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Abstract—Energy has emerged to be the most important
resource for computing systems. Despite the exceptional impor-
tance of energy, reducing its demand at application and system
level remains a challenging task for programmers and engineers.
This is aggravated by the fact that traditional energy-saving
approaches are not only error-prone but even lead to adverse
consequences (i.e., increased energy consumption). To address
this concern, we present the FIGAROS operating system for fine-
grained system-level energy optimizations. The evaluation of our
FIGAROS implementation shows that the operating system lowers
the energy consumption of processes by up to 2.9x.
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I. INTRODUCTION

Energy has become the most important operating resource
for computing systems of all sizes—from embedded systems
to large-scale high-performance computing systems. Yet, at
application and system level, programmers and engineers
remain challenged at efficiently handling energy as first-
class operating system resource [1]. Accordingly, to reduce
the energy demand of computing systems, different energy-
optimization strategies have emerged, which either tackle the
challenge ahead of runtime (2], [3] or at runtime [4], [5]. To
reduce the energy demand of processes (i.e., a program being
executed) at runtime, today’s operating systems commonly use
race-to-sleep strategies [4], [6], [7]. Even though the average
power demand increases during code execution with race-to-
sleep strategies, the energy consumption (integral of power
over execution time) is actually decreased. However, recent
research [8], [9] shows that race-to-sleep strategies are prone to
miss their target and eventually lead to higher energy demand.

In this paper we propose to tie a link between ahead-of-
runtime and at-runtime energy-optimization strategies to re-
duce the energy consumption of processes in situations where
traditional energy-saving strategies fail to succeed. To close the
gap between ahead-of-runtime and at-runtime energy optimiza-
tion, we present the FIGAROS operating system. FIGAROS
orchestrates energy measurements of processes and applies en-
ergy optimizations to reduce the system’s energy consumption.
Our work makes the following contributions: First, we present
the concept of the FIGAROS operating-system kernel, which
provides basic operations for system-level energy analysis and
associated energy optimizations. Second, we implemented a
prototype of FIGAROS that exploits hardware-based energy
measurements at runtime to validate our approach. Third, we
evaluate FIGAROS and discuss analysis results which show
that FIGAROS lowers the energy consumption by up to 2.9x.
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II. TiME vS. ENERGY: PLAYING HARE AND TORTOISE

The energy demand Fy. Of a computer to execute a given
program code is determined by integrating the time function
of the power consumption p (t) over the time ¢ = t; — to:
Eoxee = ft’;l p(t) - dt. The energy demand of program code
is therefore lowered by reducing the power demand during
the execution time and by reducing the execution time itself.
Program code is commonly executed with race-to-sleep (alias
race-to-idle) strategies. Such strategies execute the program
code at maximum performance with the objective to reduce
the execution time. Although the power demand is maximized
during the execution period, the reduced execution time allows
the system to be transfered to a low-power or sleep state for
a longer period of time. Eventually, this reduces the energy
consumption needed for executing the program code compared
to normal execution. In contrast to these best practices, recent
works [8], [9] have revealed that race-to-sleep strategies may
not ultimately lead to the desired effect (i.e., minimization of
energy demand). In fact, crawl-to-sleep strategies that lead to
longer execution times may decrease the energy consumption
needed for executing the program code.

Thus, optimizing for performance (i.e., minimizing execu-
tion time) does not necessarily lead to an optimum with regards
to energy consumption (i.e., minimization of energy demand).
This situation can be compared to Aesop’s fable The Hare
and the Tortoise, where it is beyond question that the hare
is quicker than the tortoise. However, while the tortoise tries
to reach the other end with low but nearly constant speed, in
his arrogance the hare takes a nap believing that he is still
able to race across the finish line before the tortoise. In the
end, although the tortoise requires a lot more time than the
hare, he wins the race nonetheless. Similarly, it needs novel
sophisticated strategies to reach goals in today’s computing
systems (i.e., progress guarantees, task execution) with less
energy—even if other non-functional aspects are sacrificed by
tolerable amounts (i.e., lower energy demand at the cost of
acceptable, though longer execution times).

III. THE FIGAROS OPERATING-SYSTEM KERNEL

With FIGAROS we present a systems approach to provide a
reliable link between ahead-of-runtime and at-runtime energy
optimizations to be used for novel energy optimizations for
program code. FIGAROS addresses the challenges of com-
bining ahead-of-runtime and at-runtime energy optimizations.
Further, our approach solves the problem of minimizing
the energy demand (as outlined in Section II) of program
code by making it possible to execute tasks with predefined,
application-specific sets of energy-saving features. The core of
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Device Enerlgy Tem]?oral Current Operability
Resolution [uJ]{Resolution [us]| Range [A]
Fuel Gauge 116,000 3,515,000 Up to 2.55 Hard (no time/trigger)
MeasureAlot | 0.04 0.006 Up to 0.15 Easy
Multimeter 1 ca. 300,000 Up to 10 Hard (no time/trigger)
Oscilloscope | 0.0001 0.001 0.005-150 Hard (setup, streaming)

TABLE L. LIST OF DISTINCT ENERGY-MEASUREMENT DEVICES

FIGAROS is an operating-system kernel supplemented with an
energy-measurement infrastructure (Section III-A). In line with
the concept of our approach we present an implementation
of the FIGAROS operating-system kernel that is based on
Linux (Section III-B). Our prototype exploits a programmable
energy-measurement device [9] to provide runtime energy
measurements (Section III-C).

A. Concept. FIGAROS consists of two main components:
On the one hand, FIGAROS provides a runtime environ-
ment (i.e., operating-system kernel) which has full control of
the energy-saving features of the underlying system hardware.
On the other hand, FIGAROS provides an energy-measurement
subsystem that implements basic operations to run energy
analysis of program code at runtime.

The runtime environment reduces the energy consump-
tion required to execute a given program code by exploit-
ing energy-saving features available to the system that ex-
ecutes the program code. Such energy-saving features in-
clude, but are not limited to, processor-specific energy-saving
features (i.e., DVFS, sleep states) as well as energy-saving
features specific to peripheral devices (i.e., input/output sub-
system, graphics processing unit). To execute program code,
the runtime environment either operates in manual or auto-
matic operation. In the manual operation mode, FIGAROS
determines the energy-saving features by reading metadata
tied to the program code. This metadata is deposited by the
programmers ahead of runtime and originates from a code
analysis performed at development time of the code. In the
automatic operation mode, FIGAROS varies different sets of
energy-saving features to identify the most suitable set for a
given task. During each execution of a specific task the active
set of energy-saving features is varied and the resulting energy
consumption required to execute the task is measured.

The energy-measurement subsystem of FIGAROS imple-
ments basic operations for energy measurements and provides
corresponding programming interfaces. To implement energy-
measurement operations, FIGAROS either uses existing energy
models or runs energy measurements at runtime of the pro-
gram code. Thus, the energy analysis of FIGAROS is either
software based (energy models) or hardware based (energy
measurements). Software-based energy-analysis methods use
different ways of modeling the energy demand. For example,
the energy demand can be estimated by evaluating perfor-
mance counters [10] or by using instruction-based energy pro-
files. Hardware-based energy-analysis methods use an energy-
measurement device (i.e., multimeter, oscilloscope) to deter-
mine the system’s energy consumption during the execution
of program code. In either way, the energy-analysis method
as implemented by the FIGAROS subsystem can be controlled
through a well-defined programming interface during runtime.

B. Implementation of the FigarOS Kernel. Our implementa-
tion of the FIGAROS operating-system kernel is based on the
Linux kernel and introduces energy awareness of the operating
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system at its core. We chose the Linux kernel to explore
the capabilities of FIGAROS on a wide variety of different
computing-system classes (i.e., embedded, mobile/desktop,
and server systems), which provide various distinct energy-
saving opportunities. The energy-measurement operations of
FIGAROS enable the operating system to be self-reflective and
perform online energy measurements for different system com-
ponents (e.g., individual kernel units, user-space processes).
Thus, we implemented an energy-measurement module, which
encapsulates functionality to drive energy measurements and
can be used to trigger single or continuous measurements from
arbitrary parts of the operating-system kernel.

For our current prototype of FIGAROS we extended the
Linux process scheduler with the ability to monitor the en-
ergy demand of user-space tasks of the system. Linux uses
the Completely Fair Scheduler (CFS) to distribute available
processor execution time completely fair among all runnable
processes. To do so, Linux manages all runnable processes in
a red-black tree sorted by the total spent execution time per
process. On rescheduling, the process with the lowest spent
execution time so far is chosen. The implementation leads to
time slices of variable length, though the minimum length of
a time slice can be specified. Our extended process scheduler
decides upon different criteria (i.e., process ID, binary name)
whether a measurement is triggered for the selected task. Over
time, the consecutive measurements build a detailed view of
the past and current power demand of a single or a group
of processes and enables power-demand forecasts. Combining
the power demand of the process over its execution time
gives FIGAROS detailed information about its energy demand.
The gained detailed knowledge allows the operating system to
detect critical situations (e.g., thermal overheating, malicious
waste of energy) early and take appropriate countermeasures
at hardware and software level. When a lasting, increased
power demand occurs, FIGAROS initiates a countermeasure
at hardware level (e.g., switching to a new set of energy-
saving features) early enough to circumvent a system failure.
Further, FIGAROS considers software measures to mitigate a
menacing critical situation, for example, by penalizing specific
processes (e.g., activity suspension or even termination).

The basic energy-measurement operations provide the core
functionality for complex energy-measurement strategies. For
example, the operations can be exploited for verification pur-
poses (e.g., energy-consumption capping) and novel operation
modes including energy-driven priority schemes instead of
traditional time- and priority-driven ones. Further, the type of
energy measurement is of great importance as it has a major
impact on the gained information (i.e., measurement data).

C. Energy-Measurement Infrastructure. Accurate energy-
measurement methods are required for the control logic of
efficient power and energy management. Unfortunately, avail-
able measurement implementations are often unsuitable for this
task. Table I shows basic parameters for three common ap-
proaches: Multimeters and oscilloscopes paired with a current
probe are common commercial measurement devices, whereas
fuel gauges are low-power integrated circuits with a small
footprint, employed in many mobile devices.

These methods typically struggle with the huge dynamic
demand of current in today’s computing systems. Currents
can span by orders of magnitude between deep sleep and



Fig. 1. We evaluate energy optimizations of our FIGAROS operating system
with benchmarks running on a hardware platform with an ARM Cortex-M4.

run mode. If the measurement range of these devices is, for
example, set up to observe a specific run mode (i.e., oper-
ating level at a given performance level), the current draw
of another run mode (i.e., sleep mode) is typically missed.
To provide measurement capabilities for short code paths
(i.e., time slice of a process scheduler), a measurement device
must implement a trigger input to start and end measurements
and needs to provide a high temporal resolution. From the
aforementioned methods of measurement, only oscilloscopes
offer this capability. However, oscilloscopes are not suitable, as
continuous streaming of measurements is difficult to achieve,
if at all. For FIGAROS we therefore rely on the MeasureAlot
energy-measurement device [9], which addresses these issues.
Internally, the device operates using a current-to-frequency
conversion, offering a usable measurement range over several
decades. The energy-measurement resolution is 0.1 uJ and the
device offers a dedicated trigger signal to support measure-
ments of very short periods (down to approximately 6 ns). The
energy-measurement results are streamed to a host computer
over USB and retrieved using an open-source library.

IV. EVALUATION

We evaluate energy optimizations of our FIGAROS imple-
mentation with the nBench Linux benchmark and present the
energy-analysis and energy-optimization results of FIGAROS
for three unique benchmark modules in the following.

A. Setup. The setup of our evaluation is depicted in Figure 1.
The FIGAROS operating-system kernel is running on our
target system, an STMicroelectronics STM32F429 Discovery
development board featuring an ARM Cortex-M4 (@). The
power to the microcontroller is supplied by the Measure-
Alot measurement device (@). A trigger signal from the
STM32F429 Discovery development board to the MeasureAlot
is used to control the measurements. Lastly, a USB-to-serial
converter (€)) provides a serial console to the development
board for controlling purposes.

B. Time vs. Energy. In the first evaluation scenario we
optimize the execution of the nBench benchmark modules to
achieve the lowest energy consumption possible. Each individ-
ual benchmark module remains entirely unchanged (i.e., identi-
cal machine code) across all evaluation runs. However, across
several execution runs FIGAROS varies the configuration of
different energy-saving features (i.e., CPU clock) according
to previously deposited information. The resulting execution
times and energy consumptions of each run are recorded and
shown in Figure 2. In performance mode (i.e., race-to-sleep),
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Fig. 2. The energy consumption (top) and execution time (bottom) do not

always correlate and depend on the run mode (i.e., powersave, performance).

the CPU is clocked 22.5 times higher compared to powersave
mode. Thus, the CPU performance is significantly higher in
performance mode. As expected, this performance gain is re-
flected by shorter execution times for all three benchmark mod-
ules. It is surprisingly, however, that executing the numsort
benchmark module consumes 2.9x more energy in perfor-
mance mode. Ergo, executing this program code in powersave
mode (i.e., crawl-to-sleep) significantly reduces the energy
consumption compared to traditional race-to-sleep execution
strategies and confirms the importance of ahead-of-runtime
program-code analysis to proactively optimize program-code
execution for the lowest energy consumption at runtime.

C. Energy Demand per Time Slice. To develop energy-aware
scheduling strategies, we analyze the energy demand per time
slice of the user-space tasks executing the three benchmark
modules (cf. Section IV-A). Figure 3 shows the length of
all time slices for all three examined algorithms executed in
performance mode. The y-axis reflects the elapsed time and
the x-axis the corresponding time slice. The Linux process
scheduler uses time slices of variable length: at the beginning
(time slices number 1 to 13) and at the end (time slices
number 41 to 43) of the task execution, the CFS scheduler
decides to use very short time slices. This may be caused by
initialization and cleanup work required during task creation
and task termination, respectively. During the actual workload
phase (time slices number 14 to 40) the scheduler uses
comparably long time slices, which are heaped among several
levels. Presumably, the different levels reflect the scheduler
granularity for the length of a time slice.

Figure 4 illustrates the power demand (energy per time
slice) of every time slice executed in performance and power-
save mode. In performance mode the number of time slices and
the total execution time is similar for all three benchmark mod-
ules (see Figure 2). However, in powersave mode the number
of time slices and the total execution time of each benchmark
module differs, which leads to graphs of different lengths in
Figure 4 (right-hand graph). Nevertheless, all three graphs have
similar shapes in both run modes (i.e., performance and pow-
ersave). The short time slices at task initialization and at task
termination lead to higher power demand and higher energy
consumption. Possible reasons for this are frequent context
switches, cache effects, and a different type of instructions
pattern. However, during workload phase, the power demand
remains at a very constant, low level. Following from that we
conclude that disturbing a task as little as possible leads to a
minimization of energy consumption.
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Fig. 3. The time per time slice differs during execution
and is lower during task initialization and termination.

V. RELATED AND FUTURE WORK

ECOSystem [1] was first to propose that energy should
be treated as a first-class operating-system resource. The
idea of the ECOSystem approach is a unified methodology
to energy accounting and distributing energy in a fair way
among applications in the system. According to the authors
of ECOSystem, however, smart-battery interfaces of modern,
general-purpose desktop systems have shortcomings. These
shortcomings inhibit fine-grained energy scheduling, since the
interfaces are considered to be slow and only yield coarse-
grained information about energy consumption. This problem
is solved through the FIGAROS kernel with its accurate, fine-
grained measurement technique for tasks.

These adaptive scheduling methods require information
about the energy demand of tasks at runtime in order to
identify suitable scheduling decisions. Only considering the
timing behavior is not sufficient if energy is treated as a first-
class resource [1] in the operating system. As demonstrated
in the evaluation (cf. Section IV-A), execution time does not
necessarily correlate with the energy consumption. The coher-
ence between time and energy even decreases if a task makes
extensive use of external peripherals (i.e., sensors, transceivers)
causing a significantly higher power consumption than other
tasks within a fixed time slice. A possible scheduling strategy is
a completely fair distribution of energy to all tasks controlled in
a feedback loop. The energy consumption is recorded for each
task by the FIGAROS kernel. If a higher energy consumption
is traced during task execution in the assigned time slice, the
time slice of this task is reduced for the following dispatching
process. Thus, adapting time slices is controlled in a feedback
loop leading to a fair energy distribution among all tasks.

However, the power consumption is not yet respected
in the discussed energy-aware task-scheduling approach. For
example, a task can still consume its own entire energy budget
within a timespan which is shorter than the length of the
actual time slice. As such peaks in the power consumption can
possibly occur before triggering a new energy measurement,
we are potentially unable to counteract with a rescheduling de-
cision in time. We aim to tackle this problem by applying both
hardware- and software-based techniques. At software level, it
is possible to treat external activities following our ahead-of-
runtime approach. Being aware of the energy consumption and
power-consumption peaks of complex operations (e.g., 1/0)
beforehand allows us to incorporate them right into the
scheduling-decision process. At hardware level, power capping
is a countermeasure to prevent power-consumption peaks and

Fig. 4. The power demand per time slice of the benchmark modules running on the FIGAROS
operating-system kernel in performance mode (left) and powersave mode (right).

enable current state-of-the-art processor architectures (e.g.,
Intel Sandy Bridge and later: RAPL [11]) to adhere to a certain
power limit which is not exceeded within a specified time
interval. In combination with FIGAROS, power capping gives
the possibility to further penalize a task’s energy consumption

compared to just reducing its assigned time slices.

VI. CONCLUSION

In this paper we presented FIGAROS, a highly energy-
aware operating-system kernel that implements fine-grained
energy optimizations at system level. By tying a new link
between ahead-of-runtime and at-runtime energy optimizations
our approach cuts down the energy consumption by up to 2.9 x.
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