-loop control. It is
sample of a threading infrastructure that gives wait-free
progress guarantee to processes. Presentation happens
top-down, stepwise closing the semantical gap between
direct-result or blocking, respectively, guarded sections
at the top and a physical/logical processor at the bottom.

A. Future Control

The major difference between non-blocking and
direct-result guarded sections is logical or conditional,
respectively, synchronisation of interacting processes. As
described in Sec. III-B, the future concept is used to
synchronise requester processes on the availability of
data produced by a sequencer process. By using PROVE,
the latter process makes the produced data explicitly
available to the former process that, in turn, uses EXACT

to receive that data for consumption purposes. The
implementation of this concept is shown in Fig. 7, which
goes back on a simple signalling (i.e., binary) semaphore
for the synchronisation of the two types of processes and
a data container (i.e., promise) for intermediate buffering
of a result value.

Clearly, the memory footprint of a future object is
problem-specific and the structure behind is inherently
determined by some application-level data type. This
particularly effects the actions to buffer (line 7(a).2) and



1: procedure P(sema)
2: LATCH(sema)
3: end procedure

(a) Consume signal, conditionally wait.

1: procedure V(sema)
2: NUDGE(sema.task)
3: end procedure

(b) Produce signal and store into latch.

Fig. 8. Signalling semaphore mapped to a software latch.

retrieve (line 7(b).4) the data. The generic and, thus,
system-specific part of future control relates to sending
(lines 7(a).3–4) and receiving (lines 7(b).2–3) the signal
that a promised value has been made available and a
successful state change took place.

B. Signalling Semaphore

Main task of process interaction from a systems point
of view is hidden inside the P and V operations of the
(binary) semaphore. In the example shown (Fig. 8), these
operations are mapped to respective operations of a per-
process software latch. Using LATCH (line 8(a).2), the
calling process receives a signal. The process will be
blocked only if the signal to be received has not yet
been sent using NUDGE (line 8(b).2).

The mapping shown in Fig. 8 is typical for interfacing
to the operating-system machine level of a computing
system. Here, an invocation of LATCH and NUDGE

corresponds to system calls—in logical or physical re-
spect, depending on the actual operating principle of an
operating system in terms of an abstract processor (i.e.,
virtual machine).5

C. Interior Structure

Beneath that mapping interface, a structure of features
is found by means of which time-predictable operation
of a process management subsystem is provided. This
structure shows Fig. 9. Shaded areas likewise embrace
features of a specific layer, the number of which is
indicated left-justified. Except the bottom layer, which is
made of special instructions of the particular (hardware)
processor, higher layers consist of procedures or func-
tions, respectively, implemented in some programming

5That is to say, the system call happens either as a normal
procedure call (logical) in case of a library-based operating system
or through specialised processor instructions (physical; software trap
or SYSENTER/SYSLEAVE-style of actions, resp.) for contemporary
kernelised operating systems. The former assumes integrated and the
latter assumes isolated protection domains.

6

5

4

3

2

1

0 ∀ bCAS cFAS HALT

RESUME AVERT

SHIFT CLEAN RELAX

eGAUGE

f SEIZE

aBEING

gVALID

ELECT

QUESTdAPPLY

MATCHREFIT

FAVOR

STAKE

READY BLOCK

NUDGE LATCH

a,c a,b

a a,d,e

a,b,f

g

a

b

Fig. 9. Functional hierarchy of POSE.

language. The meaning of these layers is as follows
(listed from top down to bottom layer):

6 logical/conditional synchronisation
5 basic process control
4 priority control and inheritance
3 process scheduling and selection
2 process dispatching
1 processor control
0 elementary (i.e., atomic) operations

Layers 0 and 1 as well as function BEING and all those
operations directly referring to the “for-all” operation (∀,
at layer 0) are hardware dependent and, thus, come in dif-
ferent versions as to the respective (physical) processor
in use. Except for the memory model, all other layers
or operations, respectively, are hardware independent.
Nonetheless, even those hardware-independent features
show a choice of options that manifest in specific soft-
ware versions as to different modes of operation required
by the particular application scenario.

The solid arrows indicate call relations, whereby a
“call” may have been resolved statically at compile time
by manual instruction or automatically in the course of
a compiler optimisation pass. Same holds to the dotted



1: procedure LATCH(mark)
2: task ← BEING(ONESELF )
3: if CAS(task.latch, FALSE,∞) then
4: BLOCK(mark)
5: end if
6: task.latch← FALSE
7: end procedure

(a) Latch process onto a signal.

1: procedure NUDGE(name)
2: task = BEING(name)
3: if task 6= 0 then . process is known
4: if FAS(task.latch, TRUE) =∞ then
5: READY(task)
6: end if
7: end if
8: end procedure

(b) Signal a process.

Fig. 10. Software latch operations as system calls.

arrows, which were introduced for readability purposes,
only, to avoid cutting across. Small types are used as
decorations and point to the correspondingly annotated
operation symbols.

Fig. 9 shows the call relations additionally in terms of
a functional hierarchy [29]. Purpose of this combined
representation is to embody that, for its own correct
behaviour, a higher arranged operation depends on the
correct functioning of a pointed-to and, as the case may
be, called lower arranged operation. Note that, in general,
a call relation alone does not implicitly indicate a depen-
dency relation as to correct program behaviour according
to a given specification [30]. The representation in Fig. 9,
however, assumes both types of relation. Meaning and
interplay of these operations are explained in the next
subsections by following a top-down practice.

D. Software Latch

The major effort of semaphore signalling comes with
the implementation of LATCH and NUDGE (Fig. 10).
These two operations provide a functional interface to
a per-process software latch. It is assumed that every
process instance contains a “latch register” for capturing
timing signals directed to the particular process phys-
ically represented by that very instance. Quite similar
to hardware, the software latch remembers a signal by
means of a dedicated write operation (line 10(b).4) until
it gets cleared by an explicit read operation (line 10(a).6).

In order to facilitate these functions, a very basic ac-
tion (needed in almost any operation further discussed) is

reading the instance pointer to the current (line 10(a).2)
or a named (line 10(b).2) process, in short: the process
pointer. This pointer gives access to the central data
structure that reflects the physical characteristics of a
process and, in particular, contains the per-process latch.
In operating-system terms, that data structure is generally
known as process control block (PCB).

Technically, the signal is implemented as a “sticky bit”
that is sticked to a process using NUDGE and unsticked
therefrom using LATCH. In addition to this function and,
as consequence, different from hardware, the software
latch also takes care of process control. It blocks a
process if a signal has not yet been latched in the moment
of a read action (line 10(a).4) and, vice versa, unblocks a
possibly blocked process in the moment of a write action
(line 10(b).5). In this sequence of actions, special care
must be taken to prevent the potential of a lost wakeup
of a tentatively blocking process (line 10(a).3–4). In the
given case, this type of race condition is tackled on a
state-machine basis as will be explained next.

E. Process Handling

The programmed action of blocking a process (e.g.,
line 10(a).4) indicates a logical preemption point in the
context of logical synchronisation on the occurrence
of a particular event (i.e., timing signal). In principle,
any process always needs to take actions on its own
to relinquish its processor to some other process. In
addition, given a preemptive system, a process can be
forced into closing down by means of an external event
such as an interrupt request (IRQ) or provision of a
process (e.g., line 10(b).5). Thereby, a graduation is often
made into “preemptive” and “full preemptive”. The latter
implies processor relinquishment at any time and place,
while the former enables revocation of the processor only
at specific places shown separately. Most notably, the full
preemptive case further implies not only that response
time is shorter and the degree of concurrency is higher
but also that, of necessity, not a single sequential piece of
code (i.e., action sequence) is existent in the program—
the exception proves the rule, as will be explained later.
POSE corresponds to such a full-preemptive approach.

1) Blocking of a Process: At first sight, blocking a
process is a straightforward action: select a process from
a pool of ready-to-run candidates and then perform a
context switch. At second sight, however, things need to
be handled in a more differentiated way. An important
aspect thereby is that the process going to block may be
the last one available for execution on its processor at
all. In this case, the process needs to conduct idle-loop



control. No less important is priority loyalty: the period
from the point of having selected the next ready-to-run
candidate until the point of switching is prone to priority
inversion, which must be either prevented or controlled
and bounded in time by design. Yet another aspect is
that the blocking but still running process may also
be immediately re-selected for continuation. A process
switch to itself becomes possible—unless prohibited by
the switching method (cf. Fig. 16)—but means bare
overhead and, thus, should be avoided.

Prompt re-selection may happen to a blocking or
“running blocked”, respectively, process that becomes
simultaneously unblocked and, thus, available again due
to some external event. In the case of the software-latch
implementation just described, simply assume the simul-
taneous execution of LATCH and NUDGE (cf. Fig. 10) in
a way such that the execution of READY overlaps the
execution of BLOCK (cf. Fig. 11) in time. Note that this
pattern of overlapped execution may cause a “running
ready” or “running blocked ready” process: in other
words, a still run-for-block process being also a ready-
to-run candidate that, accordingly, can be re-selected for
execution. Key point in this scenario is that, under no
circumstances, re-selection of a process in that particular
state must not lead to its prompt continuation on another
processor.

As shown in Fig. 11(a), after quest for a follow-up
process (line 11(a).4), the current process is switched
off only if BLOCK gets aware of another ready-to-
run candidate that can be switched on (lines 11(a).7–
8), otherwise only “recalibration” as to process-specific
system state takes place (line 11(a).6, cf. also Fig. 15(c))
and the process continues operation in that it seamlessly
still engrosses the processor. Before QUEST, the current
process actually applies for blocking (line 11(a).3), that
is to say, the event expected by the current process is
remembered for housekeeping purposes and the state of
the current process is extended by BLOCKED (cf.
Fig. 13(d)). At the same moment, the current process
becomes logically blocked (i.e., “running blocked”). This
transition means that the process is not yet physically
suspended but right there on the course, unless not redi-
rected, and announced its readiness to receive a timing
signal related to the blocked-on condition (mark).

In POSE, a process state is modeled as a union set of
one or more substates at a time. In the case of BLOCK

(more specifically, line 11(a).3), for example, the com-
posite state of the current process actually depends on the
point in time APPLY becomes effective. The following
state settings and action occurrences are possible:

1: procedure BLOCK(mark)
2: self ← BEING(ONESELF )
3: APPLY(self,mark, {BLOCKED})
4: next← QUEST(R2R) . ready-to-run candidate
5: if next = self then . continue process
6: GAUGE(self)
7: else . other process, switch
8: STAKE(next)
9: end if

10: end procedure
(a) Cessation of a process.

1: procedure STAKE(task)
2: MATCH(task) . inherit priority
3: last← SEIZE(task)
4: trim← last.state
5: if trim = {BLOCKED,READY } then
6: self ← BEING(ONESELF )
7: if last.level.soft ≤ self.level.firm then
8: if CAS(last.state, trim,Ψ) then
9: APPLY(self,R2R, {READY })

10: SEIZE(last)
11: end if
12: end if
13: end if
14: REFIT(R2R) . restore priority
15: end procedure

(b) Appointment of a process.

1: procedure READY(task)
2: self ← BEING(ONESELF )
3: if ¬FAVOR(task, self) then
4: APPLY(task,R2R, {READY })
5: else . high-priority candidate
6: APPLY(self,R2R, {READY })
7: STAKE(task) . switch process
8: end if
9: end procedure

(c) Provision of a process.

1: function FAVOR(task, this)
2: if this.level.soft > task.level.firm then
3: return VALID(task)
4: end if
5: return FALSE
6: end function

(d) Check for high-priority process.

Fig. 11. Basic process control.

1) {RUNNING}, neither BLOCK nor READY,
2) {RUNNING,READY }, READY only,



3) {RUNNING,BLOCKED}, BLOCK only,
4) {RUNNING,BLOCKED,READY }, both.

The substates, thus, not only reflect on the execution
history of specific actions to block or ready a selected
process but also indicate a particular overlapping sce-
nario. They give decisive hints in order to achieve non-
blocking (wait-free) synchronised operation of processes
roaming through the whole infrastructure.

In priority-controlled systems like POSE, the whole
sequence of actions from having selected a ready-to-
run-candidate (by using QUEST) and detected that this
candidate differs from the current process (line 11(a).7)
and, thus, is to be switched on (by using STAKE or
SEIZE, resp.) forms a critical path. This path turns
out to be prone to priority violation that eventually
results in priority inversion. Note that, by definition, the
current process is the highest-priority one on a particular
processor. When that process blocks, the priority of the
follow-up process returned by QUEST will be lower or
equal6 to the priority of the current (blocking) process
that performed the search for its own successor.

Assume that, simultaneously to the actions on that
critical path, the current process is made available again
because of a succeeding NUDGE (Fig. 10(b)). Then, by
means of READY (Fig. 11(c)), the still “running blocked”
current process becomes “running blocked ready” but has
to proceed as by instruction of BLOCK (lines 11(a).4–
8). A just logically blocked high-priority process made
ready-to-run (more precisely, ready-to-continue) in the
meantime is forced to switch to a low-priority ready-
to-run process: priority violation. In the further course,
the low-priority process runs although a high-priority
process is ready-to-run and, thus, available: priority
inversion. This problematic situation endures until the
next rescheduling event as to that particular processor
occurs. Not till then will the high-priority ready-to-
run process be recognised and resumed. The delay for
that rescheduling event as to the particular high-priority
ready-to-run process must be predictable and bounded in
time in order to prevent uncontrolled priority inversion.

By falling back only on non-blocking (wait-free) syn-
chronisation, the described problem cannot be solved by
the blocking process alone when executing on that criti-
cal path. This is in contrast to blocking synchronisation
where the whole critical path constitutes a critical section
that excludes any simultaneous READY action. Here, the

6The POSE variant presented does not arrange for equal priorities
(cf. ELECT, Fig. 13(b)). It is assumes that all processes controlled by
prioritised scheduling at a time have a unique priority.

high-priority blocking process enters the critical section
within which it will select its low-priority follow-up
process and eventually switches off. The switched-on
low-priority process is in charge of leaving the critical
section, only. Yet in the moment when this happens,
a potentially delayed READY action becomes effective,
pre-empts the switched-on process, and switches back to
the high-priority origin process.

Note that priority violation cannot be eliminated in
such a scenario. However its adverse effect of priority
inversion can be smoothed out. This also applies to
the non-blocking (wait-free) synchronised case shown in
Fig. 11(b). In that case, any process switch (i.e., SEIZE)
is initiated through a call of STAKE (cf. lines 11(a).8 and
11(c).7), namely to assure that all switched-on processes
run through the same protocol in order to overcome
priority inversion. When looking closely at Fig. 11(b),
“normal” priority inversion7 is avoided neither but its
period is limited by means of priority inheritance and,
thus, uncontrolled priority inversion is made impossible.

At entrance of STAKE and if applicable, the higher
priority of the current process is inherited to the process
that will be switched on next (line 11(b).2 or Fig. 12(a),
resp.). If inheritance became effective, the original pri-
ority of the respective process will be restored again at
exit from STAKE (line 11(b).14 or Fig. 12(b), resp.). In
between, the checks are made in order to immediately
resume the origin process (line 11(b).10) if necessary.
Resumption of that process takes place if it is “blocked
ready” (indicating that a blocking process became ready-
to-run in the meantime) and of higher priority than
the current process. By means of an atomic compare-
and-swap (CAS), a specific Ψ-state is assigned to the
corresponding process instance (line 11(b).8) if it is
still “blocked ready” and, thus, was not selected for
continuation by some other rescheduling action in the
meantime. The Ψ-state makes sure that the process (a)
cannot be re-elected before its next cycle and (b) is
pending with the processor that performed the election:
Ψ = {PENDING}. If CAS succeeds, the current (low-
priority) process makes itself a ready-to-run candidate
for processor allocation and resumes the former (high-
priority) process (lines 11(b).9–10).

Within STAKE, each process unconditionally switches
off and resumes at its normal preemption point (line
11(b).3). In addition, when a low-priority process detects
a high-priority ready-to-run origin process, it condi-

7That is to say, as given in the particular case, a high-priority
ready-to-run process has to wait for a low-priority running process.



1: procedure MATCH(task)
2: self ← BEING(ONESELF )
3: if self.level.soft < task.level.firm then
4: task.level.soft← self.level.soft
5: end if
6: end procedure

(a) Conditionally transfer priority.

1: procedure REFIT(pool)
2: self ← BEING(ONESELF )
3: if self.level.soft < self.level.firm then
4: from← self.level.soft
5: self.level.soft← self.level.firm
6: next← ELECT(pool, from, self.level.soft)
7: if next 6= 0 then . middle-priority process
8: APPLY(self,R2R, {READY })
9: SEIZE(next)

10: end if
11: end if
12: end procedure

(b) Conditionally restore priority.

Fig. 12. Priority inheritance protocol.

tionally switches back (lines 11(b).8–10) at its escape
preemption point. This causes the high-priority process
to continue (line 11(b).3) and, as the in turn last (i.e.,
low-priority) process is not in BLOCKED state, return
from STAKE. Actually, a “jump back” (from line 11(b).10
to line 11(b).3) takes place indirectly due to forced
cooperation of the low-priority process.

It is worth to note that, as explained above, these two
process switches will also have to happen in case of
a blocking synchronised (pessimistic) solution for that
critical path. But in contrast to such a solution, which
works implicitly and involves central process scheduling,
the non-blocking synchronised (optimistic) method as
followed by STAKE makes the protocol explicit. Even
more, the shown solution (Fig. 11(b)) to the priority-
inversion problem is not only less overhead-prone but the
residual overhead is also constant in time, determinable
by static program analysis and, thus, predictable.

2) Provision of a Process: With prioritised full-
preemptive process scheduling, making a process avail-
able may entail a process switch as well (Fig. 11(c)).
This comes about if the priority of the current process
is lower (i.e., has a larger numerical value in the case
given) than the priority of the process to be made avail-
able. The respective checking is a major part of FAVOR

(Fig. 11(d)). If the current process is to be favoured

over the applied process (line 11(c).3), the latter only
becomes a ready-to-run candidate (line 11(c).4) and the
current process continues. Otherwise, the current process
becomes a ready-to-run candidate and a process switch
takes place (line 11(c).6–7).

Keep in mind that a provided process (i.e., being in
state READY ) could be immediately selected for con-
tinuation on the same or another processor due to pseudo
or true parallelism, respectively. But note that selection
must be rethought for processes that are in RUNNING
state at the same time. A process whose state owns the
subset {RUNNING,READY } is right on the way to
relinquish its processor and, when succeeded, become
a ready-to-run candidate for processor allocation. Such
a process could be very well re-selected on the same
processor while still running, although its resumption
then would have absolutely no effect but pure overhead
as the process would switch to itself and, nevertheless,
join the pool of ready-to-run candidates.

Just in case of true parallelism (e.g., given a multi-
core system), provisioning of a process must prevent
duplicate execution of this very process on different
processors. Concerning this matter, FAVOR (Fig. 11(d))
takes care for the respective checks. Assuming that
a process in state {RUNNING,BLOCKED} (i.e.,
which has completed line 11(a).3 of BLOCK but not
yet relinquished its processor) is made available through
READY by a process residing on a different processor.
Further assuming that the readied process is of higher
priority than the readying process. In a full preemptive
system, thus, the readied process will pre-empt the
readying process on its processor (line 11(c).5). As a
consequence of this, duplicate execution of the just now
provided process will happen. In order to prevent such a
defective operation, FAVOR particularly checks for valid-
ity of a high-priority process. A process to be provided
is termed to be valid in such a situation if it shares the
same execution scope with the providing process. That
is to say, in that particular scenario, both processes must
reside on the same processor for preemption to become
effective. This validation procedure is also an important
feature of process selection and will be explained next.

3) Selection of a Process: When a process decides to
relinquish its processor to another process, a ready-to-run
candidate needs to be selected and switched on. Process
selection is controlled by QUEST (Fig. 13). Once called,
this function always returns a valid process pointer to
a ready-to-run candidate that is eligible for processor
allocation. But this also means that QUEST persists in
looking for available processes even if there are no



ready-to-run candidates. That is to say, QUEST is also the
mechanisation of the idle loop of an operating system.

Central action in the selection procedure is the call of
ELECT (line 13(a).5), which chooses the highest priority
process from all ready-to-run candidates. If there is no
such candidate, a changeover into standby, sleep, or halt
mode of the processor is initiated. This mode change
is performed by RELAX (line 13(a).7), with operator Λ
aggregating knowledge on how to “drug” the processor
according to a situate treatment plan. Switchback into
“normal” operating state takes place only when the
processor is waken up by some external event (e.g., an
IRQ or afar-addressing of a monitored shared-memory
area). Note that the idling process keeps its priority. At
first sight, putting down to lowest priority (∞) would
have been appropriate to let pass any other process. The
solution of which introduces overhead in the “normal”
(i.e., non-idle) path,8 for which reason priority lowering
is intentionally not considered in a situation where
logically idleness of the processor can be adequately
utilised by polling for available low-priority processes.

Of vital importance is to note that the sequence of idle-
loop actions discloses another potential race condition
that, again, may cause the lost wakeup of a process in
case the problem remains untreated. Assume that ELECT

indicates nil return and the process is right on the way
to call RELAX next (lines 13(a).5–7). If in that situation
an external event takes place at once as a result of which
a ready-to-run process—of lower or same priority com-
pared to the idling process—is made available, then this
very process gets lost. What makes matters even worse,
the checkless processor mode change as prescribed by
the program may never be reversed.

In order to prevent this erroneous function, a process
indicates its possibility to become idle and, thus, control
processor-mode changeover (line 13(a).4) before both
searching for a ready-to-run process and checking a nil
return of ELECT. This help by QUEST assists RELAX

to prevent the then idle process from shutting down
operation at just the wrong moment (cf. Fig. 14).

Process selection lies in responsibility of ELECT

(Fig. 13(b)), which performs a “table walk” to capture a
ready-to-run candidate. Nil return of this functions indi-
cates an apparently empty pool of ready-to-run processes
at the time of the recent table walk. This indication
may be a “false negative” as, simultaneously to the

8At the expense of a short latency for the present high-priority
idling process to return from QUEST and continue normal operation,
READY (Fig. 11(c)) would have to take care of the “exceptional case”
of a lower-ranked idle process to be restored in every respect.

1: function QUEST(pool)
2: self ← BEING(ONESELF )
3: repeat
4: CLEAN(CPU)
5: next← ELECT(pool, self.level.firm,N)
6: if next = 0 then
7: RELAX(CPU,Λ)
8: end if
9: until next 6= 0

10: return next
11: end function

(a) Process-level idle cycling.

1: function ELECT(pool, from, to)
2: assert 0 ≤ from ≤ to− 1 < N
3: self ← BEING(ONESELF )
4: for rank ← from, to− 1 do
5: next← pool[rank]
6: trim← next.state
7: if trim 3 {READY } then
8: if VALID(next) then
9: if CAS(next.state, trim,Ψ) then

10: return next
11: end if
12: end if
13: end if
14: end for
15: return 0
16: end function

(b) Choose next low-priority ready-to-run process.

1: function VALID(next)
2: if next.state 3 {RUNNING} then
3: if next.scope 6= CPU then
4: return FALSE
5: end if
6: end if
7: return TRUE
8: end function

(c) Validate ready-to-run process.

1: procedure APPLY(task, pool, trim)
2: assert pool[task.level.firm] = task
3: task.event← pool
4: task.state← ∀(task.state ∪ trim)
5: end procedure

(d) Allocation of a process.

Fig. 13. Process selection and inspection.

table walk, a process could have been made available
in the meantime. The higher-level loop to quest for an



available process (lines 13(a).3–9) compensates for a
missed ready-to-run candidate.

The table walk is limited to a specific range
(line 13(b).2) and, thus, bounded in time. It proceeds
with decreasing priority level (i.e., increasing running
index). If an inspected process is ready-to-run and also
a valid candidate for processor allocation (lines 13(b).7–
8), the attempt is made to claim the respective process
instance and return the corresponding process pointer
(lines 13(b).9–10). A CAS action ensures that an eligible
process can be selected only once at a time and, thus,
will never be crossposted to several processors. As CAS
is a relative costly operation it will be issued only when
required, namely in case of a matching candidate. If the
state of that candidate is still unchanged, CAS assigns
the Ψ-state to the corresponding process instance as was
already commented in context of Fig. 11(b).

A process in Ψ-state must always be allocated to the
processor with which it is pending. This state denotes
a process that will be switched on in a minute. That is
to say, the respective process was successfully selected
(lines 13(b).9) and will continue once the current pro-
cess, under control of which the selection was carried
out, detected either self-provisioning (line 11(a).6) or has
relinquished its processor (line 11(b).3). Such a process
whose continuation has been launched and, thus, is as
safe as houses must not be re-selected before having
become a ready-to-run candidate again. The processor
with which that process is pending is the processor on
which the selecting process currently proceeds. Note
that, besides ELECT, the Ψ-state is also assigned as
part of STAKE (Fig. 11(b)) when switch-back to a
meanwhile provided high-priority origin process must be
performed (lines 11(b).7–8). Characteristic of the Ψ-state
of a “soon running” process is the presence of substate
PENDING in the union set.

The action of state transition (line 13(d).4) needs
some more attention, as its functioning is fundamen-
tal. As aforementioned, the logical process state is
modeled as a set of substates. In the case of a log-
ically blocked process this effectively means a subset
of {RUNNING,BLOCKED}, as a process will be
running when it reaches the action that causes the state
transition within BLOCK (Fig. 11(a)). Note that the value
of exactly this set union as a subset denotes the idle
process. Also note that presence or absence, respectively,
of substate RUNNING as a member of that substate
places an important role in the selection of a ready-to-
run candidate (line 13(c).2). Furthermore, the ∀-operator
indicates that the complete state transition (line 13(d).4)

1: procedure CLEAN(site)
2: flag ← ∀(flag \ {site})
3: end procedure

(a) Reset interrupt indicator flag.

1: procedure LABEL(site)
2: flag ← ∀(flag ∪ {site})
3: end procedure

(b) Set interrupt indicator flag.

1: procedure RELAX(site, drug)
2: old← AVERT(ALL) . disable all interrupts
3: if {site} /∈ flag then
4: “drug” processor to a greater to lesser extent
5: HALT . enter sleep mode
6: end if
7: AVERT(old) . enable old interrupts
8: end procedure

(c) Safely suspend processor core.

Fig. 14. Processor-level idle cycling.

needs to be an indivisible operation in logical or physical
terms.9 Execution of this operator as well as saving its
result in memory must ensure data consistency “for all”
operands (here: the state instance variable) applied.

F. Mode Changeover

POSE idle-loop control happens at two levels of
abstractions: namely at (higher) process and (lower)
processor level. According to the principle of “separa-
tion of concerns”, the process level is sensitive to job-
creating measures that are suited to keep the technical
side running while the processor level is sensitive to
energy saving or excessive heat, respectively, and aims
at slowdown strike or even dead-time. These different
characters are reflected in two dedicated actions: QUEST

for process level (Fig. 13(a)) and RELAX for processor
level (Fig. 14(c)). Process-level idle-loop control has
been extensively discussed above. At this point, the inter-
action with the processor level shall be in the foreground.
Key aspect thereby is to overcome a race condition that
may cause process-level idle-loop control from shutting
down operation.

9Assuming that state is represented in C and as a structure of
bit fields of eight bits (i.e., a byte) each. The union operator (∪)
then is compiled to an atomic memory byte-store operation. Same
holds for the difference operator (\). Reading the whole state set
while simultaneously writing one of its set members then delivers
a consistent value according to the given memory model. If this
model, however, appears to be too weak for the intended semantics
of the particular ∀-operator, then a suitable atomic read-modify-write
instruction must be used instead.



It must be pointed out that the idling cycling of a
processor is abrogated only by means of external pro-
cesses. These processes are meant to occur somewhere
but not on the idling processor itself. Cases in point
are input-output operations carried out by peripherals or
state changes caused by other processors (cores) in a
shared-memory computing system. A general approach
to cancel the idle state is by means of an interrupt
request triggered by the external process. This model
is assumed in POSE. Another and complementing ap-
proach, particularly suited for multi-core processors, is a
store action afar that targets a monitored shared-memory
address range at which a processor core is waiting
(i.e., a MONITOR/MWAIT-controlled range on the basis
of Intel SSE3). Anyway, idle-loop control acts on the
assumption that in the wake of an action of a particular
external process some internal process may have been
made available, thus, switched over to ready-to-run state.
Therefore, once returning from RELAX the pool of ready-
to-run candidates is scanned (by ELECT) on the order of
QUEST (Fig. 13(a)).

For each processor a flag is used to indicate whether or
not shutdown may become effective. That flag is cleared
by instruction of QUEST (line 13(a).4) and checked by
RELAX (line 14(c).3). Using LABEL (Fig. 14(b)), the
flag is typically set by the first-level interrupt handler
(FLIH) of the operating system—or a suitable signal
handler in case of a guest-level system. If that flag has
not been set since nil return of ELECT and recognition of
this fact within QUEST (line 13(a).6), then it is assumed
that no interrupt handler was executing and, as a conse-
quence of this, no process was made available. In that
case, the processor can be made idling (lines 14(c).4–
5). Otherwise, processor-level idle-loop control (RELAX)
immediately returns to process-level idle-loop control
(QUEST) to facilitate selection of a possibly ready-to-
run process. Obviously, the whole sequence of actions
from checking the flag until switching into standby mode
(lines 14(c).3–5) discloses a potential race condition.
Therefore, precaution is taken that the cause of this
race condition cannot occur: the processor runs with all
interrupts disabled during that critical section.

Although generally a poor solution due to the risk
of missing hardware signals, there is no way around
disabling interrupts in that particular situation—unless
the real processor would provide such simple low-level
features for idle control (Fig. 14) or one has a good
mind to do “hacking” of the program counter saved
by the processor with interruption. Alternatives are also
imaginable: for instance, attend making a ready-to-run

process available (e.g., READY) always by calling LA-
BEL. Such lifting to process level is reasonable in cases
where processes can be made available by actions of
other processors in a parallel system, for example when
calling PROVE (Fig. 7(a)) from within a direct-result
guarded region controlled by a sequencer that owns a
private processor core for order processing. But even
this will not supersede interrupt-controlled termination
of the idling cycle of a processor, as an additional inter-
processor interrupt (IPI) may be necessary to indicate
process availability if the respective processor already
has stopped (line 14(c).5).

G. Process Switching

Investigation of a run-time support system for guarded
sections would have been incomplete without paying
regard to processor dispatching, especially against the
background of shallows due to race conditions that may
occur at different levels of abstractions. The process
switch is such another neuralgic spot. This central func-
tion needs to update (at least) two data structures in the
broader sense, namely (1) the pointer to the current pro-
cess instance and (2) the current processor status. Given
state of the art hardware, this update is not an elementary
operation and, thus, divisible in time. In unfavourable
conditions and without suitable precautionary measure,
the processor status of the physically current process
could be associated with the wrong process instance.

The trick to overcome this potential race condition is
to derive the process pointer of the current (i.e., running)
process from the stack pointer (SP). Assuming that (1)
the per-process stack is allocated to a memory partition
of fixed size s of a power of two, (2) the numerical value
of the memory address of this partition is an integer
multiple of s and (3) the per-process PCB is located
at start of that partition. Then, process pointer p of the
current process can be computed by a simple arithmetic-
logical operation (i.e., two’s complement AND) from the
current value of the SP as follows:

p = <SP> & −s. (1)

If the operating system in charge of process management
is based on a so called process-based kernel where sev-
eral kernel-level threads exist and each of those threads
owns a private stack, then a process switch technically
means a kernel-stack switch by simply swapping the
contents of the SP register of the underlying processor.
By mapping the PCB in this manner, the race condition
of a process switch can be prevented if the programming
model of the processor makes reading and writing of that



1: function BEING(name)
2: if name = ONESELF then
3: return <SP> & PCBMASK
4: end if
5: task ← N2P [name mod NPROC]
6: if task.name = name then
7: return task
8: end if
9: return 0

10: end function
(a) Process-instance pointer.

1: function SEIZE(task)
2: this← BEING(ONESELF )
3: if task 6= this then
4: this.state← ∀(this.state \ {RUNNING})
5: this.status← SHIFT(task)
6: task.scope← CPU

7: end if
8: GAUGE(task)
9: return this . last process

10: end function
(b) Process-instance switch.

1: procedure GAUGE(task)
2: task.state← {RUNNING}
3: end procedure

(c) Process-instance calibration.

Fig. 15. Processor dispatching.

register an elementary operation—which is the case for
contemporary hardware. Fig. 15(a) shows this solution
(line 15(a).3), with PCBMASK being equal to −s
according to formula (1). Selection of a PCB “by name”
(line 15(a).5) is non-critical and uses a mapping table of
process pointers (N2P , “name to process instance”).

Alternative is to have the PCB located at the end of the
respective (per-process) memory partition, that is to say,
as initial local variable on top of a “virgin” push-down
stack. In this case, computation of the process pointer
involves the following steps subsequent to (1):

p′ = p + s− sizeof(PCB). (2)

While former solution (1) is sufficient under the assump-
tion that a worst-case stack usage (WCSU) will never
be exceeded by a process, latter solution (2) acts on the
assumption that potential stack overflow can be detected
by the underlying processor (e.g., by using a memory
protection or management, resp., unit). In other words,
solution (1) depends on a priori knowledge and static
program analysis in order to determine the largest (power

1: function SHIFT(cor)
2: memory[<SP>--]← processor status
3: aux← RESUME(cor, TRUE)
4: processor status← memory[<SP>++]
5: return aux
6: end function

(a) Stack-based context switch.

1: function RESUME(cor, process-based)
2: if process-based then . switch stack pointer
3: aux← <SP>
4: <SP>← cor
5: else . switch return address
6: aux← memory[<SP>]
7: memory[<SP>]← cor
8: end if
9: return aux

10: end function
(b) Stack-based coroutine switch.

Fig. 16. Problem-oriented switching of flows of control.

of two) s that could be generated by any process in
the system. In contrast, solution (2) complies with an
average value of s for all processes and considers stack
overflow as exceptional but tolerable infrequent case.

Last but not least, the lowest level of process switching
regards the processor-dependent actions needed to sus-
pend and resume the particular control flow that makes
up a process. The basic instrument used for the given
case is the coroutine. In the following two different views
are taken. At lowermost level, namely in terms of the
program counter (PC), the coroutine is considered on
a par with a normal routine: (1) only the PC is saved
and restored in the course of a call and (2) the stack is
used for safeguarding. Further registers constituting the
processor status will be saved/restored by each routine
or coroutine, respectively, on its own and as needed.
As with routines, this function of context backup is
considered a minimal extension to PC backup and han-
dled separately depending on the particular requirements
of a coroutine. The latter makes up the higher-level
view of being able to manage coroutine-specific contexts
of different sizes in a problem-oriented manner, while
having the same lower-level view of switching between
coroutines in common.

In operating systems, stack-dependent safeguarding of
a coroutine status is typical for process-based kernel.
The alternative would be an event-based kernel that only
supports a single kernel-level thread and, thus, stack. In
that case, several coroutines would have to share the



same kernel stack and the PC—instead of the SP as with
a process-based kernel—needs to be safeguarded directly
by some PCB-linked coroutine descriptor. The different
models are suggested in Fig. 16(b).

Assuming a stack-based processor as well as run-time
model for the programming language used, execution of
a suspended coroutine is resumed as shown in Fig. 16(b).
A call of the RESUME function implicitly saves the
contents of the PC on top of the current stack, which in
turn belongs to the coroutine that intends to relinquish
processor control. The SP value identifies the memory
address where the PC contents was stored. In further
course of a process-based model (lines 16(b).3–4), the
function body then simply switches stacks and returns
the SP contents of the coroutine having made the call.
Otherwise, the event-based model is assumed and the
return address of RESUME gets switched (lines 16(b).6–
7).10 Any way, the return value becomes actual parameter
of a future call of RESUME in order to continue the
coroutine suspended in this minute. Note that only in
the process-based model happens function return und,
thus, restore of the PC contents from the stack that has
been put on just now.

In contrast to this lowest level, Fig. 16(a) describes a
coroutine changeover accompanied by a context switch.
Before calling RESUME, the stopping coroutine saves
its processor status onto its stack (line 16(a).2). After
return from RESUME, the starting coroutine restores its
processor status from its stack (line 16(a).4). Thus, every
coroutine is in charge of saving/restoring its own context.
In other words, a coroutine is unaware of structure and
size of the context of another coroutine but, nonetheless,
is capable of resuming execution of the latter.

Reflection on the calling hierarchy starting with SEIZE

as the root shows an important optimisation opportunity
when it comes to a concrete implementation of the
discussed algorithms. This approach considers stream-
lining options for coroutine switching10 in a broader
scope and translates these particularly as to the relevant
calling sequence: SEIZE→ SHIFT→ RESUME. Note that
each process switch eventually happens through a call
of SEIZE. Also note that the POSE variant discussed
here follows the model of a process-based operating-
system kernel. Bearing this in mind, realisation of SHIFT

10Particularly for the event-based model, an even more streamlined
solution becomes possible if one relies on or enforces function
inlining. In that case, the following two actions are merely needed to
perform the coroutine switch: (1) save the address of the next but one
instruction—that exactly follows action two—into placeholder aux
and (2) jump to the address specified by argument cor.

READY PENDING

READY
BLOCKED

RUNNING
READY

BLOCKED

RUNNING
BLOCKED

RUNNING
READY

BLOCKED RUNNING

ELECT/9

STAKE/8

BLOCK/8
STAKE/10
REFIT/9

BLOCK/3

READY/4
READY/6
REFIT/8
STAKE/9

BLOCK/3

READY/7
BLOCK/8

BLOCK/8

READY/4

READY/4

READY/7

Fig. 17. Non-redundant process states and state transitions. The
dotted arrow indicates an instantaneous state change, while the dashed
arrow stands for special measures to control priority inversion.

and RESUME each as inline function on the one hand
removes unnecessary overhead as to subroutine man-
agement (i.e., parameter passing, call, activation-record
allocation/deallocation, and return). On the other hand,
this measure implies the upward propagation of stack
switching from the level of RESUME (lines 16(b).3–4)
to the level of SEIZE. If the actual compiler used is
incapable of automatic optimisation in this regard, it is
worth giving thought to semi-automatic or even manual
measures—subject to the condition that the system-
programming language used provides adequate linguistic
support (such as C).

H. State Transitions

Both as summary but also complement, Fig. 17 gives
an overview of the (composite) process states that where
addressed in the excursus so far. In addition, the state
diagram shows the transitions that a process either per-
forms oneself or effectuates for other processes. The
corresponding edges are labeled with (1) the name of
the operation in the context of which the state transition
takes place and (2) the number of the belonging program
line that contains the respective state-transition action.
By way of example refers ELECT/9 to the CAS operation
by means of which a process is removed from the pool
of ready-to-run candidates (cf. Fig. 13(b), line 9).

The nodes are labelled with substate names, whereby



each of those names stands for a member of the set union
that makes up a process state. In multi-member cases, the
substates of a particular node are listed in decreasing
dominance concerning process selection in the course of
processor allocation. The four nodes forming the vertices
of the state diagram denote principal process states:

1) READY , made available,
2) PENDING, selected for resumption,
3) RUNNING, proceeding on a processor, and
4) BLOCKED, awaiting an event.

The residual nodes represent subsidiary process states
that help making a non-blocking and, above all, wait-
free synchronised system become a reality.

Initial state of a schedulable process is READY , indi-
cating that all (consumable or reusable, resp.) resources
needed by the process to start, continue, or finish (i.e., to
proceed) are available except the processor. If selected,
the process is PENDING with some processor and
will soon proceed, that is, switched on. A pending
process will not be selected again before its next cycle.

A process is absolutely suitable for processor allo-
cation if READY is either single or topmost item on
the per-node list of substates. In contrast, a process is
only suitable to a limited extent if such a composite
state comprises subset {RUNNING,READY }, here
with leftmost meaning topmost. Substate RUNNING
dominates substate READY in that case—which ap-
pears to be logical: resumption of a running process is
effectless in functional terms and, thus, implies nothing
but overhead in non-functional terms. However, in order
to resolve certain race conditions (particularly the lost-
wakeup problem, cf. Sec. A-D) it might be necessary
to select even such a process. Similar holds in case of
the set union {RUNNING,READY,BLOCKED}
of a composite state, which denotes a blocking (i.e.,
still running) process whose (1) waiting condition was
invalidated in the meantime but (2) processor release did
not yet became effective. This state is typical for the
idle process, that is, when no ready-to-run candidate is
available at the time the current process passed into state
{RUNNING,BLOCKED} and, while persisting in
that state, became ready to run again.

Substate RUNNING is, in union with substate
READY , of particular importance for the selection
procedure. Basically, a ready-to-run process is eligible
for resumption on any processor in a homogeneous or
symmetrical, respectively, multi-processor/core system.
Exception is when such a process also owns substate
RUNNING. In this situation, processor/core allocation
must be rejected as to the respective process except for

the processor/core on which this very process currently
proceeds. Otherwise that process becomes erroneously
duplicated on several processors. Typical example is,
again, the idle process. This very process controls the
idle loop on a particular processor and, thus, is consid-
ered to be immovable for this period. Process selection
cares about such a scenario and, therefore, takes the lo-
cality (i.e., “execution scope”) of a process into account
for its decision (cf. Fig. 13(b), line 8).

I. Progress Guarantee

As was shown, most POSE actions are free of loops
and will perform in almost constant time. There are
only two exceptions to this: (1) process selection by
means of ELECT (Fig. 13(b)) and (2) process-level idle
loop control by means of QUEST (Fig. 13(a)). Process
selection is table-based. As the table has a static size,
the table walk in order to select the next ready-to-run
process is bounded in time and, thus, is constrained by
a predictable WCET using static program analysis.

Process-level idle loop control is a different matter.
At first sight, Fig. 13(a) shows an apparently unbounded
loop: the search for a ready-to-run process terminates
only if ELECT returned a valid process pointer. But such
a behaviour is indispensable for any operating system in
the absence of run capable processes. In this particular
situation of the idle loop, only external processes will
cause further progress of internal processes. At nary a
point in the programs of Fig. 10–16 are to be found
instructions that influence external processes and, thus,
might have feedback on internal processes. This feedback
loop is entirely under control of the application pro-
grams. Consequence of which is that, from the systems
level point of view, the execution time of QUEST is
bounded by the WCET of ELECT.

ACKNOWLEDGMENT

This work was supported by the German Research
Foundation (DFG) under grants no. SCHR 603/8-1, /10-
1, /13-1, and the Transregional Collaborative Research
Centre Invasive Computing (SFB/TR 89, C1). We also
thank Benjamin Oechslein as creative director of “on-
the-fly contexts” (Sec. III-C) as well as Timo Hönig and
Daniel Lohmann for helpful commentaries on the paper.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick, “The landscape of parallel
computing research: A view from Berkeley,” Electrical Engi-
neering and Computer Sciences, University of California at
Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec. 2006.



[2] J. L. Manferdelli, N. K. Govindaraju, and C. Crall, “Challenges
and opportunities in many-core computing,” Proceedings of the
IEEE, vol. 96, no. 5, pp. 808–815, May 2008.

[3] N. Abramson, “The ALOHA system: Another alternative for
computer communication,” in Proceedings of the Fall Joint
Computer Conference (AFIPS ’70). New York, NY, USA:
ACM, 1970, pp. 281–285.

[4] A. Agarwal and M. Cherian, “Adaptive backoff synchronization
techniques,” in Proceedings of the 16th Annual International
Symposium on Computer Architecture (ISCA ’89). New York,
NY, USA: ACM, 1989, pp. 396–406.

[5] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free
synchronization: Double-ended queues as an example,” in Pro-
ceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS 2003), May 19–22, 2003, Provi-
dence, Rhode Island, USA. IEEE Computer Society, 2003, pp.
522–529.

[6] M. Herlihy, “Wait-free synchronization,” ACM Transactions on
Programming Languages and Systems, vol. 11, no. 1, pp. 124–
149, Jan. 1991.

[7] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström, “The worst-case execution time problem—overview of
methods and survey of tools,” ACM Transactions on Embedded
Computing Systems, vol. 7, no. 3, Apr. 2008.

[8] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev,
and J. H. Anderson, “Real-time synchronization on multi-
processors: To block or not to block, to suspend or spin?”
in Proceedings of the 2008 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’08). IEEE
Computer Society, 2008, pp. 342–353.

[9] T. David, R. Guerraoui, and V. Trigonakis, “Everything you
always wanted to know about synchronization but were afraid to
ask,” in Proceedings of the 24th ACM Symposium on Operating
System Principles (SOSP 2013), M. Kaminsky and M. Dahlin,
Eds. New York, NY, USA: ACM, 2013, pp. 33–48.

[10] T. E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 1, no. 1, pp. 6–16, Jan.
1990.

[11] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Transactions on Computing Systems, vol. 9, no. 1, pp.
21–65, Feb. 1991.

[12] S. Ramamurthy, “A lock-free approach to object sharing in real-
time systems,” Ph.D. dissertation, University of North Carolina,
Department of Computer Science, Chapel Hill, 1997.

[13] B. J. H. Liskov, “Primitives for distributed computing,” in
Proceedings of the Seventh Symposium on Operating System
Principles (SOSP 1979), December 10–12, 1979, Pacific Grove,
California, USA. ACM, 1979, pp. 33–42.

[14] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collec-
tion of processes,” in Proceedings of the 1977 ACM Symposium
on Artificial Intelligence and Programming Languages, J. Low,
Ed. New York, NY, USA: ACM, 1977, pp. 55–59.

[15] B. W. Lampson and D. D. Redell, “Experiences with processes
and monitors in mesa,” Communications of the ACM, vol. 23,
no. 2, pp. 105–117, Feb. 1980.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, Sep.
1990.

[17] T. P. Baker, “A stack-based resource allocation policy for
realtime processes,” in Proceedings of the 11th IEEE Real-Time
Systems Symposium (RTSS ’90). IEEE Computer Society, 1990,
pp. 191–200.

[18] A. Kogan and E. Petrank, “Wait-free queues with multiple
enqueuers and dequeuers,” in Proceedings of the 16th ACM
SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (PPoPP ’11). ACM, 2011, pp. 223–
234.

[19] D. P. Friedman and D. S. Wise, “The impact of applicative
programming on multiprocessing,” in Proceedings of the In-
ternational Conference on Parallel Processing (ICPP 1976).
Piscataway, NJ, USA: IEEE Computer Society, 1976, pp. 263–
272.

[20] E. W. Dijkstra, “Cooperating sequential processes,” Technische
Universiteit Eindhoven, Eindhoven, The Netherlands, Tech.
Rep. EWD-123, 1965, (Reprinted in Great Papers in Computer
Science, P. Laplante, ed., IEEE Press, New York, NY, 1996).

[21] R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean,
“Using continuations to implement thread management and
communication in operating systems,” in Proceedings of the
Thirteenth ACM Symposium on Operating System Principles
(SOSP ’91). ACM, 1991, pp. 122–136.

[22] M. M. Michael, “Hazard pointers: Safe memory reclamation
for lock-free objects,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 6, pp. 491–504, 2004.

[23] E. W. Dijkstra, “Guarded commands, nondeterminacy and for-
mal derivation of programs,” Communications of the ACM,
vol. 18, no. 8, pp. 453–457, Aug. 1975.

[24] C. Pu and H. Massalin, “An overview of the Synthesis operating
system,” Department of Computer Science, Columbia Univer-
sity, New York, NY, USA, Tech. Rep. CUCS-470-89, 1989.

[25] W. Schröder-Preikschat, The Logical Design of Parallel Oper-
ating Systems. Upper Saddle River, NJ, USA: Prentice Hall
International, 1994.

[26] F. Schön, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk, “On interrupt-transparent synchronization in an
embedded object-oriented operating system,” in Proceedings of
the Third IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2000), I. Lee,
J. Kaiser, T. Kikuno, and B. Selic, Eds. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 270–277.

[27] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining
and the synchronization-parallelism tradeoff,” in Proceedings
of the Twenty-Second Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’10), G. Blelloch and
K. Agrawal, Eds. New York, NY, USA: ACM, 2010, pp. 355–
364.

[28] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller,
“Remote core locking: Migrating critical-section execution to
improve the performance of multithreaded applications,” in
Proceedings of the 2012 USENIX Annual Technical Conference
(USENIX ATC’12), G. Heiser and W. Hsieh, Eds. Berkeley,
CA, USA: USENIX Association, 2012, pp. 65–76.

[29] A. N. Habermann, L. Flon, and L. W. Cooprider, “Modu-
larization and hierarchy in a family of operating systems,”
Communication of the ACM, vol. 19, no. 5, pp. 266–272, May
1976.

[30] D. L. Parnas, “Some hypothesis about the “uses” hierarchy
for operating systems,” TH Darmstadt, Fachbereich Informatik,
Tech. Rep. BSI 76/1, Mar. 1976.


