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Abstract
The fact that many benchmarks for evaluating worst-case execution time (WCET) analysis tools
are based on real-world applications greatly increases the value of their results. However, at the
same time, the complexity of these programs makes it difficult, sometimes even impossible, to
obtain all corresponding flow facts (i.e., loop bounds, infeasible paths, and input values triggering
the WCET), which are essential for a comprehensive evaluation. In this paper, we address this
problem by presenting GenE, a benchmark generator that in addition to source code also provides
the flow facts of the benchmarks created. To generate a new benchmark, the tool combines
code patterns that are commonly found in real-time applications and are challenging for WCET
analyzers. By keeping track of how patterns are put together, GenE is able to determine the
flow facts of the resulting benchmark based on the known flow facts of the patterns used. Using
this information, it is straightforward to synthesize the accurate WCET, which can then serve
as a baseline for the evaluation of WCET analyzers.
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1 Introduction

Benchmarks such as Mälardalen [11], DEBIE-1 [13], or PapaBench [19] play an important
role in the evaluation of WCET analyzers as they allow to assess the individual strengths
and weaknesses of different tools, for example, in the context of the WCET Tool Challenge.
If the focus of such an evaluation lies on the comparison of two or more WCET analyzers,
having the source code and/or binaries of a benchmark available is usually sufficient to
achieve meaningful results. However, for a comprehensive investigation, additional questions
about the properties of the program under test need to be answered in order to be able to
objectively assess the quality of a particular WCET analyzer:

1. What are the loop bounds?
2. What are the feasible paths?
3. What are the recursion depths?
4. What are the concrete input values triggering the WCET?

Throughout this paper, we refer to such information as the flow facts of a benchmark.
Their significance stems from the fact that flow facts can serve as an absolute baseline
for the validation of WCET-analyzer results, thereby enabling evaluations that go beyond
the relative comparison of multiple tools. Note that depending on the analysis approach
used, some flow facts are more important than others: while loop bounds, feasible paths,
and recursion depths are especially relevant in the context of a static timing analysis, having
available concrete input values triggering the WCET, for example, is of major importance for
measurement-based timing analysis. With knowledge about the concrete worst-case input
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values, which also take hardware features (e.g., caching) into account, the actual WCET of
a benchmark can be determined by concretely executing it on a cycle-accurate simulator or
on the specific target platform while measuring its execution time.

Unfortunately, extracting all possible flow facts from existing benchmarks is inherently
difficult, in some cases even impossible: From a theoretical point of view, non-trivial prop-
erties of program code are not automatically decidable [22]. This applies also to existing
benchmark suites [11, 13, 19] written in high-level programming languages.

Knowledge about all existing flow facts requires knowledge about all existing program
paths, which makes it necessary to explicitly enumerate these paths. Such an explicit
path enumeration is infeasible for most real-world programs due to the myriad of possi-
ble paths [17]. Furthermore, manually determining all possible flow facts of programs is
labor-intensive and error-prone [3].

In this paper, we address the problem of determining flow facts for WCET benchmarks
by presenting GenE1, a tool that provides both WCET benchmarks as well as their flow
facts. GenE is able to achieve this, because instead of analyzing existing programs, the tool
generates new benchmarks by relying on small building blocks (for which the flow facts are
known) and combining them in a way that allows the tool to automatically determine the
flow facts of the resulting complex benchmark. In order to create realistic benchmarks, the
building blocks used by GenE are typical design and implementation patterns that have
been extracted from existing real-world applications and WCET benchmark suites.

In particular, the contributions of this paper are:

GenE, a tool to automatically generate benchmarks, enabling users to conduct compre-
hensive evaluations of WCET analyzers.
An algorithm to create complex WCET benchmarks from program patterns that allows
to keep track of flow facts.
A discussion of how the flow facts provided by GenE can be used to determine the WCET
of a generated benchmark for both static and measurement-based timing analysis.

The remainder of this paper is structured as follows: Section 2 discusses a number of
general principles by which the evaluation of a WCET analyzer should be guided. Section 3
presents details of GenE and explains how our tool enables users to meet these principles.
Section 4 provides an overview of related work, and Section 5 concludes and gives an outlook
on future work.

2 A Vision for the Comprehensive Evaluation of WCET Analyzers

Conducting a comprehensive evaluation of WCET analyzers is a challenging task. In the
following, we identify a number of requirements that are crucial in this context and discuss
whether, and if so to which extent, they are met by existing approaches.

Large Number of Benchmarks. In order to get stable and comparable results, WCET
analyzers should be evaluated using a large set of different benchmarks. This minimizes the
risk that a few poorly-selected benchmarks lead to false conclusions.

In practice, the evaluation of WCET analyzers is usually performed based on an existing
benchmark suite [11, 12, 19, 20] or a set of manually-selected programs. As a consequence,
the number of benchmarks used typically ranges between one and around twenty. While

1 The name GenE originates from the term genie and the idea of Generating Evaluation sets.
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this may be sufficient for some use cases, in general it is desirable to have a greater number
of benchmarks. Considering the effort it takes to select/implement a benchmark, we argue
that this goal can only be achieved by generating benchmarks automatically.

Realistic Benchmarks. WCET analyzers should be evaluated under real-world conditions.
In consequence, in the optimal case, the benchmarks used are actual applications or at least
closely resemble them.

Many benchmark suites available have been composed with a focus on real-world pro-
grams and consequently meet this requirement. Of course, this is also implicitly true for
evaluations that are performed based on actual applications.

Wide Spectrum of Benchmarks. An evaluation should take into account that different
applications have different characteristics, in particular, with regard to complexity and pro-
gram structure. For example, while state-machine-like applications are usually built around
a central control loop, signal-processing applications in contrast often consist of a static
input array and nested loops. Introducing variety into the set of benchmarks offers the
possibility to properly reflect such differences. Furthermore, it allows to better compare the
individual strengths and weaknesses of the WCET analyzers evaluated.

The state-of-the-art Mälardalen WCET benchmarks [11] and the TCAS benchmark [9],
which was used at the WCET Tool Challenge 2014, cover both of the categories mentioned
above: state-machine-like applications (i.e., statemate, tcas) as well as signal-/image-
processing programs (i.e., fir, edn, jfdctint).

Preservation of Benchmark Properties. The selection procedure must take into account
that compiler optimizations may have significant impact on programs. As a result, the
timing analysis either needs to be performed on an already optimized representation of the
benchmark or needs to ensure that the benchmark properties are preserved by the compiler
across code transformations.

Having investigated several publicly-available benchmarks, we found that without further
modifications a significant number of Mälardalen WCET benchmarks is not resistant to com-
piler optimizations, by default, without setting additional preprocessor definitions: For ex-
ample, Clang optimizes five of these benchmarks (i.e., bs, expint, fibcall, janne_complex,
ns) to a single return statement. This is due to values stored in variables that have no effect
on the output enabling compilers to decisively change the structure of the program.

Availability of Benchmark Flow Facts. In order to be able to independently assess the
quality of a WCET analyzer, the flow facts of a benchmark should be known prior to the
evaluation. This way, a WCET analyzer can be rated based on how close its outputs are to
the actual results of a benchmark.

In general, there is a tradeoff between the demand to have realistic benchmarks and the
requirement to obtain flow facts, as precise numbers are usually not available for real-world
applications for reasons of complexity (see Section 1). As a consequence of the fact that,
as discussed above, many existing benchmarks focus on realistic use cases, evaluations are
therefore mostly based on a comparison of results, or rely on an absolute baseline that is
either determined manually or an over-approximation [3, 17]. That is, in order to evaluate
the impact of a novel feature, the WCET analysis is performed twice: once with the feature
enabled and once with the feature disabled. Although such an approach allows to assess the
relative improvement achieved by the feature, it is not suitable to determine the benefit of
the feature on a global scale.
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Figure 1 GenE automatically generates benchmarks by combining existing program patterns.

3 GenE

In this section, we present GenE, an approach and tool to address the problem of providing
benchmarks for the evaluation of WCET analyzers. GenE generates benchmarks automat-
ically and therefore allows a large number of benchmarks to be used, as they no longer
have to be selected or implemented manually. In order to provide realistic benchmarks,
the tool combines common building blocks (e.g., conditional statements and nested loops)
we extracted from real-world applications. By varying the selection and composition of pat-
terns, GenE supports the creation of a wide spectrum of benchmarks. To assemble
a new program, GenE relies on a deterministic procedure designed to ensure the preser-
vation of benchmark properties. In addition, this procedure also allows the tool to
determine the flow facts of a benchmark based on knowledge about its structure, enabling
GenE to guarantee the availability of benchmark flow facts for all programs created.

Figure 1 shows an overview of the GenE workflow: When a user requests the tool to cre-
ate a benchmark with certain characteristics (e.g., those of a signal-processing application),
the tool first selects suitable programs patterns from a set of pattern pools (see Section 3.1).
In the next step, GenE composes the actual benchmark by weaving the selected patterns
into a program (see Section 3.2). Based on the information which patterns have been se-
lected as well as knowledge about how they have been put together, the tool is then able to
track the flow facts for the generated benchmark (see Section 3.3).

3.1 Patterns and Pattern Selection
When generating a new benchmark, the first step performed by GenE is to automatically
select different building blocks, which in a later step are then combined to a complex pro-
gram. In order to enable the tool to create realistic benchmarks, we conducted a study of
existing programs used for the evaluation of WCET analyzers to identify recurring patterns.
The results of this analysis are a combination of design and implementation patterns de-
scribed in literature [7] as well as patterns directly extracted from the code of state-of-the-art
benchmark suites such as Mälardalen [11]. Listings 1 and 2 present two simple examples
of patterns used by GenE: a path pattern including a conditional branch and a parame-
terizable nested-loop pattern. As shown in the listings, both patterns comprise a number
of insertion points, which allows GenE to combine them with other patterns during the
benchmark-weaving step (see Section 3.2).

GenE manages the building blocks of benchmarks in a set of pattern pools, thereby
grouping together patterns with similar structure (e.g., array accesses in loops). Users are
able to implement new patterns and add them to existing pools; in addition, the tool also
offers the possibility to introduce new pattern pools. Pattern pools play an important
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Listing 1 Example of a path pattern
1 if( condition ){
2 // insertion_point_1
3 } else {
4 // insertion_point_2
5 }
6 // insertion_point_3

Listing 2 Example of a loop pattern
1 for(i = n -1; i >= 1; i--){
2 for(j = 0; j < i; j++){
3 // insertion_point_1
4 }
5 }
6 // insertion_point_2

role during the pattern-selection step: By assigning different weights to different pools,
GenE ensures that the benchmark generated matches the properties specified by the user.
For example, if a user requests a program matching the characteristics of a digital-signal-
processing application, the tool favors the selection of loop patterns operating on arrays, as
such patterns are typical for this category of use cases.

3.2 Benchmark Weaving
After the patterns have been selected, they are combined during the benchmark-weaving
phase to create new complex benchmarks. To address the problem of tracking flow facts (see
Section 3.3), GenE uses a formal grammar G that is considered by the weaving algorithm.
The grammar G contains the start symbol (S) and the empty string (ε). A point in the
control-flow graph of the generated benchmark where further expansions through state-
ments (e.g., assignments, loops, branches) are possible is called an insertion point (inp) (see
Listing 1 and 2). The following list is an excerpt of the production rules of G:

1. S 7→ FunctionBegin · inp · FunctionEnd

2. inp 7→ ε

3. inp 7→ Statement · inp

4. Statement 7→ Assignment

5. Statement 7→ IfBegin · inp · ElseBegin · inp · EndIf

6. Statement 7→ LoopHead · inp · LoopEnd
... (Additional production rules)

The start symbol is mapped to exactly one insertion point (1), which is surrounded by the
begin and end of the main function. Each insertion point can produce an empty element (2)
or a statement followed by a further insertion point. Production rule 3 ensures the sequen-
tial creation of patterns. The nonterminal Statement symbols can produce assignments,
branches, or loops (4–6).

The grammar describes what benchmarks can be produced whereas the weaving algo-
rithm presented in Listing 3 exemplarily illustrates how GenE uses this grammar to create
a benchmark. The weaving algorithm recursively inserts new patterns into insertion points.
The core concept of the algorithm is to bound the timing cost for inserted patterns from top
to bottom. There can be program paths through this pattern that are less expensive than
the worst-case path2, but the worst-case path must exactly lead to the predefined cost. All
operations in Listing 3 based on a seed value are prefixed with select_, concrete insertions
of code into the current selected insertion point are prefixed with emit_, and the costof()
function returns the cost of sequential statements. While descending the tree, the costs
are subdivided and used for further productions. The algorithm receives a list of available

2 It is assumed that the worst-case path is defined only through its concrete input values and no other
effects like concurrency or non-deterministic input/output operations.
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Listing 3 The recursive algorithm of GenE inserts patterns top-down into the benchmark.
1 function GenE(vars , cost)
2 if(cost == 0) return vars
3

4 switch ( select_production (cost ))
5 case Statement · inp:
6 statement_cost ← select_cost ∈ [0, cost]
7 new_vars ← GenE(vars , statement_cost )
8 new_vars ← GenE(new_vars , cost - statement_cost )
9 case Assignment:

10 (new_vars , operation ) ← select_assignment (vars)
11 emit_Assignment( operation )
12 case IfBegin · inp · ElseBegin · inp · EndIf :
13 condition ← select_condition (vars)
14 emit_IfBegin( condition )
15 if_cost ← cost - costof ( condition ) // if -case is worst case here
16 else_cost ← if_cost - ( select_cost ∈ [0, if_cost])
17 if_vars ← GenE(vars , if_cost )
18 emit_ElseBegin()
19 else_vars ← GenE(vars , else_cost )
20 emit_EndIf ()
21 new_vars ← merge_variables (if_vars , else_vars )
22 case LoopHead · inp · LoopEnd:
23 ...
24 return new_vars // return updated variables including value ranges

variables and the timing cost that must be produced by the emitted code for the respective
call of the function (Line 1). If no cost is available for productions, the algorithm returns
the current variables including their values (Line 2), which is the termination criterion for
the algorithm. Otherwise, a production is selected based on the distributable cost (Line 4).

Cost Distribution. The cost is subdivided into parts based on the seed. The parts are
used for generating a statement followed by an insertion point (Line 5–8). The concrete cost
modeling, which is necessary for determining worst-case paths including their input values,
is discussed in Paragraph 3.3.1.

Recursive Application. After determining the cost for the statement, GenE is recursively
applied (Line 7) with the respective cost. The rest of the distributable cost is used for a
second recursive call of the GenE function enabling sequences of pattern insertions.

Value Tracking. For computed values that are used, for example, for branch condi-
tions, the values of all variables and their availability must be tracked. For example, the
Assignment production can introduce a new variable that is computed from two further
variables (Line 10). Consequently, the updated variables are returned at the current inser-
tion point during the code-generation process.

3.3 Flow-Facts Tracking
Tracking the value ranges of variables is an essential mechanism for the flow-facts tracking
that takes place during the benchmark-weaving phase. These flow-facts include, for example,
feasible paths, loop bounds, or values triggering the most expensive path. The concrete input
value leading to the WCET is determined prior to the first call of the GenE function based
on the seed value. Consequently, all costs of feasible branches in the control flow must be
modeled according to the input variable taking computations on the input into consideration.

Reconsidering Listing 3, when selecting the branch condition during the application of
the If -Else production (Line 13), the current values of the used variables are taken into
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account and the costs of the branches (Line 15–16) are set according to the worst-case
input. The cost of each branch is again exactly bounded through the recursive calls of
GenE (Line 17, 19). The possible values of the variables are merged after emitting the
If -Else pattern and the values for the worst-case path are stored (Line 21).

The patterns hold their own (parameterizable) flow facts, for example, as formulas that
must be determined when the pattern is manually constructed. These formulas are consid-
ered when inserting the pattern and combined with the existing flow facts. For example,
reconsidering the parameterizable loop pattern shown in Listing 2, the loop bound of the
outer loop is n-1 whereas the parametric formula for the inner body is n*(n-1)/2. These
formulas are used when the pattern is woven into the code and the concrete flow facts are
determined with the concrete value of the variable n.

3.3.1 Cost Modeling
WCET analysis is typically split into two parts: a high-level analysis of flow facts and a
low-level analysis of the processor (i.e., instruction execution times, cache modeling). GenE
focuses on generating benchmarks with challenging, high-level flow facts and not on difficult
access patterns for cache analysis for a specific architecture. However, to distribute cost for
patterns, knowledge on timing costs of the target platform is necessary. GenE addresses
the cost-modeling problem through relatively modeling timing costs [23] and overweighting
the branches of determined worst-case paths with these relative costs of instructions.

Reconsidering the If -Else path pattern shown in Listing 1, the branch of the If case
is overweighted by a large factor. This factor for overweighting worst-case branches must
ensure that even if the Else branch only creates cache misses, the If branch is still more
time consuming. Furthermore, since GenE is implemented on a low-level intermediate
representation of program code (see Section 3.4), this representation can be attributed with
concrete cost information [6, 10] to further refine the cost model through target-specific
knowledge allowing smaller factors for overweighting the worst-case path.

However, for comparing the precision of WCET-analysis tools, an absolute WCET value
must be known for the generated path conditions. A discussion of how the flow facts provided
by GenE can be used to determine the WCET is described in the following paragraph.

3.3.2 Determination of the WCET
Detailed knowledge about the input values triggering the worst-case path is stored through
the value and flow-facts tracking. Consequently, the generated benchmark can be concretely
executed with the determined worst-case input leading to the actual WCET when measuring
the time of this execution. The concrete execution and precise measurement can be achieved
through two approaches. First, modern processors are equipped with highly accurate internal
time-stamp counters that allow precise time measurements without the need of external
measurement hardware. Second, if a cycle-accurate simulator for the targeted processor is
available, the actual WCET can be derived through a simulation, without requiring the
target hardware. Once the actual WCET of the generated program is determined, it serves
in combination with the known flow facts as a baseline for the evaluation of both static and
measurement-based timing analyzers. Precisely modeling the behavior of the processor is
not mandatory in such an input-oriented approach as long as the determined input values
lead to the WCET when executing the program with them, which is achieved through the
relative overweighting of branches. Consequently, complex hardware features (e.g., caching)
are implicitly respected through the concrete execution.

WCET’15
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3.4 Implementation

GenE is implemented with the framework of the Low Level Virtual Machine (LLVM) [18]
using its intermediate representation (LLVM-IR) for the following reasons:

The generated benchmarks are independent from specific processors to generate machine
code for various targets. The cost modeling is performed on basis of the LLVM and is
further improvable through target-specific knowledge [6, 10].
Although the LLVM-IR is independent of specific target machines, it can be precisely
mapped to machine code through control-flow relation graphs [14]. Using such graphs,
the knowledge of flow facts can be transformed from the LLVM-IR level to machine code.
If the language of the generated benchmarks is implemented on a higher abstraction
level, it is more difficult to track the control-flow relations during optimizing source-to-
source transformations. However, GenE focuses on generating benchmarks that look like
optimized code, since such code facilitates timeliness and unoptimized code is unrealistic
for real-world scenarios. To handle this problem, GenE uses optimized patterns that
are further combined. During lowering the LLVM-IR to machine code, the generated
benchmark must not be optimized further and must not change its control flow.

GenE implements several challenging program patterns taken from [7, 11] and is extensible
through the integration of additional patterns. Further benchmark suites, where patterns
with different characteristics are extractable for weaving new benchmarks, are MiBench [12],
BEEBS [20], or PapaBench [19].

To evaluate the effectiveness of our benchmark-generation algorithm, we run GenE with
different initial seeds and maximum distributable cost leading to different execution times.
With this configuration, GenE is able to generate 10,000 benchmarks within four minutes
on an Intel Core-i7 (8GB RAM). Although using a single integer input value with 32 bits,
232 control flows through the generated benchmark can be produced. This input space is
considered to be sufficiently large for WCET benchmarking.

4 Related Work

GenE is the first approach to automatically generate benchmark programs specifically tar-
geting the evaluation of WCET-analysis tools. However, the development of this benchmark
generator is strongly inspired by the Csmith [24] benchmark generator. Csmith targets the
domain of testing compilers for their correctness, for example, through generating com-
plex branch expressions. The concept of inserting patterns into existing code recursively
top-down and thereby creating new insertion points is similar to the recursive expansion
process of Dujmović [8] for generating performance benchmarks. Additionally to this ap-
proach, GenE tracks low-level flow facts and worst-case input values targeting the WCET
domain. In the domain of high-performance computing, the MicroProbe framework [2] is an
automated approach to micro-benchmark generation. The generated benchmarks are, for
example, utilized for energy-related characterization of a specific target architecture. We
consider benchmarks generated by GenE as suitable source for comparing the effectiveness
of existing WCET-analysis tools [1, 5, 16, 21].

To compare best the flow facts found by WCET analyzers, GenE must support to output
flow facts in a format that analyzers under evaluation can process, which is considered future
work. An example for such a flow-fact language is FFX [4]. Further discussions on suitable
annotation languages to provide flow facts are found in [15].
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5 Conclusion and Outlook

Comparing WCET-analysis tools through benchmarking is a challenging task since many
aspects must be considered, such as providing a wide spectrum and large number of bench-
marks for which the flow facts are available. We therefore propose the GenE benchmark
generator that is able to automatically generate benchmarks with diverse characteristics
including their flow facts. With knowledge about these flow facts and input values, a precise
WCET value can be determined of the generated benchmark, which serves as a common
baseline for timing-analysis tools. Therefore, we consider to use benchmarks built by GenE
together with generated flow facts, the input assignment, and the WCET as a suitable eval-
uation scenario for upcoming WCET Tool Challenges, in addition to existing benchmarks.

Especially for the upcoming challenges in multi-core WCET analysis of complex concur-
rency patterns, the GenE approach is useful to create a known baseline. This is due to
the fact that these benchmarks are more complex compared to benchmarks on single-core
processors. Consequently, manually determining the WCET of multi-core benchmarks is
inherently more labor-intensive than of single-core benchmarks. An incremental process is
imaginable where new challenging concurrency patterns are progressively integrated into
GenE and WCET tools catch up with the analysis of these patterns. To improve the ex-
isting prototype of GenE and to make it applicable for use, GenE will be made available
after incorporating feedback from the WCET community.
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