
Towards Energy-Proportional State-Machine Replication

Christopher Eibel and Tobias Distler
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

ABSTRACT
The energy consumption of state-of-the-art systems apply-
ing state-machine replication in general is not proportional
to the performance they provide. This is mainly due to
the fact that current implementations rely on static replica
configurations, for example with regard to the number of
threads to be used, which prevent them from adjusting their
resource footprints to changing load levels. In this paper, we
address this problem by presenting a mechanism that allows
a replica to adapt its energy consumption by switching be-
tween configurations at runtime. Furthermore, we study the
effectiveness of different energy-saving techniques and their
impact on peak performance. Our evaluation results for a
Byzantine fault-tolerant coordination service show that uti-
lizing such knowledge in combination with our mechanism, it
is possible to build energy-proportional replicated systems.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed Systems

General Terms
Design, Experimentation, Management, Measurement

Keywords
Energy Proportionality, State-Machine Replication

1. INTRODUCTION
State-machine replication [18] is an essential technique for

providing dependable services as it allows systems to be built
that are resilient against machine crashes [11] or even Byzan-
tine faults [5]. In such systems, fault tolerance is achieved
by redundantly executing each client request on multiple
replicas, which are usually located on different physical ma-
chines. While compared to non-replicated architectures, on
the one hand, this makes a system more stable in the pres-
ence of faults, on the other hand, it also increases a system’s

c© Eibel et al. 2015. This is the authors’ version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version was published in Proceedings
of the 14th Workshop on Adaptive and Reflective Middleware (ARM ’15).

ARM 2015, December 07–11 2015, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3733-5/15/12. . . $15.00
DOI: http://dx.doi.org/10.1145/2834965.2834969

resource footprint, causing energy consumption to become
a crucial factor. Unfortunately, existing systems applying
state-machine replication fail to be energy proportional [3].
In an energy-proportional system, energy consumption cor-
relates with performance. For example, for providing 30 %
of the maximum throughput, such a system also requires
only 30 % of the maximum energy demand. Achieving en-
ergy proportionality is desirable as it is expected to reduce
the energy consumption in data centers by half [3].

Having analyzed existing replicated systems [4, 5] in this
regard, we identified two main reasons preventing them from
achieving energy proportionality: First, as implementations
are not energy aware, there is a general lack of knowledge
about the amount of energy consumed. However, as we show
in this paper, obtaining such information is crucial to be-
ing able to build energy-proportional systems. Second, tra-
ditional approaches to implement state-machine replication
rely on static configurations that are not flexible enough to
allow a replica to dynamically adapt its energy consumption
to changing loads. As a result, at deployment time there is a
tradeoff between choosing a configuration that enables high
performance (e.g., by using multiple threads) at the cost of
wasting energy when utilization is low and a configuration
that is energy efficient (e.g., by using only a single thread)
but prevents a system from exploiting its full potential.

To address these issues, we propose a systems approach
to bringing energy awareness into replicated systems. For
this purpose, we present a replica architecture with a flex-
ible (i.e., being both self-adaptive and manually customiz-
able by the developer) middleware component that enables
a system to switch between different configurations in order
to dynamically adjust its energy consumption. Decisions
about reconfigurations are made by each replica individu-
ally, based on a global energy policy that defines specific
requirements (e.g., regarding latency). To offer a replica the
flexibility of choosing from a diverse set of configurations,
we exploit both hardware- and software-based energy-saving
techniques: The measures applied, for example, include lim-
iting a system’s peak-power consumption at different levels,
changing the number of active cores and threads, as well
as varying the mapping of software modules to threads. In
our architecture, efficiently remapping software modules to
threads at runtime is possible due to these components being
implemented as actors [2]. All techniques evaluated in the
following target the dynamic power consumption of a server,
which is why we focus on achieving energy proportionality
for core and uncore [7] components. In contrast, minimizing
the static power consumption of components such as storage
or peripheral devices is outside the scope of this paper.

In summary, we make the following contributions:

• We present a reconfiguration mechanism that allows a
system relying on state-machine replication to dynam-
ically adjust its energy consumption.

• We study the effectiveness of different software- and
hardware-based energy-saving techniques for a Byzan-
tine fault-tolerant coordination service.

• We propose different energy policies to control the en-
ergy consumption of a self-adaptive system considering
distinct performance requirements.

The rest of the paper is structured as follows. Section 2 ex-
plains necessary background information, Section 3 presents
our approach towards energy-proportional state-machine re-
plication, Section 4 evaluates different system configurations,
Section 5 presents related work, and Section 6 concludes.

2. BACKGROUND
This section summarizes two main aspects that are fun-

damental for the rest of this paper: First, as our main goal
is to make state-machine–replication systems energy propor-
tional, it is inevitable to be able to control a system’s energy
consumption. We detail techniques that can be applied for
this purpose in Section 2.1. Second, we present the basics
of state-machine replication in Section 2.2.

2.1 Controlling Energy Consumption
As of today, controlling the energy consumption of a com-

puter system is a field that has received much attention, re-
sulting in a multitude of commonly available software- and
hardware-based techniques. Probably the most prominent
example is dynamic voltage and frequency scaling (DVFS),
which is omnipresent in most modern conventional comput-
ing systems. It is a hardware–power-management feature
that is software controlled to limit the CPU’s maximum
speed in periods of low system load and conserve energy as a
consequence. Another common method is to send hardware
units that are currently not in use to a more energy-efficient
low-power mode (e.g., for CPUs: C-states, sleep states). In
fact, as part of our approach (see Section 3.3), we explicitly
disable cores when they are not required and reveal achieved
energy-consumption savings in Section 4.

In order to properly control the energy consumption in
accordance to the utilization level and workload characteris-
tics, it is necessary to be aware of the control actions’ effects
on the system’s energy behavior. It is beneficial to have pre-
cise and accurate energy-measurement methodologies avail-
able on which energy-controlling decisions are based on. We
rely on built-in hardware features such as Intel’s Running
Average Power Limit (RAPL) [9] or AMD’s Application
Power Management (APM) [1]. The original purpose of
these features is the limitation of a system’s power consump-
tion (thus, also referred to as power capping). For example,
power capping is utilized for situations when the CPU is
about to exceed its thermal design power, but has previ-
ously also been used to increase the energy efficiency [19].
Specifically, RAPL allows to independently cap four differ-
ent power domains (i.e., DRAM, GPU, core, and uncore)
by specifying a maximum average power value over a cer-
tain time window. In order to enforce such power limits, the
power-capping control mechanism is supplemented with an
on-chip energy-estimation facility. This facility is also acces-
sible by external components, such as our proposed software

Replica 1

Replica 2

Replica n

Client
handling

Agreement
protocol Execution

Client
handling

Agreement
protocol Execution

Client
handling

Agreement
protocol Execution

.

.

.
Additional
replicas

Client

Figure 1: Overview of the basic architecture of a
system relying on state-machine replication.

framework (see Section 3.2). Throughout this paper, we fo-
cus on the values retrieved from RAPL, which exclusively
capture the energy consumption of the four aforementioned
power domains (i.e., not including values for device-specific
hardware components such as disks or fans). Technically
speaking, RAPL’s power limits are being enforced by both
P- and T-states; that is, enforcing the CPU to idle or throt-
tle in a DVFS-like manner [9].

2.2 State-Machine Replication
Figure 1 shows the basic architecture of systems relying

on state-machine replication, in which the service is dis-
tributed across multiple replicas. The number of replicas n
usually depends on the fault-tolerance guarantees provided:
In general, tolerating up to f crashes requires 2f + 1 repli-
cas [11], whereas resilience against Byzantine faults demands
3f + 1 replicas [5]. Independent of the fault model, replicas
in such systems need to perform a number of basic tasks
in order to process incoming client requests: Having re-
ceived a request, replicas run a fault-tolerant agreement pro-
tocol (e.g., Paxos [11] or PBFT [5]) that is responsible for
establishing a global total order on all client requests. This
is to ensure that the states of correct replicas are kept con-
sistent, even in case of faults. After a request has been
committed by the agreement protocol, replicas execute the
request and supply the client with the result.

The common practice to realize such systems is to im-
plement the tasks discussed above (as well as others, we
omitted for clarity) in separate modules, each comprising
its own thread or thread pool [4]. However, as we confirm
in our evaluation in Section 4, this approach has a major
disadvantage: The static assignment of threads to modules
prevents existing replicated systems from being energy pro-
portional. This is due to the fact that in general there is no
single configuration that enables such systems 1.) to achieve
the maximum throughput possible as well as 2.) to minimize
energy consumption during periods of lighter loads. As a re-
sult, the need to a-priori select a configuration usually leads
to energy being wasted when system utilization is low.

3. ENERGY-PROPORTIONAL
STATE-MACHINE REPLICATION

In the following, we first give an overview of our pro-
posed architecture (Section 3.1), which supports both crash-
tolerant and Byzantine fault-tolerant systems. Next, we con-
tinue to describe our systems approach (Section 3.2) before
we detail the software and hardware components that are
responsible for bringing energy proportionality into state-
machine replication (Section 3.3).

Client
handling

Agreement
protocol Execution

Energy
manager

C1 C2 C3 C4

t1 t2

SW

HW

Runtime statistics

Threads

&

cores

Message queue

Figure 2: Replica architecture enabling energy-
proportional state-machine replication.

3.1 Architecture
Dynamically adapting the energy consumption of a repli-

cated system based on current load requires an architecture
that is flexible enough to allow reconfigurations at runtime.
As shown in Figure 2, we achieve this by implementing the
modules presented in Section 2.2 as actors [2]. The states of
all actors are commonly encapsulated from each other, which
means that distinct modules do not share any state. As a
consequence, actors only communicate via message passing,
requiring each actor to maintain a message queue. Per ac-
tor, only one incoming message is processed at a time. That
is, in general, although actors are concurrently executed, no
synchronization is required inside of an actor’s implementa-
tion itself, making it less error-prone and easier to handle.
Furthermore, actors do not manage their own threads.

Hence, the design decision of using the actor model has
several benefits. First, it allows us to cleanly separate the
handling of threads from the implementation of the func-
tionality that needs to be provided by the replica. Second,
as there is no static assignment of threads to modules, the
approach enables a replica to dynamically adapt the number
of threads when the load level changes. Third, the fact that
modules do not share state greatly facilitates their migra-
tion between threads. In summary, utilizing the advantages
of actor-based modules, a system is able to support recon-
figuration of replicas with low overhead.

3.2 Systems Approach
To facilitate reconfigurations to changing conditions, we

introduce a new middleware component, the energy man-
ager, which we integrate seamlessly as another, independent
actor-based module (cf. Section 2.2) into each replica. Fig-
ure 2 shows its integration with the other modules. The en-
ergy manager is responsible for monitoring the system, mak-
ing reconfiguration decisions, and coordinating the switch
between different configurations. We achieve this by follow-
ing the concept of a self-adaptive system with the main goal
of improving the system’s quality in terms of energy.

The energy manager triggers reconfigurations depending
on new input data (e.g., runtime statistics) and bases its
decisions on energy policies, which represent customizable
strategies for controlling the reconfigurations. In this way,
with regards to the current workload and chosen policy, the
energy consumption can be adjusted. We showcase possible
policies in Section 4.3. A reconfiguration can target both
software (SW) and hardware (HW) components. Targeting
software could mean to control the mapping of modules to
threads, thereby possibly varying the number of threads.

Threads

&

cores RAPL
Capping Measuring

Adaptation
unit

Core
manager

Decision
maker

Profiler

Monitor
Feedback loop

. . .
Runtime
statistics

Energy values

Capping
configuration

SW

HW

1

2

3

4

Figure 3: Detailed view of the energy manager show-
ing its subcomponents and self-adaptation process.

When a reconfiguration targets hardware, this could mean to
enable/disable cores or to use the RAPL interface to cap the
cores’ power (see Section 2.1). By way of example, Figure 2
shows two enabled cores (C1 and C3), two disabled cores (C2

and C4), and two threads (t1 and t2), each being pinned
to a single core. The client-handling unit is assigned to
t1 (pinned to C1), whereas both the agreement-protocol and
the execution unit are assigned to t2 (pinned to C3).

3.3 Reconfiguration Management
Below, we describe the self-adaptiveness mechanism im-

plemented by the energy manager of each replica. Self-
adaptive systems continuously cycle through the four phases
monitoring, detecting, deciding, and acting [16]. Figure 3
gives a detailed view of an energy manager, including the
feedback-loop interactions (1 – 4) of its sub-components.
The (acting) adaptation unit is in close connection with the
decision maker, which uses the monitor and profiler com-
ponents for its decisions. With this concept, we isolate the
initiation and coordination of an actual reconfiguration re-
quest from the control logic that decides when it has to be
triggered. Next, we describe all four phases in greater detail.

Monitoring. The energy manager’s monitor unit coor-
dinates accesses to the components providing input data.
First, it interacts via message passing with the execution
module to collect statistics concerning the current utilization
and performance level (e.g., throughput, latency). Second,
it receives energy values from the unit that controls and
accesses RAPL (see Section 2.1). We rely on jRAPL [12]
in our prototype to render online measurements possible.
Third, information about all decisions made is fed back (1)
to influence and improve future decisions. The monitor unit
fetches input data in meaningful time intervals before send-
ing them—possibly pre-aggregated—to the profiler (2).

Detecting. The energy manager’s profiler acts as detec-
tion unit, which receives its input data either from the mon-
itor unit or from preexisting profiles containing concrete,
platform-dependent energy values for specific workloads. Be-
ing tightly coupled to the monitor unit, the profiler can cre-
ate or alter profile entries by triggering online measurements
via RAPL for the currently monitored workload. That is,
static energy profiles contain workload–energy characteris-
tics. We present concrete examples of such characteristics in
Section 4. The profiler combines the workload and energy-
consumption information to detect situations where a con-
figuration switch is necessary. As a result, the profiler can
advise the decision maker to initiate a reconfiguration by
sending a corresponding request (3).

Deciding. Based on the information provided by the pro-
filer, the energy manager selects the most suitable setting
for hardware- and software-based reconfigurations. Conse-
quently, the profiler is the component that implements the
specified energy policies (cf. Section 3.2). At this stage,
the energy manager keeps track of precisely scheduling re-
configurations; for instance, to avoid thrashing effects (i.e.,
situations where different reconfigurations periodically and
quickly alternate, having a negative impact on the energy
consumption). After deciding for a reconfiguration, a re-
quest is signaled to the adaptation unit (4) and also to the
monitor unit to have an influence on future decisions.

Acting. The energy manager uses the adaptation unit to
reconfigure a target component. It can instruct the core
manager to change the thread-and-core configuration: First,
the core manager enables and disables cores, independent of
the number of running threads. However, second, running
threads can be pinned individually to any of the enabled
cores (e.g., on Linux, by setting a process’s CPU affinity with
taskset). If a change in the number of running threads is
requested, the adaptation unit makes use of the actor-based
approach (cf. Section 3.1) to efficiently change the mapping
between modules (e.g., client-handling module) and threads.

4. EVALUATION
In this section, we present the evaluation results based on

a concrete state-machine–replication system. We start with
explaining the software setup, the experimental hardware
environment, and the conducted evaluation use cases, which
are explained in greater detail afterwards.

Use-Case Example. We evaluate our approach using a
coordination service that relies on the PBFT [5] protocol for
fault tolerance. The service provides the same interface as
ZooKeeper [8], which includes operations to write (setData)
and read (getData) small chunks of data, and to check if the
service has stored a certain data node (exists).

Experimental Environment. We use a total number of
4 replicas (i.e., 1 Byzantine fault tolerable, cf. Section 2.2),
each represented by a Lenovo ThinkServer TS140 worksta-
tion with a quad-core Intel Xeon E3-1245 v3 (Haswell archi-
tecture, 3.40 GHz, 8 GiB RAM, Turbo Boost and SpeedStep
enabled), running Ubuntu 14.04.3 LTS. The system execut-
ing the clients is equipped with two hexa-core Intel Xeon
E5645 processors (2.40 GHz, 32 GiB RAM). All machines
are connected by switched 1 Gbps Ethernet.

Evaluation Overview. For the coordination-service op-
erations setData, getData, and exists, we analyze differ-
ent hardware- and software-targeted configurations (cf. Sec-
tion 3.2). We use different power caps and vary the number
of threads and cores to generate these configurations. Cores
not in use are disabled and one thread per core is used; for
example, a 3-core setting means that only 3 cores are ac-
tive and each one is assigned exactly one thread. The three
modules presented in Section 2.2 (e.g., execution module)
are then mapped to the available threads. For the 3-core
setting, all modules run in dedicated threads. For the 2-
core setting, both the agreement-protocol and the execution
module share one thread, whereas the client-handling mod-
ule is assigned its own thread. Lastly, all modules run in the
same thread for the 1-core setting.

Based on these configurations, we measure the average
per-replica power consumptions and average latencies for
different throughput values. All measurement results pre-

sented are averaged over three runs. In the rest of this sec-
tion, we first discuss the results of the 1-core, 2-core, and
3-core configurations (§ 4.1) and then investigate different
power caps (§ 4.2). Finally (§ 4.3), we combine the infor-
mation from § 4.1 and § 4.2 to derive energy policies that
improve the energy proportionality of a system.

4.1 Influence of CPU Cores and Threads
The blue curves in Figure 4 show the results for the 1-core,

2-core, and 3-core configurations. For all three operations,
on average, the 1-core setting has the lowest power con-
sumption, whereas the 3-core setting has the highest. For
the exists operation, the difference between the highest
and the lowest power consumption is up to 5.8 W, which
corresponds to 22.9 % of the observed peak-power consump-
tion (= 25.3 W). Our results also confirm that the maximum
throughput achievable can significantly differ between con-
figurations. By way of example, for the exists operation,
the greatest difference between the highest and the lowest
achievable throughput amounts to 25.9 kOps/s or 19.7 % of
the maximum, respectively. We explain this behavior as
follows: On the one hand, the power consumption increases
with the number of activated cores when per-core utilization
is high enough. On the other hand, more cores and threads
naturally increase the computational power, allowing more
requests per second to be processed.

In a few cases, it is possible that, for example, the 3-
core setting is slightly more efficient than the 1-core set-
ting (e.g., at ≈ 40 kOps/s for the exists operation), or a
higher throughput value results in less power consumed (e.g.,
at ≈ 65–75 kOps/s for the getData operation using 3 cores).
By repeating all measurements with different enabled and
disabled CPU features (the graphs reflect the behavior with
all features enabled), we were able to pin down the Speed-
Step CPU feature as the main reason for this behavior. This
feature allows the operating system to dynamically scale
voltage and frequency [9, p. 3]. As this behavior was re-
producible over all measurement runs, we can confirm that
adjusting the cores and threads is an effective measure for
our energy manager (cf. Section 3.3).

4.2 Power-Capping Effects
As discussed in Section 3.3, RAPL gives the energy man-

ager the additional possibility to cap the peak-power con-
sumption of a replica. Figure 4 shows the graphs for different
power caps for the 1-core setting. For example, the power
cap cap-12W denotes limiting the total power consumption
of the whole package (i.e., core and uncore components) to
12 W. Based on these results, we can draw three major
conclusions: First, RAPL almost perfectly satisfies the con-
figured power-cap values, which enables the energy man-
ager to make accurate, reproducible decisions. Second, cap-
ping power at lower values decreases the maximum through-
put achievable but increases efficiency (i.e., kOps/s per W).
For instance, for a throughput of 50 000 exists operations
per second, by choosing a power cap of 9 W (cap-9W), the
power consumption can be reduced by up to 11.5 W (45.5 %).
Third, the power-cap intensity has a direct influence on la-
tency. While all no–power-cap settings provide similar la-
tencies, decreasing the power-cap value can lead to a signif-
icant increase in latency. Thus, the energy manager should
not only focus on energy consumption when choosing a new
power-cap value, but also has to consider the latency impli-
cations associated. However, all in all, we can exploit the

0 40 80 120
0

4

8

12

16

20

24

cap-7W
cap-9W

cap-12W

cap-15W

Throughput [kOps/s]

P
ow

er
co

n
su
m
p
ti
o
n
[W

]

0 40 80 120
0

5

10

15

20

25

30

Throughput [kOps/s]

L
a
te
n
cy

[m
s]

1 core

2 cores

3 cores

(a) exists

0 15 30 45 60 75
0

4

8

12

16

20

24

Throughput [kOps/s]

P
ow

er
co

n
su
m
p
ti
o
n
[W

]

0 15 30 45 60 75
0

5

10

15

20

25

30

35

40

Throughput [kOps/s]

L
a
te
n
cy

[m
s]

(b) getData

0 10 20 30
0

4

8

12

16

Throughput [kOps/s]

P
ow

er
co

n
su
m
p
ti
o
n
[W

]

0 10 20 30
0

10

20

30

40

50

Throughput [kOps/s]

L
a
te
n
cy

[m
s]

(c) setData

Figure 4: Average power-consumption and latency results for the operations (a) exists, (b) getData, and
(c) setData. Each curve represents a single configuration, examined with different throughput values.

0 10 20 30 40 50 60 70
0

4

8

12

16

20

24

Average throughput [kOps/s]

A
ve
ra
g
e
p
ow

er
co

n
su
m
p
ti
o
n
[W

]

Ideal

Original curves

Active setting

Positive EPG

Negative EPG

Static power

(a) performance policy

0 10 20 30 40 50 60 70
0

4

8

12

16

20

24

Average throughput [kOps/s]

A
ve
ra
g
e
p
ow

er
co

n
su
m
p
ti
o
n
[W

]

(b) powersave policy

[latency< 10ms]

0 10 20 30 40 50 60 70
0

4

8

12

16

20

24

Average throughput [kOps/s]

A
ve
ra
g
e
p
ow

er
co

n
su
m
p
ti
o
n
[W

]

(c) latency-aware policy

0 10 20 30 40 50 60 70
0

4

8

12

16

20

24

Average throughput [kOps/s]

A
ve
ra
g
e
p
ow

er
co

n
su
m
p
ti
o
n
[W

]

(d) least-EPG policy

Figure 5: Four different energy policies for the getData operation, comprising: policies for (a) guaranteeing
maximum performance, (b) always selecting the lowest power-consuming configuration possible, (c) taking a
maximum tolerable latency of 10 ms into account, and (d) aiming to achieve perfect energy proportionality.

power-capping mechanism for hardware-targeted reconfigu-
rations (cf. Section 3.2), giving us even more flexibility with
regards to the available configuration space.

4.3 Improving Energy Proportionality
Energy policies offer the possibility to control an energy

manager’s decisions by specifying when to switch to another
configuration. In the following, we present four examples
of such policies targeting different goals (e.g., performance).
Figure 5 illustrates the effects of applying these policies for a
series of getData operations. The diagonal in the figure de-
picts the characteristics of a perfectly energy-proportional
system. The deviation from this line is referred to as the
energy-proportionality gap (EPG) [19]. We further differen-
tiate between a negative EPG (being above the line) and
a positive EPG (being below the line), visualized as dark-
red– and light-green–shaded areas, respectively. The four
examples of energy policies are as follows:

• Performance policy: Figure 5(a) shows the case of a
policy that does not take the system’s energy behavior into
account and simply uses the configuration with the best per-
formance possible. Apparently, this leads to a large negative
EPG and consequently to bad energy proportionality. This
is comparable to the behavior of state-of-the-art replicated
systems that run no specific policy at all.

• Powersave policy: On the contrary, Figure 5(b) depicts
the powersave policy, which always selects the best config-
uration possible in terms of power consumption. With this
policy, it is not only possible to significantly save energy
compared to the performance policy but to even greatly in-
crease the positive EPGs at a throughput of 20 kOps/s and

above. Even so, this policy might not always be feasible as
it ignores the impact of energy-saving techniques on latency.

• Latency-aware policy: When response time is a crucial
factor, the latency-aware policy comes into effect. Given a
latency threshold L, when applying this policy an energy
manager always selects the most energy-efficient configu-
ration that is able to provide average response times be-
low L. Figure 5(c) shows an example for a threshold of
10 ms (see Figure 4(b) for getData’s corresponding latency
values). While still achieving good energy efficiency and a
large amount of positive EPGs, this policy trades off some
of the energy savings possible for improved response times.

• Least-EPG policy: Figure 5(d) demonstrates how closely
energy proportionality can be achieved when minimizing the
EPG is the primary optimization criterion, that is, when
the energy manager always selects the setting providing the
smallest distance to the ideal energy-proportionality line.
Note that with the exception of lower throughputs, which
are dominated by the static power consumption, it is possi-
ble to achieve even better energy proportionality by choosing
more fine-grained power-cap values than shown in the graph
(in fact, we extended this graph by one more cap at 18 W).

4.4 Discussion
The energy-saving techniques applied in our approach tar-

get the energy proportionality (EP) of core and uncore com-
ponents, but have no effect on the static power consumption
of other hardware components such as disks or fans. We
made this design decision based on the observation that
there is a trend towards more energy-proportional hard-
ware for server systems. For example, while our current

machines have a total static power consumption of about
22 % (18.5 W) of the peak power (i.e., EP of 22 %), other
servers can have an EP of as little as 10 % [15]. In addi-
tion, even more efficient architectures with very little static
power consumption are on the way up in the server-systems
field (e.g., 64-bit ARM processors [14]). As a result, we ex-
pect sophisticated software approaches to become the deci-
sive factor for achieving energy proportionality in the future.

5. RELATED WORK
Subramaniam et al. [19] have shown RAPL’s power-cap-

ping feature to be an effective means to control energy con-
sumption in the context of enterprise-class server workloads.
Probably closest to our work is Pegasus [13], which addresses
energy proportionality in large-scale systems with on-line,
data-intensive workloads (e.g., a search cluster). Unlike the
control unit in Pegasus, our energy manager is closely inte-
grated with the system software, allowing us to use a remap-
ping of software modules to threads as an additional measure
of adaptation. Furthermore, the fact that energy managers
only control their respective local replicas makes our ap-
proach more resilient to faults: While a wrong decision of
the global Pegasus controller impacts the entire cluster, a
faulty energy manager only affects a replica, which is a sce-
nario a replicated system has been designed to tolerate.

Energy proportionality has also been investigated in the
context of data processing [6] and storage [20]. In such sys-
tems, an effective measure to save energy during periods of
low utilization is to temporarily power down some of the
servers and to reactivate them in case load increases again.
Unfortunately, this approach cannot be directly applied to
state-machine replication due to the fact that fault tolerance
requires replicas to continuously participate in the agree-
ment process for incoming client requests. For example, if
f of the 2f + 1 replicas in a crash-tolerant system were to
be switched off, the system would lose the ability to tolerate
even a single failure of one of the remaining replicas. Our ap-
proach allows replicas to remain active and instead enables
each replica to dynamically adjust its energy consumption.

Schiper et al. [17] studied the energy efficiency of dif-
ferent replication techniques for databases, including state-
machine replication and primary-backup replication; in their
experiments, none of the techniques applied resulted in an
energy-proportional system. To improve energy efficiency,
they furthermore proposed algorithmic modifications to pri-
mary-backup protocols and a heterogeneous hardware de-
ployment that runs backup replicas on low-power devices to
save energy. Modifying the protocol to make use of backup
replicas has also been shown effective for Byzantine fault-
tolerant protocols [10]. Unlike these approaches, the soft-
ware-based energy-saving techniques presented in this paper
do not require changes to the protocol logic as they only af-
fect the mapping of modules to threads. In addition, the
hardware-based techniques utilized by the energy manager
are entirely transparent to the replica implementation.

6. CONCLUSION
In this paper, we studied the effectiveness of both software-

and hardware-based energy-saving techniques in the context
of state-machine replication and their impact on peak perfor-
mance. Furthermore, we presented an approach that allows
replicated systems to exploit this knowledge to achieve en-
ergy proportionality by dynamically switching to the config-

uration most suitable for the current utilization level. Thus,
our proposed energy-manager component serves as a mid-
dleware that exploits hardware and operating-system func-
tionality underneath to make the state-machine–replication
system above more energy efficient and energy proportional.
This middleware is self-adaptive but also offers the ability
for manual adjustments (e.g., defining new energy policies).

Acknowledgements. We thank Timo Hönig, Peter Wägemann,
and the anonymous reviewers for their insightful feedback. This
work was partially supported by the German Research Council
(DFG) under grant no. DI 2097/1-2 and grant no. SCHR 603/11-2.

7. REFERENCES
[1] Advanced Micro Devices, Inc. BIOS and kernel developer’s

guide (BKDG) for AMD family 15h models 30h-3Fh pro-
cessors, 49125 rev 3.06, 2015.

[2] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[3] L. A. Barroso and U. Hölzle. The case for energy-
proportional computing. IEEE Computer, 40(12):33–37,
2007.

[4] A. Bessani, J. Sousa, and E. Alchieri. State machine replica-
tion for the masses with BFT-SMaRt. In Proc. of DSN ’14,
pages 355–362, 2014.

[5] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proc. of OSDI ’99, pages 173–186, 1999.

[6] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy
efficiency for large-scale MapReduce workloads with signifi-
cant interactive analysis. In Proc. of EuroSys ’12, pages 43–
56, 2012.

[7] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn,
K. Schwan, and G. Srinivasa. The forgotten ‘uncore’: On
the energy-efficiency of heterogeneous cores. In Proc. of
ATC ’12, pages 367–372, 2012.

[8] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale sys-
tems. In Proc. of ATC ’10, pages 145–158, 2010.

[9] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manual volume 3 (3A, 3B & 3C): System pro-
gramming guide, 2015.

[10] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel. Cheap-
BFT: Resource-efficient Byzantine fault tolerance. In Proc.
of EuroSys ’12, pages 295–308, 2012.

[11] L. Lamport. The part-time parliament. ACM Trans. on
Computer Systems, 16(2):133–169, 1998.

[12] K. Liu, G. Pinto, and Y. D. Liu. Data-oriented characteri-
zation of application-level energy optimization. In Proc. of
FASE ’15, pages 316–331, 2015.

[13] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proc. of ISCA ’14, pages 301–
312, 2014.

[14] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and
A. Ramirez. Tibidabo: Making the case for an ARM-
based HPC system. Future Generation Computer Systems,
36:322–334, 2014.

[15] F. Ryckbosch, S. Polfliet, and L. Eeckhout. Trends in server
energy proportionality. IEEE Computer, 44(9):69–72, 2011.

[16] M. Salehie and L. Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Trans. on Autonomous
and Adaptive Systems, 4(2):14:1–14:42, 2009.

[17] N. Schiper, F. Pedone, and R. van Renesse. The energy
efficiency of database replication protocols. In Proc. of
DSN ’14, pages 407–418, 2014.

[18] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computer
Survey, 22(4):299–319, 1990.

[19] B. Subramaniam and W. Feng. Towards energy-
proportional computing for enterprise-class server work-
loads. In Proc. of ICPE ’13, pages 15–26, 2013.

[20] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Prac-
tical power-proportionality for data center storage. In Proc.
of EuroSys ’11, pages 169–182, 2011.

	Introduction
	Background
	Controlling Energy Consumption
	State-Machine Replication

	Energy-ProportionalState-Machine Replication
	Architecture
	Systems Approach
	Reconfiguration Management

	Evaluation
	Influence of CPU Cores and Threads
	Power-Capping Effects
	Improving Energy Proportionality
	Discussion

	Related Work
	Conclusion
	References

