
AUTOBEST:
A United AUTOSAR-OS and ARINC 653 Kernel∗

Alexander Zuepke∗, Marc Bommert∗, Daniel Lohmann†
∗RheinMain University of Applied Sciences, Wiesbaden, Germany
†Friedrich–Alexander-Universität, Erlangen–Nürnberg, Germany

Email: {alexander.zuepke|marc.bommert}@hs-rm.de, lohmann@cs.fau.de

Abstract—This paper presents AUTOBEST, a united
AUTOSAR-OS and ARINC 653 RTOS kernel that addresses
the requirements of both automotive and avionics domains. We
show that their domain-specific requirements have a common
basis and can be implemented with a small partitioning
microkernel-based design on embedded microcontrollers with
memory protection (MPU) support. While both, AUTOSAR and
ARINC 653, use a unified task model in the kernel, we address
their differences in dedicated user space libraries. Based on the
kernel abstractions of futexes and lazy priority switching, these
libraries provide domain specific synchronization mechanisms.
Our results show that thereby it is possible to get the best
of both worlds: AUTOBEST combines avionics safety with the
resource-efficiency known from automotive systems.

I. INTRODUCTION

The recent ISO 26262 standard Road Vehicles – Functional
Safety [1] mandates “freedom of interference” of independent
software components in automotive. Similar to ISO 26262 and
IEC 61508, the safety standard RTCA DO-178B / EUROCAE
ED-12B Software Considerations in Airborne Systems and
Equipment Certification [2] puts high safety requirements
on airborne software. Yet, automotive and avionics develop-
ment follows different paradigms, which are also reflected
by the level of detail of the ARINC 653 and AUTOSAR-
OS standards: While ARINC tries to leave no room for
interpretation to cope with the strict requirements regarding
functional safety in avionic systems, AUTOSAR is targeted
at an extremely cost-sensitive domain and deliberately leaves
aspects as implementation-specific in order to allow for cost-
efficient implementations of its protocols and feature sets.

Major techniques used in the avionics domain to system-
atically guarantee freedom of interference are spatial and
temporal partitioning. Partitioning allows safe consolidation
of independent software modules of different provenance and
safety-criticality levels into isolated resource containers on the
same computing platform. While the ARINC 653 standard
explicitly defines a partitioning concept, embedded AUTOSAR
software is not currently executed in a partitioned environment.
Instead, AUTOSAR defines a weaker concept of optional
application separation using memory protection only, not built
into the foundations of the standard. However, due to the
increasing aspiration towards hyper-integration of independent
software modules of different criticality, magnitude, and quality
onto single electronic control units (ECUs), a demand for
safe, but still cheap, consolidation has arisen. The ARINC
partitioning concept is in general well-suited to satisfy this
demand.

∗ This work was supported by the German Federal Ministry of Economic
Affairs and Energy on the basis of a decision by the German Bundestag.

This gives rise to the questions (a) how a partitioning RTOS
approach in AUTOSAR could look like and what impact it
has, (b) whether both AUTOSAR- and ARINC 653-specific
requirements could be consolidated into a common base, and
(c) what could be done to address overheads introduced by
partitioning, which is especially important in such cost-sensitive
markets as automotive. To give an answer to these questions,
we present AUTOBEST, a united AUTOSAR-OS and ARINC
653 RTOS kernel that covers the requirements of both domains.
We provide a comparative analysis of both RTOS standards,
derive a common kernel design, and describe how we have
dealt with commonalities and differences of both worlds.

We mitigate performance overheads caused by partitioning
and restricting hardware access by two techniques: (i) lazy
priority switching improves performance of critical sections,
both for tasks temporarily disabling preemption in a partitioned
environment or following the OSEK priority ceiling protocol,1
and (ii) futexes (fast user-space mutexes) help to abstract higher
level synchronization means such as semaphores, mutexes, or
ARINC 653 queuing ports. Both techniques aim to improve
average-case performance by using relatively expensive system
calls into the operating system kernel only in the slow path.
Instead, atomic compare and swap operations are used in the
fast path (futexes), or the scheduling priority of a task is adapted
lazily on scheduling decisions only. Both techniques were
formerly not used in statically configured embedded systems.

Our results show that thereby it is possible to get the
best of both worlds: AUTOBEST covers both standards and
combines avionics’ safety with the resource-efficiency known
from automotive systems.

A. Contributions

In this paper, we present the AUTOBEST kernel and its
design considerations with the following contributions:
• By comparison of AUTOSAR-OS and ARINC 653 concepts,

we derive a common basis and subsequently show that it
is possible to implement a compliant microkernel on small
MPU-based platforms with low RAM requirements.

• We emphasize specific design patterns of which we expect
lowered efforts in certification processes of safety critical
systems build with AUTOBEST.

• With lazy priority synchronization, we present a perfor-
mance optimization approach to mitigate the performance
impact involved in partitioning, preserving system safety.

• We focus on futexes to implement higher-level synchroniza-
tion objects in user space in order to keep a small kernel

1 OSEK is the predecessor and a true subset of AUTOSAR-OS, so most
AUTOSAR-OS concepts are in fact inherited from OSEK.

footprint and provide a proper abstraction to be commonly
used by the hosted ARINC and AUTOSAR environments.
• We provide an estimation of the overhead involved in

our implementation of resource partitioning. To this end,
benchmark results on two processor architectures, ARM
Cortex-R4 and PowerPC e200, are provided and assessed.

AUTOBEST targets compliance with the basic operating-system
layer as defined by the AUTOSAR-OS 4.1 revision 3 specifica-
tion [3], as well as the Required Services defined in supplement
3 to part 1 of the ARINC 653 standard [4].

B. Organization of this Paper

We discuss the AUTOSAR-OS and ARINC 653 RTOS
specifications and their key design concepts in Section II. Then
Section III maps these OS concepts to the AUTOBEST kernel.
Lazy priority switching and futexes are discussed in Sections
IV and V, followed by a performance evaluation in Section
VI. We discuss our results in Section VII. Finally, Section VIII
lists related work, and Section IX concludes our findings.

II. RTOS CONCEPTS

In this section, we discuss basic AUTOSAR and ARINC
653 concepts as well as certain extensions to the standards.
We highlight their similarities and differences, and define the
terminology used in the rest of this paper.

AUTOSAR and ARINC use different (and sometimes
conflicting) naming for otherwise similar OS concepts: AU-
TOSAR refers to scheduling entities as tasks, while ARINC
653 names them processes to avoid confusion with the task
language construct in Ada. In this paper, we will use the
term task. When ambiguous, we refer to AUTOSAR tasks or
ARINC tasks. Also, we shorten ARINC 653 to just ARINC.
Further, service functions in AUTOSAR are specified in
CamelCase notation following a verb-object scheme, such as
GetTaskID(), while ARINC uses underscores and capital
letters, like in GET_PROCESS_ID().

A. Priority-based Scheduling

For scheduling on a single processor (AUTOSAR) or in
the scope of a single partition (ARINC), both standards use
strict priority-based task scheduling with FIFO ordering on a
priority tie. Higher priority values also reflect higher scheduling
priority. Task scheduling is preemptive, that is, an arriving
higher priority task will interrupt a currently executing lower
priority task. Also, tasks can raise their effective scheduling
priority at run time to prevent preemption.

For scheduling on multiple processors, AUTOSAR defines
independent scheduling per core with sets of tasks and interrupt
service routines (ISRs) bound to a configured processor.
However, in compliance to configured application rights, tasks
on different cores can interact by activating tasks or setting
events across cores. For inter-core synchronization, AUTOSAR
specifies spinlocks, but is not fully set on their semantics and
the underlying implementation [5].

On the ARINC side, an execution environment using more
than one processor in a single partition is not yet standardized.
Nevertheless, it is possible to schedule ARINC 653 partitions
independently on different cores.

WAITING

TERMINATED

READY

RUNNING

terminate/

STOP_SELF

activate/

START

wait/

SUSPEND_SELF

start/

START

preempt

release/

RESUME

 terminate / STOP

 (BY OTHER TASK)
 DELAYED_START

(PERIODIC TASK)

 terminate / STOP

 (BY OTHER TASK)

 SUSPEND

 (BY OTHER TASK)

 SUSPEND

(BY OTHER TASK)

Figure 1: Task states and state transitions of AUTOSAR and
ARINC 653: Transition labels in capital letters refer to the ARINC
task API, whereas dashed lines express transitions restricted to the

extended task model of ARINC 653.

B. Task Models

Both standards also define similar task models with four
execution states per task, as depicted in Figure 1:
• RUNNING for the currently executing task on a processor.
• READY for tasks eligible for execution, but currently not

selected by the scheduler.
• WAITING for tasks not running while waiting for an

external event (in the abstract sense).2 When the event
is signalled, tasks become READY. We will use the verb to
wait to denote a transition into WAITING state, while to
release expresses a transition from WAITING to READY
state.

• TERMINATED for tasks that have completed execution
and wait to be re-activated. Semantically, both standards
define this state, but the naming diverges: AUTOSAR calls
it SUSPENDED, in ARINC’s terminology it’s DORMANT.
The TERMINATED state is also the initial state of a
task. The verb to terminate expresses a transition to
TERMINATED state, and to activate is used for the
transition from TERMINATED state to READY state.

However, the allowed state transitions differ between AU-
TOSAR and ARINC. Except for the purposes of activating and
releasing other tasks, AUTOSAR restricts the scope of the task
API to transitions of the currently RUNNING task only. On
the other hand, ARINC extends AUTOSAR capabilities and
offers much more control over other tasks, such as external
task termination or enforced waiting states:
• START() and STOP_SELF() for task activation, similar to
ActivateTask() and TerminateTask() in AUTOSAR.
• STOP() to terminate other tasks than the caller.
• DELAYED_START() to activate a task after a given wait

time. This leads to the transition sequence TERMINATED
→ WAITING → READY for the target task.

2Both AUTOSAR and ARINC also define an event mechanism with different
semantics.

• SUSPEND() and SUSPEND_SELF() enforces a task to be
exempted from scheduling and enter WAITING state, while
RESUME() reverses suspension.
• An optional relative timeout with nanosecond resolution can

be supplied to all potentially waiting operations, allowing a
transition back to READY state when the timeout expires.
• Additionally, ARINC supports changing the scheduling

priority of other tasks at run time.
Neither of these ARINC-required extensions conflict with
AUTOSAR.

C. Task Types, ISRs, and Hooks

Both systems handle different types of tasks: ARINC sup-
ports periodic processes with built-in mechanisms to track tasks’
periodic activations and deadlines, and aperiodic processes
for even-driven workloads. On the other hand, AUTOSAR
distinguishes between basic tasks and extended tasks. While
extended tasks can wait on an AUTOSAR event, basic tasks
cannot enter the WAITING state. Instead, basic tasks support
a concept named multiple activation where pending activations
are queued up to a configured upper limit to immediately restart
the tasks upon completion. Combined with non-preemptive
scheduling, this allows stack sharing between basic tasks
on systems where memory resources are tight. Different
AUTOSAR conformance classes further allow implementations
to remove support for extended tasks or to simplify ready queue
management operations to further save memory for small-scale
automotive systems.

Additionally, automotive systems handle interrupt-triggered
workloads, therefore the specification also discusses interrupt
handling and the interaction of interrupt service routines (ISRs)
with other tasks. AUTOSAR classifies interrupt handlers into
two categories: ISRs of category 1 run outside the scope of
the operating system and interrupt normal execution without
impacting scheduling. Contrary, ISRs of category 2 are handled
like high priority pseudo-tasks and may interact with other
(normal) tasks in the system. The AUTOSAR interrupt concept
further allows higher priority interrupts to preempt lower
priority ones, therefore ISRs fit into the AUTOSAR task state
model as a special kind of basic tasks.

In contrast, interrupt handling is kept outside the scope of
ARINC, as ARINC neither specifies API services for interrupt
handling nor an interrupt model at all. Instead, interrupt
handling can be provided by vendor specific extensions to
called system partitions. ARINC only demands that interrupts
must not interfere with partitioning.

The remaining entities in both systems are hooks and
callbacks used for error handling, system tracing, startup,
shutdown, and further notification means. Conceptually, these
hooks are implemented as pseudo-tasks and run uninterruptedly
at a priority level above all tasks and ISRs. In both systems,
the hooks related to error handling, namely AUTOSAR’s error
hook and protection hook and ARINC’s error handler process,
stand out and have special privileges to change other task’s
state or influence scheduling.

D. Task Synchronization, Notification, and Activation

For critical sections, both systems allow to disable pre-
emption of the currently running task. ARINC’s LOCK_-
PREEMPTION() and UNLOCK_PREEMPTION() support nested
critical sections by using a global preemption counter, which,

Figure 2: In ARINC 653. the major time frame describes a recurring
cyclic time partition schedule. Each partition has one or more time
partition windows (time slots) in the schedule. Partition 1 has two

windows to support task periods of half the major time frame.

Figure 3: AUTOSAR schedule tables comprise multiple expiry
points which in turn activate tasks or set events. Schedule tables

either repeat or have one-shot characteristics.

when nonzero, prevents preemption. This relates conceptually to
AUTOSAR’s RES_SCHEDULER. Using AUTOSAR resources, the
two operations GetResource() and ReleaseResource()
temporarily raise a task’s scheduling priority to the resource’s
statically configured priority level in order to access a resource
exclusively or to even prevent preemption in case of the highest
priority resource RES_SCHEDULER. To form groups of tasks
that do not preempt each other, so called internal resources
boost a basic task’s priority to a configured ceiling priority upon
being scheduled the first time. Resource access can be nested,
defining an immediate priority ceiling protocol named the OSEK
Priority Ceiling Protocol. Additionally, AUTOSAR specifies
services to enable and disable interrupts. Similar services are
not defined by ARINC for normal applications.

Next to the priority ceiling mechanism for synchronization,
AUTOSAR provides an event mechanism for notification. Each
task can suspend execution and wait for any event in a set of
events to be signaled by other tasks.

Contrary, ARINC provides more sophisticated means: on
the lower levels, it supports counting semaphores for synchro-
nization and events for notification. With ARINC, waiting on
events is restricted to a single event at a time. Further two
unidirectional message-passing interfaces are defined between
tasks: Buffers queue messages up to a certain configured
size/depth with optional waiting on full/empty conditions of the
queue. Blackboards provide asynchronous multicast behavior:
Multiple tasks can read the latest message until it is cleared.
Similarly, ARINC provides queuing ports and sampling ports
with similar queuing/non-queuing semantics for communication
between tasks of different partitions. Finally, all synchronization
objects in ARINC can be instantiated with either a FIFO or
priority-ordered queuing discipline of its waiting tasks.

AUTOSAR also defines higher-level message-passing in-
terfaces, but these are built on top of the event mechanism
and are therefore not part of AUTOSAR’s operating-system
specification. For example, AUTOSAR’s Run-Time Environment
(RTE) generates communication code to transfer data between
different applications, regardless of whether the applications
reside on the same or different ECUs.

Both standards support time-triggered and event-driven task
activations. ARINC addresses both paradigms in the task model
with the concept of periodic and aperiodic processes. The
concept of time-triggering further extends to time partitioning,
as Figure 2 shows. Time partitioning allows the execution of
sets of temporally isolated tasks in predefined time partition
windows (time slots) in a recurring cyclic time partition
schedule named the major time frame. Because of that, periodic
processes in ARINC have to synchronize their execution with
the global time partition schedule, for example a task’s period
must be a multiple of its time partition’s period.

In contrast, AUTOSAR was mainly designed with event-
driven workloads in mind. Here, concepts for time-triggered
workloads are mapped onto event-based mechanisms. For time-
triggered tasks, AUTOSAR defines cyclic schedule tables to
release tasks at certain defined expiry points, as Figure 3 shows.
The schedule tables are driven by counters of fixed or variable
events in a vehicular environment, such as cyclic messages
between ECUs or the current rotational speed of an engine.
Additionally to schedule tables, AUTOSAR supports alarms,
which are conceptually simplified versions of the schedule
tables with just one expiry point.

Finally, both systems define similar techniques to detect if a
task misses its deadline by monitoring certain state transitions
of a task and accounting its execution time. ARINC supports
built-in deadline monitoring for all kinds of tasks. The timing
protection facilities in AUTOSAR additionally detect violations
of a task’s configured inter-arrival time or if a task exceeds its
assigned execution time budget.

E. Isolation and Protection

The concept of robust partitioning is deeply embedded
into the ARINC 653 standard, with the goal of separation of
applications of different criticality levels for fault isolation
reasons in avionic systems. A partition in the abstract sense
defines a set of tasks related to certain functionality, separated
and isolated from tasks in other partitions. Partitioning is
provided on two levels: spatial or resource partitioning restricts
the scope of resources a task can access to its own partition
with the exemption for explicitly configured communication
channels to other partitions, while time partitioning defines
strict temporal isolation, as described in the previous section.
Additionally, ARINC defines a concept for health monitoring
(HM): On exceptions or deadline misses, the OS kernel checks
statically configured HM tables, and then performs a configured
action, such as a shutdown/restart of the faulty partition or the
entire system, or forwarding the error to the application-level
error handler process.

For spatial partitioning on the automotive side, AUTOSAR
provides an optional application concept for grouping tasks
into applications, based on the OSEK extension protected
applications [6]. This concept basically resembles ARINC
resource partitioning, although it is less strict and not funda-
mentally applied in AUTOSAR. AUTOSAR applications are
distinguished into trusted and non-trusted ones, where trusted
applications may run in supervisor mode. With the AUTOSAR
timing protection, an optional mechanism is specified to monitor
execution time budgets, resource access durations and task inter-
arrival times in order to detect timing errors and consequently
restart tasks, applications, or the ECU.

F. System Configuration and Software Development Process

In general, both systems follow similar concepts to maintain
the software life cycle in vehicular and airborne systems,
using modular structures and clearly defined interfaces between
(software) components: AUTOSAR defines a static configu-
ration approach where the whole system configuration with
all resources is known at compile-time. System configuration
can be considered as a process with a fine-granular tuning
possibilities on all levels of the system. Application integrate
into this picture as configurable components and code generators
are used to tailor a specific system and omit unused features.

In contrast, ARINC defines different roles for configuration
and development for an even higher amount of portability
and code reuse: the system integrator defines the partition
environment by statically assigning resources to partitions
and defining explicit communication channels between the
partitions, and the application developer implements the
application on the abstract interfaces provided by the integrator.
Application startup differs in such a way that avionics software
allocates and configures all required resources dynamically at
partition startup in run time, not at compile time. But since the
maximum amount of resources provided to each partition is
bounded and each partition’s configuration is defined at compile
time, ARINC effectively supports a static configuration as well,
and dynamic resource allocation is reduced to a configuration
check only.

Additionally, AUTOSAR provides a built-in application
mode concept to activate different subsets of tasks at startup
using an autostart mechanism to switch between different
setups for different use case scenarios, like parking/driving.

G. Discussion of the RTOS Concepts

The comparison shows that both standards define compatible
task models. While ARINC extends and completes the task
transitions defined by AUTOSAR, AUTOSAR allows to further
restrict the task model in favor of small scale systems. We omit
these memory saving optimization and focus on AUTOSAR’s
largest conformance class ECC2 only.

From an implementer’s point of view, AUTOSAR exposes a
much simpler structure than ARINC, as AUTOSAR’s concepts
of ISRs and hooks map directly to a processor’s hardware
capabilities for interrupt and exception handling. AUTOSAR
implementations often maintain state data only for tasks and
offload handling of ISRs to the processor’s interrupt controller.
In fact, the AUTOSAR OS abstraction was designed to be light-
weight and tailorable to exploit existing hardware as much as
possible. Additionally, static task state data like task type, entry
point, or stack pointer, is known at compile time already.

For each kind of AUTOSAR task, this run-time state data
comprises:
• the task’s current scheduling priority and scheduling state,
• the position in the ready queue (e.g., a linked-list node),

and
• a set of saved registers (the task’s execution state) while

the task is waiting or got preempted.
For an extended task, an implementation has to provide

two additional bitmasks for the task’s event state, that is, one
for the task’s pending events, and one bitmask for the events
the task is waiting on.

For a basic task, even less additional state has to be

maintained. The only challenge for an implementation is to
track the task’s pending activations correctly, for example by
keeping multiple nodes in the ready queue.

In contrast, ARINC requires much more state data per task:
• As tasks are created dynamically at partition startup, entry

point and stack pointer become dynamic state as well.
• Termination or priority changes of tasks other than the

current one require removal of tasks from the ready queue
from arbitrary positions.
• Tasks can wait with timeouts. This requires management

of pending timeouts and saving a task’s requested expiry
time.
• Additionally, tasks can wait on an ordered wait queue of

an ARINC synchronisation object, such as, a semaphore.
• For periodic execution, a task needs to track the time of

its last activation to calculate the next activation point.
• Finally, ARINC deadline management requires tracking of

a task’s deadline expiry time.
House-keeping the additional ARINC-related data requires

significantly more memory per task, and, while neither of
these features requires a complicated implementation, the
overall implementation of an ARINC-compatible system will
be obviously more complex than an AUTOSAR one. However,
if we consider adding the timing protection facilities to
AUTOSAR, both implementations come closer again.

On the other hand, from the perspective of an ARINC
implementation, compatibility to AUTOSAR’s task model needs
just minor additional adjustments to support multiple activations
for basic tasks. We assume such an ARINC implementation to
also support some kind of interrupt handling for device drivers
in system partitions, providing similar interaction capabilities
as AUTOSAR requires.

To summarize this discussion, AUTOSAR and ARINC have
a lot in common, and where their concepts differ, they do not
conflict. The main difference is on the cultural side: while in
ARINC partitioning is rooted in the foundations of the system,
it is just an optional feature for AUTOSAR. In general, the
requirements in ARINC are more strict than in AUTOSAR, but
AUTOSAR concepts can be mapped to ARINC ones. From
the operating system perspective, we can consider ARINC a
superset of AUTOSAR.

III. AUTOBEST ARCHITECTURE

This section discusses the architecture of AUTOBEST. We
describe our goals and design considerations for AUTOBEST,
followed by a description of the kernel, our ARINC and
AUTOSAR abstraction, and give details on the implementation.

A. Motivation and Goals

Targeting automotive and industrial markets, we designed
AUTOBEST to execute software of different safety and security
levels on the same MPU-based platform. To ease certification
efforts, we wanted to have a minimalistic implementation with
strict partitioning build into the foundations of the system.

Initially, support for ARINC 653 was not a requirement,
but ARINC’s inter-partition communication facilities (queuing
ports, sampling ports) are attractive for decoupling of data
flow for security reasons. Therefore, it became important for
AUTOBEST to keep the kernel API agnostic and move RTOS
API differences out into user space, where possible. This
also allows to implement further threading APIs in the future.

Further, partitions should use all the core services to prevent
dead code.

Regarding system configuration, we follow ARINC’s ap-
proach of distinct system integrator and application developer
roles, as AUTOSAR’s system configuration model can be fitted
into ARINC’s, but not vice versa. Also, we wanted to use
code generators as much as possible. However, generated code
requires extensive testing, code reviews, and coverage analyses.
Therefore, the tools emit configuration data only, comprising
arrays of C language data structures and driving the internal
state machines, such as for AUTOSAR schedule tables. This
also applies to conditional code compilation, which we tried
to reduce to a minimum in AUTOBEST. Having configuration
data abstracted from the program code also helps during re-
certification of a project where only small parts of the system
change and a full re-certification of the other components is
not necessary. Lastly, all components can be linked to different
configuration sets for testing purposes or coverage analyses.
While this approach is standard in avionics, it is still novel in
the automotive domain.

B. Design Considerations: Hypervisor vs Microkernel

As we selected partitioning as the “boundary” for protection
means, all tasks of a partition can affect each other, similar to
related threads in a process of larger operating systems. This
requires a design where the kernel is at least in charge of
partition scheduling, programming the MPU, and management
of shared resources, especially the interrupt controller. The rest
could be implemented in either AUTOSAR- or ARINC-specific
libraries that complete the respective APIs on a common kernel
interface.

This leaves open whether other critical operating-system
services, such as the task scheduler, could be implemented in
user space as well. So we evaluated the following two design
approaches for AUTOBEST:
• A para-virtualizing hypervisor that schedules virtual

machines based on the time partition schedule and exposes a
virtual CPU (vCPU) interface [7]. Partitions then implement
RTOS-specific task scheduling in user space. Interrupts are
received by the hypervisor and injected into the associated
virtual machines through a virtual Interrupt Controller
(vINTC) interface.
• A microkernel that schedules both time partitions and tasks,

with the kernel offering a base abstraction of both AU-
TOSAR and ARINC APIs while implementing non-critical
features in user space. With this approach, interrupts activate
high priority pseudo-tasks in the associated partitions.

Additionally, both approaches must support drivers and inter-
rupts in both supervisor mode and user mode, for time critical
mechanisms demanding short response times and devices shared
between partitions, respectively.

The hypervisor approach is appealing for three reasons:
Firstly, the vCPU interface with its hardware-like abstractions
simplifies porting of existing operating-system code to AU-
TOBEST and keeps the code running in supervisor mode as
small as possible. Secondly, user code required to perform
certain operations in supervisor mode can be examined using
static code analysis methods at system integration time to
not compromise partitioning [8]. Thirdly, a vCPU and vINTC
architecture resembling hardware virtualization capabilities built
into today’s desktop CPUs have a high probability to appear

user mode
supervisor mode

Architecture
Layer

Common Kernel Configuration

 Board Abstraction

AUTOSAR
Application

AUTOSAR
Library

Configu-
ration

ARINC 653
Application

ARINC 653
Library

Configu-
ration

Processor

Figure 4: AUTOBEST system structure. Partitions of different type
execute in user mode on top of a small microkernel, using specific

libraries to abstract the desired RTOS API. Partition code and kernel
are distinct binary images comprising linked object code components.

in tomorrow’s embedded processors as well and, thus, provide
an easy upgrade path for future compatibility.

On the other hand, typical automotive microcontrollers
support prioritized interrupt handling, which interferes with
time partitioning: While a partition is not running, interrupts
arriving in the mean time must be queued. When the related
partition is scheduled again, they have to be injected in the
order of their priority. Assuming a high interrupt load, the
necessary facility for interrupt ordering and individual masking
eventually resembles the priority-ordered ready queues used for
task scheduling. Thus, the para-virtualizing hypervisor model
requires a two-level scheduler for partitions and ordering of
ISRs in the kernel and an additional task scheduler in user
space. Due to concerns about memory consumption and system
complexity, we opted for the microkernel model instead and
implemented full task scheduling in the AUTOBEST kernel.

Figure 4 depicts the resulting system structure of an
AUTOBEST system executing an AUTOSAR and an ARINC
partition. The kernel and the applications running on top
are independently compiled and linked binaries. Each binary
comprises multiple components, abstracting configuration data,
platform and architecture dependencies, and library and appli-
cation code.

C. AUTOBEST Microkernel

The AUTOBEST microkernel implements a superset of both
AUTOSAR and ARINC task management and scheduling
services, while keeping the differences of the RTOS APIs
out of the kernel. To achieve this, error checks demanded by
AUTOSAR or ARINC that do not affect the integrity of the
kernel (and thus partitioning) were moved into user space.
Similarly, return codes of kernel services are translated to the
right domain specific variants by the libraries. As result, the
kernel supports all task types, states, and transitions listed in
Section II using an RTOS-agnostic API.

To ensure separation of partition resources, the kernel API
uses indirections when addressing resources: using relative
indices, partition code can only access a limited, but contiguous
subset of the kernel’s configuration data, such as the partition’s
task in the kernel’s task state array. This kind of indirection is
used in all APIs of the kernel, resulting in a zero-based local
name space for each partition. Thus, for example when adding

more tasks to a partition, task IDs in unaffected partitions do
not change. This eases re-certification.

The kernel provides a futex mechanism to allow the
implementation of all ARINC task synchronization means
(semaphores and events, buffers and blackboards, queuing and
sampling ports) in user space. The futex mechanism abstracts
the two operations offered by all means, namely to wait with
an optional timeout on the object, or to notify (and effectively
release) other tasks already waiting. In ARINC, all services
expose similar semantics: each synchronization object supports
either a FIFO or priority ordered queuing discipline of its
waiting tasks, with the discipline being defined at partition
initialization time. The futex mechanism is discussed in Section
V in detail.

Of the synchronization means required for AUTOSAR, the
AUTOBEST kernel implements events, alarms, and schedule
tables at kernel level. While AUTOSAR events could have
been abstracted with futexes as well, we opted for an in-kernel
implementation due to the tight coupling of events to alarms
and schedule tables to keep the implementation simple.

Both AUTOSAR resources and the services to enable/dis-
able interrupts are mapped to priority changes, where the
RUNNING task temporarily raises its scheduling priority to
a defined priority level above all other tasks or even ISRs.
Similarly, ARINC’s preemption control mechanism also uses
priority changes to implement critical sections. As these
operations are used frequently by application code, AUTOBEST
employs a lazy priority switching scheme improving the
performance of temporary priority changes, as further discussed
in Section IV.

D. Time Partitioning and Scheduling

Time partitioning in AUTOBEST is implemented using ded-
icated ready queues per partition. The current implementation
of the time-partition scheduler switches partitions windows
according to a pre-configured cyclic TDMA (time division
multiple access) schedule. This schedule is implemented by
using a globally active AUTOSAR schedule table comprising
special expiration points to switch time partitions. Alternatively,
time partitioning can be configured off, allowing the partitions
to share ready queues and a single priority space for all tasks.

Ready queues are represented by an array of doubly-linked
lists for 256 priority levels. AUTOSAR’s simpler task transition
model would have allowed AUTOBEST to use single-linked
lists, but the ARINC services to terminate other tasks than the
currently executing one or to change the scheduling priority
of arbitrary tasks make the use of doubly-linked lists more
reasonable.

E. ARINC Abstraction

The ARINC library mainly translates the ARINC 653
process API to the according kernel services and uses futexes
to implement the ARINC specific intra-partition commu-
nication mechanisms, namely events, semaphores, buffers,
and blackboards. As these objects are used for partition-
internal synchronization only, ARINC does not require a static
configuration for them. An implementation has to just provide
enough memory to create these objects. Here, the system
integrator needs to assign enough memory and futex wait queues
to the partition, without further specifying their purpose, and
the partition takes care of the creation of the objects itself.

Inter-partition communication channels need to be checked
and validated at system startup. Therefore, the library checks
if the attributes of the requested queuing or sampling ports
match the configuration. Both queuing and sampling ports
are eventually implemented using shared memory and futex
wait queues between partitions, similar to the process local
communication mechanisms. Section V explains the protocol
in detail.

However, process initialization deviates from ARINC: as
the kernel cannot dynamically create tasks at run time, all
processes need to be properly configured upfront in the system
configuration. Thus, ARINC’s CREATE_PROCESS() reduces to
a check against the partition’s configuration.

In summary, ARINC services implemented in the user space
library either wrap kernel services, take care of initialization
and configuration checking, or provide communication and
synchronization means built upon lazy priority switching and
futexes.

F. AUTOSAR Abstraction

The AUTOSAR library follows the spirit of the ARINC
library: it mainly performs translation of kernel services to
AUTOSAR ones and maps AUTOSAR resource handling and
interrupt enable / disable services to priority changes of the
currently executing task.

The main difference to the ARINC library implementation
however is that the AUTOSAR library checks all error codes
and invokes a configured error hook when necessary. On errors,
the library functions prepare an error record comprising the
arguments and fault condition of the failed service call and
activate the error hook pseudo-task, which executes at highest
priority in the partition. Thus, error handling is kept in the
faulting partition. However, the invocation of the error hook is
more expensive compared to solutions just disabling interrupts
and calling the configured error-routine directly.

On top of AUTOSAR library services, AUTOSAR RTE
services provide standard communication means. Communi-
cation between different partitions is currently implemented
via a virtual CAN bus driver located in the board component
of the kernel or via shared memory and cross-partition event
handling. However, we plan to adapt the RTE to use a futex-
based approach as well.

G. System Configuration

Based on each partition’s configured memory requirements,
configuration tools allocate resources, assemble the system’s
MPU configuration, and generate linker scripts for the appli-
cations. Finally, an integration tool assembles the partition
binaries and the kernel into a bootable image.

In contrast to full-blown virtual memory management,
restrictions of the MPU hardware, such as the limited number
of MPU windows or special alignment restrictions, often limit
the scalability of this approach. For larger systems the integrator
has to take this into account and can influence the memory
allocation steps and simplify the memory layout manually.

Because ARINC and AUTOSAR specify different config-
uration formats, the tools translate and integrate the domain
specific configuration data into our own internal representation
of the system.

H. Device Drivers and Interrupt Handling

AUTOBEST supports implementation of ISRs at both kernel
level and in user mode. On dispatching interrupts, the kernel
invokes a configured callback for the current interrupt source.
The callback either handles the interrupt request directly in the
kernel, or masks the interrupt source and activates an associated
ISR task. ISR tasks are scheduled like normal tasks in their
associated partition with the only difference that the interrupt
source is unmasked again on task termination. Conceptually,
these threaded interrupt handlers in user space can be used to
implement AUTOSAR category 2 ISRs only, while interrupts
handled at kernel level cover category 1 and 2 ISRs. However,
the scope is different: interrupts handled at kernel level have
global scope and affect the whole system, while interrupts at
user level only affect their related partition.

For flexibility reasons and due to hardware constraints,3
AUTOBEST supports device drivers also in both supervisor
mode and user mode.

To access kernel-mode drivers from partition code,
a system-call gateway using static access tables invokes
the configured callback. In the AUTOSAR library, the
CallTrustedFunction() service is mapped to this interface.
The access tables can be configured differently for each partition
to enable fine-grained access permissions.

For communication to drivers implemented in different
partitions in user space, the kernel’s existing synchronization
and notification mechanisms are sufficient. Statically configured
shared memory regions between different partitions allow user-
space code to transfer larger amount of data without involving
the kernel. After transfer, one partition notifies a task in the
other partition through explicitly configured channels, a shared
wait queue or an inter-partition event, for instance. Section V
discusses this in detail.

I. Partition-Preemptive Kernel

Most AUTOSAR services are designed to have a constant
run-time behavior by affecting only a single entity. Thus, from
the AUTOSAR perspective, this would allow to use a non-
preemptible kernel model using a single kernel stack to achieve
short and bounded execution times for all operations. However,
operations related to partition startup and shutdown, such as,
terminating all tasks, or a request to wake more than one task
waiting on a futex take an extraordinary long time compared
to other operations.

By default, the kernel is non-preemptible during most
system calls, but when performing long running operations,
the kernel becomes preemptible at partition level and does not
delay execution of the next partition on a time partition switch.
We implemented explicit preemption points after notification
or termination of a task and use dedicated kernel stacks per
partition and an extra interrupt stack for interrupt handling in
kernel space.

On scheduling any task of a previously preempted partition,
the kernel first completes any ongoing operation in the kernel
before returning to user space and accepting new system calls.
Thus, time partitioning switches and category 1 interrupts are
not affected by long-running operations.

3 On some embedded microcontrollers, write access to hardware IO registers
is only allowed in supervisor mode, matching the safety model of AUTOSAR.

J. Implementation Details

For the implementation of AUTOBEST, memory usage of
ARINC task attributes was our biggest concern: task periods,
timeouts, deadlines, time capacities, and phases to the start
of a partition window are specified in a 64-bit signed integer
format with nanosecond resolution as required by ARINC.

While a task’s period and time capacity are set at task-
configuration time (and, thus, can be kept in ROM), the other
three attributes can change at run time. Additionally, as tasks
can wait on a wait queue with timeout and simultaneously have
deadline monitoring enabled, three queues are needed. When
using pointer-based doubly-linked lists, this consumes 48 Bytes
of RAM per task.4 Fortunately, tasks cannot wait for a timeout
and be on the ready queue at the same time, thus the list nodes
can be shared. Together with event masks and other internal
data, this yields an overall requirement of 64 Bytes of RAM
per task, plus an architecture specific register save area when
the task is preempted.

The second most important memory hogs are the ready
queues kept per time partition. With 256 priority levels and
node pointers for timeout and deadline management, this adds
up to a requirement of more than 2 KiB RAM per time partition.

Finally, stacks require memory as well: one small kernel
stack per partition and a dedicated stack for interrupt handling.

IV. LAZY PRIORITY SWITCHING

When AUTOSAR resources are used, each time a critical
section is entered or left the current task’s scheduling priority
needs to be boosted temporarily. Using system calls to change
a task’s scheduling priority poses a significant overhead,
especially if the system call costs are high, the time spent
in the critical section is short, and the executing task is not
interrupted in the critical section. Therefore, it is worthwhile
to optimize priority changes.

Instead of immediately changing a task’s scheduling priority
at the beginning and the end of the critical section using two
system calls, we consider the following lazy approach: If no
other task arrives while the task is inside a critical section, the
system calls could be omitted. Instead, on entering the critical
section, the task indicates a request to update its scheduling
priority to a desired target priority level in a variable named
uprio in user space. Conversely, the task revokes the request
when leaving the critical section by restoring uprio’s former
value which reflects the task’s normal scheduling priority. Now,
as long as the task is not interrupted in the critical section, the
priority change is not observed by the kernel.

However, when the task is interrupted in the critical section
and the kernel checks if the task needs to be preempted,
the kernel considers the task’s updated scheduling priority
uprio instead. Having now synchronized the kernel’s view of
the scheduling priority of the task, kprio, the kernel either
preempts the task at its new priority level, or lets it continue to
execute. In any case, the task in user space needs now to check
if it was interrupted in the critical section. After reverting the
priority change and restoring the previous value of uprio, the
task checks if kprio > uprio, and if true, the task issues a
system call to enforce synchronization of kprio and finally
switch back to its original priority.

While this protocol reduces the number of required system

4 Three 64-bit time values and three list nodes of two 32-bit pointers each.

calls from two to at most one in the interrupted case of a
single critical section, we still can do better. We introduce a
new variable nprio, where the kernel reflects the priority of
the next eligible task the scheduler would select for execution.
The kernel updates nprio every time a new task becomes
ready. If no other task is ready, the kernel uses the value
0. Now, when leaving the critical section and after lowering
the priority, the task in user space checks nprio > uprio
instead. If true, the task issues a system call for preemption, as
another task definitively has a higher scheduling priority. This
optimization further reduces the number of required system
calls, especially in nested critical sections, a pattern found for
example when using nested AUTOSAR resources. System calls
are now required only in the case of preemption and not just
interruption as before.

In AUTOBEST’s implementation of this protocol, each
partition uses its own copies of uprio and nprio for MPU
programming reasons, where both variables are kept in the
partition’s data segment for fast access. Also, when evaluating
uprio, the kernel bounds the user-space provided priority value
against a task’s configured maximum priority limit.

Regarding functional safety, tasks must implement the
protocol correctly and issue a system call when a preemption
condition is detected on lowering the priority. If not, the effect
is the same as if a task would not leave its critical section in
the first place and delays scheduling of other high priority
tasks. However, this kind of error would be considered a
normal programming error, similar as AUTOSAR requires
that resources need to be acquired and released in a properly
nested fashion. Additionally, the priority upper bound limits
the effect such an error would have and AUTOSAR timing
protection or ARINC deadline detection means could detect
the condition and terminate the runaway task. In no case, such
an error would be propagated beyond the task’s time partition.

Lastly, the kernel reveals in nprio that other lower-priority
tasks became ready, which could be a problem from a security
point of view. However, the system integrator should place
security-sensitive applications into dedicated time partitions
then, as each partition has its own private ready queue and
instance of nprio.

A detailed analysis of the presented protocols can be found
in our previous work [9].

V. FUTEXES IN STATICALLY CONFIGURED SYSTEMS

The Futex mechanism in Linux [10] [11] describes a
lightweight way to implement POSIX thread synchronization
objects mostly in user space. Using atomic compare and swap
or similar operations on an integer-sized variable in user space,
threads can, for example, lock and unlock an uncontended
mutex without requiring system calls. The Linux kernel is
involved only in the case of contention to suspend the calling
thread for waiting or waking up (releasing) other threads. In this
case, the Linux kernel allocates a wait queue on demand when
the first thread starts to wait, and frees the wait queue when the
last thread was woken up. Internally, a futex object’s wait queue
is referenced by hashing the futex user-space variable’s address.
For futexes shared between different address spaces, Linux uses
the physical address of the futex variable for hashing rather
than its virtual, per address-space address.

For an implementation of futexes in statically configured
systems, such as AUTOBEST, neither address hashing nor

dynamic allocation of a wait queue are necessary. Instead, as all
synchronization objects are known at system integration time,
the futex’s wait queues can be statically allocated and referenced
by consecutive index numbers, for example in a partition-
specific access table. Further, the different kernel operations
make the wait queue effectively a two-ended communication
channel: one side waits for the other side to send a notificating
wake up. This also allows to grant both ends to different
partitions. Additionally for ARINC, the waiting side must be
able to configure different queuing disciplines (priority or FIFO
ordered).

This results in the following system-call API for futexes,
respective wait queues, with wq_id denoting the wait queue:
err_t sys_wq_init(uint wq_id, int discipline);

err_t sys_wq_wait(uint wq_id,
uint *futex, uint futex_compare,
prio_t wait_priority, timeout_t timeout);

err_t sys_wq_wake(uint wq_id, int wake_all);

A wait operation performs two steps in the kernel: At first,
the kernel compares the associated user-space futex variable
futex against futex_compare. If the futex value has changed
in the meantime, the calling task was preempted in user space
before calling sys_wq_wait(). In this case, the kernel returns
an error to indicate a lost wake-up condition. Otherwise, the
kernel suspends the calling task with a specified optional
timeout and enqueues the task into the wait queue according to
the configured queuing discipline and given wait_priority.
The override of the task priority is required to combine futex
waiting with lazy priority switching, as the kernel is not able
to know the task’s original scheduling priority.

Conversely, sys_wq_wake() either releases one or all
tasks waiting on the wait queue. Internally, the kernel uses
doubly-linked lists for ordered enqueuing, to deal with waiting
operations which can be cancelled due to timeout expiry or
task termination.

Higher-level synchronization objects in ARINC use up
to two wait queues simultaneously, while both ends can be
assigned to different partitions. A queuing port between two
partitions is implemented using a shared memory comprising a
ring buffer and a 32-bit control word as futex value, and two
cross-partition wait queues with different directions. The first
wait queue on the sender’s side is used to wait on a queue-full
condition, while the second wait queue on the receiver’s is
used to wait if the queue is empty. The futex variable encodes
the position of read and written buffers as well as two bits
for full and empty conditions and is updated from both sides
atomically using compare-and-swap instructions. On a send
operation, the sending partition first checks for an available
empty slot in ring buffer, copies the message into the ring
buffer, updates the control word, and wakes the first receiving
task waiting on the wait queue, if any. If there is no empty slot
available in the ring buffer, the sender waits on its own wait
queue for a free entry in the buffer. The receiver side follows
the same protocol to wait for incoming messages.

The queuing port implementation further raises the calling
task’s scheduling priority above all other tasks during message
copy operations to ensure atomicity of the message transfer.
Otherwise, a low priority task could be interrupted during
the message transfer part of a queuing port operation and
subsequent reads could access the unfinished message. This

mechanism works similar for ARINC buffers, where both wait
queues relate to the same partition.

ARINC sampling ports use double buffering of the message.
The sender updates one buffer and increments an atomic round
counter afterwards. The reader reads the counter, checks the
lowest bit whether the first or second buffer is valid, copies
the message, and checks the counter again. If the counter has
changed in the mean time, a new message arrived while the
reader was preempted.

Using similar protocols, the ARINC library implements
semaphores, events, and blackboards using a single wait queue
per synchronization object.

Regarding functional safety aspects of futexes, two different
cases need to be considered: futexes shared between partitions
and partition-local synchronisation objects. While for the latter
case tasks have to trust each other anyway (as they execute
in the same address space), the former case poses a problem
if one partition erroneously overwrites the shared memory
containing yet unsent messages. From the security standpoint,
these shared resources pose no problem as the communication
channel was explicitly allowed in the configuration anyway.
The only problem is that a partition can access previously sent
messages in the shared memory buffer. We think that both
issues are acceptable when set in contrast to the code reduction
in the kernel.

VI. EVALUATION

For evaluation, we present AUTOBEST’s general perfor-
mance characteristics (e.g., context switch time) and show the
benefits of lazy priority switching and futex use for common
synchronisation means compared to a system call based
approach. We measure the performance on two platforms, a
Freescale MPC5646C “Bolero_3M” using a 120 MHz PowerPC
e200z4 core and an ARM Cortex-R4f-based Texas Instruments
TMS570 processor operating at 180 MHz. Table I shows the
processor architectures in detail. In general, code executes from
internal flash memory and data is kept in internal SRAM.

We used GCC 4.9.1 for PowerPC and GCC 4.6.3 for
ARM. We let the compiler optimize for speed with -O2
-fomit-frame-pointer and used function inlining where
possible. Due to deterministic system behavior, repeated
execution of a benchmark shows deviations of less than one
percent compared to previous runs. However, code alignment
has a greater effect on the performance by changing the number
of fetched instruction blocks. Therefore, the presented results
show either our measured best and worst-case results for ARM
and PowerPC or a single value when no difference was detected.
The numbers represent CPU cycles on the according processors.

Table I: Processor Characteristics

Parameter MPC5646C TMS570
Board Freescale XDC564B-C board TI Hercules board

with MPC5646C with TMS570LS3137
CPU Core PowerPC e200z4d ARM Cortex-R4f
CPU Clock 120 MHz 180 MHz
Integrated Flash 3 MiB, 64-bit 3 MiB, 64-bit
Integrated SRAM 256 KiB, 64-bit 256 KiB, 64-bit
Pipeline in order, dual-issue in order, dual-issue

5 stages, 1 ALU 8 stages, 1 ALU
Data Cache none none
Instruction Cache 4 KiB, 2-way set associative none

32-byte line size
Instruction Length 32-bit 32-bit

Table II lists the mean average of 1024 benchmark runs
of various common higher-level task synchronisation calls
in contrast to empty function calls and basic system calls.
For context switching and preemption, we present round-
trip performance of task interaction: A lower-priority task
signals a higher-priority task and is immediately preempted,
then the woken higher-priority task just waits, and finally
execution resumes again in the lower-priority task. Lastly, the
comparison of setting events to a higher-priority waiting task in
the same or different partitions shows that the execution time is
dominated by the partition-switch overhead, that is, reloading
MPU registers.

Table III compares the performance of critical sections
implementing an immediate priority ceiling protocol, and either
use system calls (sys) or lazy priority switching (lazy) to achieve
this. We show the overall execution time of a task spent in (i)
a single, non-nested critical section, and (ii) two nested critical
sections. Then, these critical sections are interrupted by a second

Table II: System Call Performance Evaluation in CPU Cycles

Benchmarked Sequence PPC ARM Description
Empty benchmark loop 2 7 – 14 Loop overhead
Empty function call 5 22 – 34 Function call and

return overhead
Null system call 66 – 70 151 – 162 System call overhead
Yield in scheduler 271 – 272 317 – 328 Dry-run in scheduler,

but no context switch
TaskChain(self): ter- 362 434 – 439 Reset task state and
minate and activate caller scheduler dry-run
Activation of a lower 289 361 – 365 Task activation time,
priority task no scheduling
Round-trip: activation of a Context switch time:
high priority task which 1162 – 1187 1222 – 1225 2 system calls,
terminates immediately 2 context switches
Round-trip: set event to Context switch time:
waiting high priority task 1144 – 1189 1329 – 1333 3 system calls,
in same partition 2 context switches
Round-trip: set event to Partition switch time:
waiting high priority task 2140 – 2141 2647 – 2651 3 system calls,
in different partition 2 context switches
ARINC semaphore: signal 56 91 Fast critical section
call at maximum value w/ limit check only
ARINC semaphore: Round-trip time:
round-trip uncontended 131 201 2 fast critical
wait and signal pair sections
ARINC semaphore: Round-trip time:
round-trip: signal waiting 1713 – 1755 1758 2 critical section,
high priority task which 3 system calls,
waits again, using futexes 2 context switches

Table III: Critical Section Performance in CPU Cycles

Critical Section (CS) Benchmark PPC ARM
(Round-trip Time) sys lazy sys lazy
Uninterrupted non-nested CS 688 31 843 94
Activate low priority task: 962 282 1237 470
interruption, but no preemption
Activate medium priority task: 2041 1273 2135 1346
preemption when leaving CS
Activate high priority task: 1945 1253 2123 1334
immediate preemption

Uninterrupted nested CS 1376 66 1748 167
Activating low priority task: 1706 358 2118 529
interruption, but no preemption
Activating medium priority task: 2743 1348 3016 1433
preemption when leaving inner CS
Activating high priority task: 2742 1340 3004 1414
immediate preemption

task of different relative scheduling priority. Interruption is
simulated by activation of the second task in the (inner) critical
section. Four combinations are compared:
• an uninterrupted critical section where no task is activated,
• activation of a low priority task with a priority so low that

it is never scheduled to determine task activation overhead,
• activation of a medium priority task which preempts the

first task when it leaves its inner critical section,
• activation of a high priority task, which leads to immediate

preemption of the first task inside the critical section.
In all combinations, the evaluation shows a performance gain
of factor two or better when using lazy priority switching
compared to system-call–based priority switching. With one
interrupting task in a nested critical section, lazy priority
switching requires at most one system call compared to four
when using system calls to change scheduling priority.

VII. DISCUSSION

With AUTOBEST, we have shown how to map both
AUTOSAR and ARINC concepts to a single partitioning
operating-system kernel. The evaluation results show that the
performance impact of a strong protection model can be relieved
by lazy priority switching. However, the costs for full memory
protection are high and make up the main overhead on partition
switches, as the set event round-trip performance comparison
shows. The limited number of MPU windows on our evaluated
hardware platforms simply does not allow to switch between
complex protection configurations as tagged TLBs in MMU-
based systems would.

Also, the unified task model comes at costs for additionally
required memory: On automotive ECUs, where especially RAM
is typically a short resource, our requirement of 64 Bytes per
task might be to high for use-case scenarios with dozens of
tasks compared to an approach leaving out ARINC’s timing-
related state and using just 24 Bytes. Similarly, additional RAM
per partition for ready queues might be considered high. But
as system integration continues and RAM sizes increase with
each new ECU generation, we think this is an acceptable price
to pay to integrate both worlds on a single platform.

Also, using a dedicated kernel stack per partition is a
trade-off between preemptivity of a partition and latency of
time partition/interrupt handling on the one hand, and memory
consumption on the other. In further analysis, we need to figure
out if it is possible to either get rid of the per-partition stack
or reduce latencies with other means.

Regarding resource partitioning, AUTOSAR’s application
concept matches onto ARINC’s partition, with trusted functions
implemented as drivers in kernel space and all resources
protected by partition-specific access tables.

Only the concept of time partitioning does not yet fit
that well to AUTOSAR: the strict binding of category 2
interrupts to time partitions may increase their latency for
some use cases too much. Becker et al present a promising
technique [12] to allow interrupts in time partitioned systems
to be handled at any time by monitoring interrupt inter-
arrival and execution time and delaying the interrupt when
configured budgets are exceeded. Their idea fits very well to
AUTOSAR’s optional timing protection facility [3], which,
if employed, requires developers to specify exactly these
properties (budget and inter-arrival time) for every interrupt in
the system configuration. We intend to evaluate such reservation-

based scheduling techniques to weaken the time partitioning
concept for automotive applications, while keeping it strict for
avionics at the same time.

Related to this and the design of a driver model, techniques
for sharing resources between multiple partitions, such as
CAN controllers, need careful design. Herber et al present
a network virtualization approach for CAN [13] to enable
sharing of a physical CAN bus between controllers of different
criticality levels with strong isolation requirements. On the
system integration side, we need comparable concepts to
partition access to hardware buses.

Independently of avionics, use of lazy priority switching
to improve the performance of critical sections without com-
promising system safety seems worth for adaption in statically
configured embedded operating systems.

This is also true for the use of futexes in such environments.
Compared to Linux, that is, futex use in more dynamic systems,
statical resource allocation reduces much of the complexity of
the implementation. At least, futexes allow the implementation
of higher-level ARINC synchronization objects in user space
rather than in the kernel. In future work, we would also like
to evaluate if higher level AUTOSAR communication means
implemented by the AUTOSAR Run-Time Environment (RTE)
can be efficiently mapped to futexes as well.

Lastly, we aim for both avionics and automotive certification
for AUTOBEST. Based on previous experience in avionics
certification, we tried to design the system to be easily certifiable
(and testable) by using a modular architecture and keeping code
and configuration separated at object level rather than using
conditional compilation.

VIII. RELATED WORK

Automotive operating systems with similar goals include
microkernels from Elektrobit [14], PharOS [15], as well as
the ETAS hypervisor [16]. Similarly, there are many system-
software solutions for avionics, including POK [17] and
XtratuM [18]. However, all these systems support either
AUTOSAR or ARINC, but not both. In contrast, AUTOBEST is
the first integrated platform that provides conformance to both.

For larger systems, various microkernels and hypervisors
exist. On the commercial side, QNX, Green Hills’ Integrity, the
Wind River Hypervisor, or SYSGO’s PikeOS [19] are known.
Open source projects like XEN [20], NOVA [21], or the family
of L4 microkernels [22] complete the picture. After all, these
systems require processor support for virtual memory.

Efficient implementations to disable task preemption or for
fast priority changes are known from LynxOS [23], PikeOS,
and L4 [24]. Additionally, Linux’s vDSO [25] and L4’s user-
level TCB [26] even share more scheduling related information
between kernel and user space. However, these techniques just
allow to disable preemption rather than giving access to the
scheduling priority.

Sloth [8] schedules tasks as interrupts and delegates
scheduling to the interrupt controller. Here, tasks interface the
interrupt controller directly to change their scheduling priorities.
Compared to AUTOBEST, this approach “turns scheduling
upside down”, but is also limited by the interrupt controller’s
scheduling capabilities, especially the number of supported
priorities.

Futexes were first introduced in Linux to implement POSIX
thread synchronization objects in user space [10], [11], and then

later refined for real-time use cases [27], [28], and partitioning
systems [29]. Again, these work target larger dynamic systems
compared to AUTOBEST’s smaller statically configured system.

IX. CONCLUSION

The avionics ARINC 653 and the automotive AUTOSAR-
OS are the two most broadly adopted industry standards for real-
time operating systems (RTOS). They stem from domains with
originally very different requirements: While avionics engineers
have to cope with strict regulations regarding functional safety,
automotive engineers generally care a lot about per-unit costs
in mass production. However, recent trends in automotive, like
steer-by-wire and ECU consolidation, increase the demand for
functional safety measures also in this domain – while the
aviation industry is facing the increasing cost pressure of mass
production.

In a comparison of the task models and synchronization
means of AUTOSAR and ARINC, we derived a common
superset for both APIs. We show that the differences between
AUTOSAR and ARINC can be implemented at user level on a
microkernel-based design. By combining static tailoring with
futexes and lazy priority switching, we mitigate the synchro-
nization overhead of a user-level OS abstraction compared to
a system-call–based approach.

We presented the design and implementation of AUTOBEST
a partitioning AUTOSAR-OS and ARINC 653 RTOS kernel
that covers the requirements of both domains. AUTOBEST
makes it possible to use (and combine) AUTOSAR-OS 4.1
ECC2 and ARINC 653 part 1 applications on a common
platform. It enforces strict isolation of partitions in time and
space with the low hardware capabilities that are provided by
typical automotive ECUs: Isolation is implemented by standard
(watchdog) timers and memory-protection units; our RAM
requirements are moderate with less than 2.5 KiB per partition
and 64 Bytes per task, considering the limited amount of 256
KiB RAM on our evaluation platforms.

Overall, we claim that with AUTOBEST it becomes possible
to implement cross-domain systems with acceptable trade-offs
and without compromising either domains requirements.

ACKNOWLEDGEMENTS

We especially like to thank Jochen Decker, Felix Fastnacht,
André Himmighofen, Bernhard Jungk, and Tobias Jordan from
Easycore GmbH for insightful discussions on AUTOSAR and
the anonymous reviewers for their helpful comments on the
first version of this paper.

REFERENCES
[1] “ISO 26262: Road vehicles – Functional safety,” ISO Norm, 2011.
[2] “DO-178B: Software Considerations in Airborne Systems and Equipment

Certification,” Radio Technical Commission for Aeronautics, 1992.
[3] “Specification of Operating System,” AUTOSAR, March 2014.
[4] “ARINC Specification 653: Avionics Application Software Standard

Interface,” AEEC, November 2010.
[5] A. Wieder and B. B. Brandenburg, “On Spin Locks in AUTOSAR:

Blocking Analysis of FIFO, Unordered, and Priority-Ordered Spin Locks,”
in RTSS, 2013, pp. 45–56.

[6] “OSEK OS Extensions for Protected Applications,” DaimlerChrysler
AG, July 2003.

[7] A. Lackorzynski and A. Warg, “Virtual Processors as Kernel Interface,”
in Twelfth Real-Time Linux Workshop, 2010.

[8] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-Preikschat, “Sloth:
Threads as interrupts,” in RTSS, 2009, pp. 204–213.

[9] A. Zuepke, M. Bommert, and R. Kaiser, “Fast User Space Priority
Switching,” in OSPERT Workshop, July 2014.

[10] H. Franke, R. Russell, and M. Kirkwood, “Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux,” in Proceedings of the Ottawa Linux
Symposium, 2002, pp. 479–495.

[11] U. Drepper, “Futexes Are Tricky,” White Paper, Nov. 2011. [Online].
Available: http://people.redhat.com/drepper/futex.pdf

[12] M. Beckert, M. Neukirchner, R. Ernst, and S. M. Petters, “Sufficient
Temporal Independence and Improved Interrupt Latencies in a Real-Time
Hypervisor,” in DAC, 2014, pp. 86:1–86:6.

[13] C. Herber, A. Richter, T. Wild, and A. Herkersdorf, “A Network
Virtualization Approach for Performance Isolation in Controller Area
Network (CAN),” in RTAS, 2014.

[14] D. Haworth, “An AUTOSAR-compatible microkernel for systems with
safety-relevant components,” in Herausforderungen durch Echtzeitbetrieb
- Echtzeit 2011. Springer, 2012, pp. 11–20.

[15] C. Aussagues, D. Chabrol, V. David, D. Roux, N. Willey, A. Tournadre,
and M. Graniou, “PharOS, a multicore OS ready for safety-related
automotive systems: results and future prospects,” in ERTS, 2010.

[16] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-
relevant automotive E/E-systems,” in SIES, June 2014, pp. 189–198.

[17] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and
F. Kordon, “Validate, Simulate, and Implement ARINC653 Systems
Using the AADL,” Ada Lett., vol. 29, no. 3, pp. 31–44, Nov. 2009.

[18] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “XtratuM: a Hypervisor
for Safety Critical Embedded Systems,” in Eleventh Real-Time Linux

Workshop, September 2009.
[19] R. Kaiser and S. Wagner, “Evolution of the PikeOS Microkernel,” in

MIKES Workshop, January 2007.
[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003.

[21] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-based Secure
Virtualization Architecture,” in EuroSys, 2010, pp. 209–222.

[22] K. Elphinstone and G. Heiser, “From L3 to seL4 What Have We Learnt
in 20 Years of L4 Microkernels?” in SOSP, 2013, pp. 133–150.

[23] “LynxOS RTOS,” LynuxWorks. [Online]. Available: http://www.
lynuxworks.com/

[24] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “Towards
scalable multiprocessor virtual machines,” in Proc. of the 3rd Virtual
Machine Research and Technology Symposium, May 2004, pp. 43–56.

[25] “vDSO - overview of the virtual ELF dynamic shared object.” [Online].
Available: http://man7.org/linux/man-pages/man7/vdso.7.html

[26] J. Liedtke and H. Wenske, “Lazy process switching,” in HOTOS, 2001.
[27] D. Hart and D. Guniguntalay, “Requeue-PI: Making Glibc Condvars

PI-Aware,” in Eleventh Real-Time Linux Workshop, 2009, pp. 215–227.
[28] R. Spliet, M. Vanga, B. Brandenburg, and S. Dziadek, “Fast on

Average, Predictable in the Worst Case: Exploring Real-Time Futexes
in LITMUSRT,” in RTSS, 2014.

[29] A. Zuepke, “Deterministic Fast User Space Synchronisation,” in OSPERT
Workshop, July 2013.

http://people.redhat.com/drepper/futex.pdf
http://www.lynuxworks.com/
http://www.lynuxworks.com/
http://man7.org/linux/man-pages/man7/vdso.7.html

	Introduction
	Contributions
	Organization of this Paper

	RTOS Concepts
	Priority-based Scheduling
	Task Models
	Task Types, ISRs, and Hooks
	Task Synchronization, Notification, and Activation
	Isolation and Protection
	System Configuration and Software Development Process
	Discussion of the RTOS Concepts

	Autobest Architecture
	Motivation and Goals
	Design Considerations: Hypervisor vs Microkernel
	Autobest Microkernel
	Time Partitioning and Scheduling
	ARINC Abstraction
	AUTOSAR Abstraction
	System Configuration
	Device Drivers and Interrupt Handling
	Partition-Preemptive Kernel
	Implementation Details

	Lazy Priority Switching
	Futexes in Statically Configured Systems
	Evaluation
	Discussion
	Related Work
	Conclusion
	References

