
Guarded Sections:
Structuring Aid for Wait-Free Synchronisation

Gabor Drescher, Wolfgang Schröder-Preikschat
Department of Computer Science

School of Engineering

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Email: {drescher,wosch}@cs.fau.de

Abstract—This paper is about a novel approach of organising
non-sequential programs to the benefit of wait-free synchroni-
sation. Other than critical sections, processes never block at
entrance to a guarded section although only one process at a
time is allowed to pass through. Competing processes are forced
into bypass but, if necessary and by using futures, they can
synchronise on concurrent state changes. In consequence, the
execution model constrains the overlapping pattern of interacting
(simultaneous) processes. Thereby, in the downstream transac-
tional stage, efficient wait-free synchronisation of the “guarding
operations” is gratifying by-product. First experimental results
made with a 80-way multi-core system show that non-blocking
wait-free synchronised guarded sections outperform MCS-locks.

I. INTRODUCTION

Enforcement of scheduling decisions is an important aspect
in any computing system, but of vital requirement for real-time
computing systems. A critical interference factor in this regard
is (1) synchronisation of simultaneously interacting processes
and (2) contention resolution. In case of mutual exclusion for
blocking (multilateral) synchronisation, the former is prone
to priority inversion. As a matter of principle, non-blocking
synchronisation is free of this problem and, thus, makes
counteractive measures [1] such as non-preemptive critical
sections, priority inheritance, or (stack-based) priority ceiling
protocols unnecessary due to absence of “non-preemptive
reusable resources” in shape of conventional critical sections.

Both of the above-mentioned factors may cause priority
violation because of the waitlist of blocked processes asso-
ciated with each critical section or retry of an atomic read-
modify-write instruction (e.g., TAS or CAS), respectively.
While management of the critical-section waitlist can be easily
adapted to the processor waitlist maintained by the process
scheduler, corresponding measures as to contention resolution
are difficult. For the latter, a backoff [2] is common to disperse
repeated execution of an atomic instruction. All these methods
result in a serialisation of processes according to arrival time
at the “hot spot.” Similar holds for queueing locks [3]. They
all interfere with real-time scheduling disciplines.

Only wait-free synchronisation [4] enables processing free
of interference—but this synchronisation method is no walk
in the park. In a number of cases, wait-free synchronisation
largely benefits from helping schemes [5]. Normally, these
schemes rely on the cooperativeness of interacting processes
in order to complete a certain operation in finite time. A
supportive measure can be a “software architecture” that forces

interacting processes into a dedicated overlapping pattern and,
thus, founds the basis for simpler synchronisation protocols.
As explained next, the concept of guarded sections follows
such a constructional approach. Besides providing a general
structuring aid for non-sequential programs, this concept also
provides a migration path towards wait-free synchronisation
as it becomes easily amenable to complex software structures,
particularly legacy software.

II. DESIGN

In structural respect, guarded sections are not unlike
conventional critical sections but as to its flow model very
different. Key aspect is that a process never blocks incoming a
guarded section, though its request to pass through that section
may be delayed. Roughly speaking, the model comes up to a
conditional fire-and-forget pattern of orders to execute a par-
ticular program section in a sequential (i.e., non-overlapping)
mode. Depending on the (application-specific) function of this
program section, different types of guarded sections exist: non-
blocking, direct-result, and explicit-blocking.

For lack of space, in the following only non-blocking
guarded sections are discussed. Direct-result and explicit-
blocking guarded sections are presented in a supplemental
publication [6], in addition to a discussion about an implemen-
tation sketch of a dedicated and deterministic run-time support
system of time-predictable characteristic.

A. Non-Blocking Guarded Sections

The basic configuration assumes run-to-completion pro-
cesses inside a guarded section. Suchlike processes are free
from self-induced wait states as to the possible non-availability
of reusable or consumable resources, but they are subject
of preemption by high-priority processes. Thus, according
to instructions, run-to-completion processes will never block
inside a guarded section. Fig. 1 shows this basic model.

In the flowchart (Fig. 1(a)), requester stands for the process
approaching a guarded section and having order to execute
a critical section. Make out order (line 1(b).1) as an object
that specifies the “actual parameters” of a particular cycle
(line 1(b).3) of a guarded critical section. The guard takes
care of “traffic control” as to that section. If inactive, the
requester is allowed to pass through, thus, activate the guard,
occupy the guarded section and handle the order (line 1(b).3).
In case of an active guard, the requester’s order gets queued
and the requester itself is forced to bypass the guarded critical

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORC.2015.17

280

critical section

sequencer

guard
requester

guarded section

queue

(a) Flowchart.

1: if (task ← VOUCH(guard, order)) �= 0 then
2: repeat � sequential part
3: handle(task)
4: until (task ← CLEAR(guard, TRUE)) = 0
5: end if

(b) Sample: adopting role as a sequencer.

Fig. 1. Non-blocking guarded section.

section. All steps necessary for requester control are executed
by VOUCH (line 1(b).1), whose return value is a reference
(task) to the order that shall be processed next.

At the end of a guarded critical section, the occupying
process checks the queue for pending orders. If the queue is
filled, that process removes the next order from the queue and
handles it on behalf of the process having originally ordered
critical-section execution. That is, the particular process oc-
cupying a guarded section takes the role of a sequencer for
pending orders as long as the guard queue is filled. Sequencer
control is the function of CLEAR (line 1(b).4), whose return
value is a reference to the order that shall be processed next.

In this processing model, only a single process, namely
the sequencer, is in charge of removing orders from the
guard queue. But not on the input side, where many requester
processes may add orders to that queue. Thus, the guard queue
is invariably accessed in a multiple-enqueue/single-dequeue
style, which significantly eases wait-free solutions (cf. Sec. III)
when compared to more general answers [5].

Obviously, any sequencer potentially incurs a delay de-
termined by the number and individual processing time of
orders pending in the guard queue. That means, a process
passing through a guarded section can be held up in mak-
ing further progress depending on the incidence of other
processes simultaneously approaching this very section. This
corresponds to lock-free synchronisation of a guarded critical
section although underneath of it the “guarding operations” are
carried out in wait-free manner: thus, a sequencer is prone to
starvation. But, on the other hand, with prioritised real-time
processing assumed all these orders must have been issued by
high-priority processes: none of these high-priority processes
was blocked. In priority-based systems, low-priority processes
always are subject to starvation.

Depending on the guard configuration, a high-priority
process (1) occupying a guarded section and (2) having pre-
empted a low-priority process in the course of clearing a yet
filled guard queue (cf. Sec. III-B) can refuse role adoption
of a sequencer and, thus, never would be delayed because of
order processing. For low-priority processes, the guard queue
contains as many orders as could have been issued by a high-

1: function VOUCH(guard, order)
2: ENQUEUE(guard, order)
3: task ← 0
4: if FAS(guard.flag, 1) = 0 then
5: task ← DEQUEUE(guard)
6: end if
7: return task
8: end function

(a) Entry protocol: reception inspection and filling of the guard queue.

1: function CLEAR(guard, adopt)
2: guard.flag ← 0
3: task ← 0
4: if adopt then � take a part as sequencer
5: if ¬EMPTY(guard) then
6: if FAS(guard.flag, 1) = 0 then
7: task ← DEQUEUE(guard)
8: end if
9: end if

10: end if
11: return task
12: end function

(b) Exit protocol: final inspection and emptying of the guard queue.

Fig. 2. Sequence control of guarded sections.

priority process. In not a few cases, the potential delays for
low-priority processes can be computed and bounded above
based on preliminary knowledge as to the process organisation
and priority mapping of the given real-time application.

III. IMPLEMENTATION

A dynamic and a static variant of guarded sections were
implemented in a completely wait-free manner. The former
allows for any number of processes (e.g., in terms of threads)
and future objects, its implementation is shown in Fig. 2.

A. Sequence Control

VOUCH implements the entry protocol, which maintains
a linked-list of order objects (line 2(a).2). The atomic fetch-
and-store (FAS)1 instruction in line 2(a).4 ensures that only
one process at a time enters and occupies the guarded section.
The respective occupant receives the initial set of parameters
(task), all other competing processes get 0 on return and will
bypass the guarded section (cf. line 1(b).1).

CLEAR implements the exit protocol. In line 2(b).2 the
guard is released, followed by checks for becoming sequencer
and an empty guard queue (lines 2(b).4–5). If the queue is
filled, the current process (now no longer occupant) attempts
to reoccupy the section by means of FAS. In case of success,
this very process becomes sequencer: the next task is retrieved
from the queue and the outer guard-loop continues (cf. line
1(b).4). Otherweise, some other process entered the guard and,
maybe, will be in charge of further order sequencing.

B. Race Hazard

Overlapped execution of the entry and exit protocols
against the background of such processing patterns has po-
tential of the lost-update problem, the prevention of which

1GCC intrinsic function __sync_lock_test_and_set(ref, val).

281

1: dummy.next← 0
2: head← ref dummy
3: tail← ref dummy

(a) Queue initialisation.

1: procedure ENQUEUE(item)
2: item.next← 0
3: prev ← FAS(tail, item)
4: prev.next← item
5: end procedure

(b) Add element to the queue (FIFO).

1: function DEQUEUE

2: item← head
3: next← head.next
4: if next = 0 then
5: return 0
6: end if
7: head← next
8: if item = ref dummy then
9: ENQUEUE(item)

10: if head.next = 0 then
11: return 0
12: end if
13: head← head.next
14: return next
15: end if
16: return item
17: end function

(c) Remove element from the queue (FIFO).

1: function EMPTY

2: return head.next = 0
3: end function

(d) Check for drained queue.

Fig. 3. Multiple-enqueue/single-dequeue wait-free synchronised queue.

needs special care. A lost-update may occur when an enqueued
item is ignored and no process executes the outer guard-loop.
The implementation shown in Fig. 2 effectively prevents this
problem. All processes executing VOUCH first enqueue their
order and strictly after that try to set the guard flag. On the
sequencer side, that is within CLEAR, the flag is first reset and
then the queue is checked: reverse order would make it possible
to have a refilled queue although the check indicated an empty
queue. Either an enqueuing process enters the guarded section
by oneself and dequeues the next order or the sequencer notices
that the queue is not empty before trying to set the flag.

C. Queue Operations

As mentioned before, the specific processing pattern of
guarded sections supports a wait-free synchronised queue.
This pattern causes a multiple-enqueue/single-dequeue mode
of operation. Fig. 3 shows the corresponding queue operations.
Enqueuing (lines 3(b).2–4) follows the same pattern as the
MCS queue-based lock [3] and uses FAS. To prevent spinning
in the dequeue operation, as with the MCS algorithm, a
novel dequeuing technique is used. This technique relies on a
dummy element in the queue. An empty queue therefore always
contains a single element. In DEQUEUE, the head pointer is
advanced if the head element is followed by another element.
Lines 3(b).8–15 take special care for a possibly dequeued

dummy element, which is simply enqueued again if need be
(line 3(c).9). Afterwards, if the queue is still filled, head is
advanced to it and the old head-pointer value is returned.

As there is always exactly one dequeuer, only race con-
ditions with respect to simultaneous enqueue operations have
to be investigated. The critical machine word that might be
accessed simultaneously is the link pointer in the last item.
Critical statement in ENQUEUE is line 3(b).4, while lines 3(c).3
and 3(c).10 make up the critical DEQUEUE statements. In both
cases the value read is used to determine if the queue is empty.
Assuming atomic write operations, the dequeuer will see either
an empty queue and return or the next valid item. As writing
to the link pointer is really the last operation in ENQUEUE, the
dequeuer will never see an invalid item. Further, no dequeue
will be performed if not at least two elements are in the queue
(e.g., dummy plus useful item). Therefore, no data will be
written to already dequeued elements that, thus, can be freed
immediately. This eliminates the need for hazard pointers [7]
or garbage collection. As can be seen, the discussed entry and
exit protocols (incl. the queue operations) are completely wait-
free as all actions are bounded in time.

D. Alternative Solution

In the static variant, the ENQUEUE and DEQUEUE oper-
ations map to bit operations on a fixed-length bitset, where
the bit position is derived from the process identification.
The necessary bit operations are carried out by using atomic
OR/AND processor instructions. As a consequence, the pro-
vided algorithms are also wait-free in the static case. Besides
the outer guard-loop, no further loops are used and only a
single atomic bit-instruction is carried out per queue oper-
ation. As the present dynamic variant is limited to FIFO-
order, scheduling interference may occur. This is not the case
with the static variant, which namely implements a priority-
based protocol. Thereby, the priority of a request to pass a
guarded section corresponds to the bit position derived from
the process identification and, thus, reflects the process priority
The passage request with highest priority will be executed first.

IV. EVALUATION

As a proof of concept, prototype guarded sections are
currently made available as guest-level implementation above
Linux. The overhead of contended and uncontended guarded
sections were measured. Timings include direct-result and non-
blocking guarded sections, dynamic and static variants. Due to
the lack of blocking critical sections, blocking guarded sections
were not evaluated. The static configuration employs priority-
based execution of requests. Measurements were performed
on a 80 core Intel Xeon E5-4640v2 server running at 2.2 GHz
partitioned into four cache-coherent sockets with 10 physical
or 20 logical cores (through hyper-threading), each.

Since POSIX-semaphores induce a very high overhead,
receive of signals as to future objects was done by spinning. As
a frame of reference, numbers for the MCS spin-lock [3] are
given. These locks shall perform well under high contention.
Table I shows the overhead for uncontended acquisition and re-
lease of a guarded section and respectively a MCS lock/unlock
pair. The critical section itself was void. Processor cycles were
averaged over 105 executions with hot caches.

282

TABLE I. BASIC OVERHEAD, UNCONTENDED CASE.

Algorithm Cycles
Dynamic 128
Dynamic NB 116
Static 84
MCS-Lock 39
Read-Spinlock 39

Measurements were also performed for high-contended
cases using up to 64 processing elements (i.e., cores), as the
implementation of the static variant allows for exactly that
maximal number of processes. Fig. 4 shows the results in
number of cycles. In general, performance decreases dramati-

0 10 20 30 40 50 60 70
0

20000

40000

60000

Number of Cores/Threads

E
x
ec

u
ti

o
n

C
y

cl
es

Dynamic

Dynamic NB

Static

MCS-Lock

Read-Spinlock

Fig. 4. High contended case, range 1:64 cores.

cally for high contention in all cases. Especially when crossing
socket boundaries, where an abrupt rise of the number of cycles
can be stated 10 cores off. This boost is known from earlier
experiments in which hyper-threaded cores were allocated first
before allocating processors/cores on a different socket. The
overhead seems to be very similar and is within measurement
accuracy.

As can be observed, the overheads for the dynamic and
static variants, when directly awaiting the result of the guarded
section, are higher compared to the MCS-lock version. How-
ever, one has to keep in mind that guarded sections are not
only a drop-in replacement for locks but rather provide all the
benefits mentioned as to non-blocking synchronisation. MCS-
lock is a blocking technique and, thus, does not feature any
of these properties. Contrariwise, the non-blocking dynamic
variant employs the best performance, since no process has
to wait on results and processes are either enqueuing further
orders or execute requests in sequence. The static non-blocking
variant could not easily be measured under high contention,
because the number of requests is limited to the number of
processs and therefore no high contention scenario can be
generated for thousands of iterations. However, as the direct-
result version of the static variant is faster than the dynamic
variant, similar behavior can be expected in the non-blocking
high-contention case.

V. CONCLUSION

The uniqueness of guarded sections is that processes never
block at entrance to a critical region although only one process
at a time is allowed to pass through. Requests for passing a
guarded section though are processed in serial manner, but not
necessarily the processes that issued these requests. This is the
fundamental difference to conventional critical sections, where
mutual exclusion is realised in a way that bestows any process
a potential delay at critical-section entrance.

Guarded sections are a means to an end, namely to in-
crease parallelism in non-sequential programs of legacy but
also “from scratch” new software. Blocking of processes
is reduced to logical/conditional synchronisation and, thus,
happens exclusively unilateral according to the data flows
between the processes. The absence of multilateral blocking
synchronisation is to the best advantage for real-time systems,
above all of those that follow an event-triggered mode of
operation. All platform operations used for the implementation
of guarded sections are void of priority violation and inversion.
Direct consequence therefrom is improved predictability not
only of the system software but also application programs.

Run-time system support for guarded sections is still in
its infancy [6], just as an operating system built around that
concept. First experiments on a 80-way multi-core system
are encouraging that guarded-section based software systems
achieve predictable performance as to the properties of the
underlying hardware. Besides tuning, future work focusses on
sequencer “off-loading” to spare processor cores and real-time
capable energy-awareness of the guarding operations.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) under grants no. SCHR 603/8-1, /10-1, /13-1,
and the Transregional Collaborative Research Centre Invasive
Computing (SFB/TR 89, C1). We also thank Benjamin Oech-
slein and Timo Hönig for helpful commentaries on the paper.

REFERENCES

[1] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[2] A. Agarwal and M. Cherian, “Adaptive backoff synchronization tech-
niques,” in Proceedings of the 16th Annual International Symposium on
Computer Architecture (ISCA ’89). New York, NY, USA: ACM, 1989,
pp. 396–406.

[3] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Transactions
on Computing Systems, vol. 9, no. 1, pp. 21–65, Feb. 1991.

[4] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Program-
ming Languages and Systems, vol. 11, no. 1, pp. 124–149, Jan. 1991.

[5] A. Kogan and E. Petrank, “Wait-free queues with multiple enqueuers
and dequeuers,” in Proceedings of the 16th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming (PPoPP
’11). ACM, 2011, pp. 223–234.

[6] G. Drescher and W. Schröder-Preikschat, “An experiment in wait-free
synchronisation of priority-controlled simultaneous processes: Guarded
sections,” Department Informatik, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Tech. Rep. CS-2015-01, Jan. 2015.

[7] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-
free objects,” IEEE Transactions on Parallel and Distributed Systems,
vol. 15, no. 6, pp. 491–504, 2004.

283

