
Energy Claims at Scale: Decreasing the Energy
Demand of HPC Workloads at OS Level

Christopher Eibel, Timo Hönig, and Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Email: {ceibel,thoenig,wosch}@cs.fau.de

Abstract—The ever-increasing performance and power de-
mand of HPC systems requires sophisticated approaches that
improve energy-efficient job execution. Targeted goals such as
the 20-MW limit for an exascale system, set by the Department
of Energy (DoE), are not achievable with advances at hardware
level only. Instead, it is inevitable to establish new concepts at
system-software level. We propose a system software in which
the operating system acquires a key position in the energy-
reduction process. Our approach advocates heterogeneous hard-
ware components—especially those that currently emerge from
the embedded-system domain—to achieve both high performance
and high energy efficiency.

I. INTRODUCTION

The power consumption and peak performance of com-

plex, distributed HPC systems is continuously increasing at

an extreme scale. Two generations of the Tianhe supercom-

puter demonstrate this: Tianhe-1A (2010) consumes 4.04MW
(0.635 gigaflops per watt), just three years later its successor

Tianhe-2 (2013) already consumes 17.6MW (1.935 gigaflops

per watt) [12]. The increasing resource demands of such HPC

systems ask for novel, yet unexplored ways for effectively

allocating system resources which, on the one hand, pro-

vide sufficient computational power to the system, and entail

electrical power consumption on the other hand. At this, the

effectiveness can be determined by how well a system design

can handle and serve conflicting, if not mutually exclusive

requests during the processing of computational jobs.

Although early measures to decrease the power consumption

at hardware level [7] were initially developed for mobile

computing systems, the area of power reduction of computing

systems is explored in a much wider context in the meantime

and also addresses power consumption concerns of HPC sys-

tems [17]. Today, the scope of power-saving features exceeds

the pure computational part of an overall system and addresses

system components of neighboring systems (e.g., maintenance

components, cooling systems) and the infrastructure of entire

buildings [5]. Even though operating systems are responsi-

ble for allocating and freeing resources in order to process

pending work most efficiently, up until now their impact on

the power-consumption reduction is mainly driven by local

decisions, which are often missing a global view of the overall

system. We propose a system design that puts the operating

system into the center of local and global power-saving

control-mechanisms, which operate under the consideration

of their global impact with regards to diverse system crite-

ria (e.g., response times, result accuracy, and performance).

Our proposed system design incorporates several knowledge

sources (e.g., programmer, application) to actively support the

operating system at allocating resources required to process

pending jobs in an energy-efficient manner while retaining

predefined quality-of-service attributes (e.g., response times).

The paper is structured as follows. We motivate our work

in Section II, discuss background work in Section III, and

present our system design in Section IV. Section V discusses

the prototypical implementation of our system design as future

work, and we conclude our work in Section VI.

II. MOTIVATION

In comparison to desktop computers or HPC systems, saving

power and energy has always been one of the key design

objectives for embedded systems. For this reason, most power-

management technologies first emerged from embedded hard-

ware architectures, but eventually were transferred to larger

systems at a later point in time. For larger systems, power

capping is a traditional power-management technique that has

been broadly explored in the HPC research community [16],

[2]. Currently, embedded-system components gain traction

within the field of high-performance computing [11] as they

offer decent processing power at lower energy costs. For

example, Grasso et al. [8] make a first step towards the use

of embedded GPUs as a replacement for embedded CPUs

that can be used in next-generation HPC systems. Generally,

jobs to be executed differentiate from each other in diverse

characteristics such as size and varying resource demands.

Furthermore, the type of workload can require special-purpose

hardware to be executed efficiently. We propose to use a

mix of high-performance compute nodes on the one side and

highly energy-efficient compute nodes on the other side. A

corresponding system architecture provides maximum flexi-

bility for cases with mixed performance requirements but also

different requirements to underlying hardware components.

Our proposed system 1) analyzes jobs and their sub-jobs

for any hardware dependencies and their expected usage

of resources (e.g., CPU cores, memory, energy, power) in

advance, 2) maps them at runtime to the respective hardware

components for maximum (energy-)efficient execution, and 3)

continuously keeps track of system processes to dynamically

react to any state changes (e.g., new and completed jobs,

hardware failures). Ideally, the integration of these three steps

has minimal impact; that is, it does not require to create whole

new HPC systems and management software on top. Instead,

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.69

1114

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5090-3682-0/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.69

1114

Pre-Analysis Grouping Runtime Analysis

Job1

Job2

CLAIM1

CLAIM2

Criteria1

Criteria2

Resource
Regulator

Compute Node1

Compute Node2

Compute Noden

.

.

.

Jo
b

S
ch

ed
u
le
r

Service

Node1
. . .

Service

Noden

GRANTs

Utilization Data

MATCH<CLAIM,GRANT>

Fig. 1. The proposed system design employs a RESOURCEREGULATOR which implements the runtime–decision-making process. The use of available system
resources is optimized based on individual job criteria. This optimization accounts for a reduction of energy consumption at OS level.

our system design is flexible enough to be incorporated into

hardware and software components of existing HPC systems.

Our approach introduces well-defined interfaces for the system

to peek for application characteristics.

With our system design (Section IV), we react on a shift

of responsibilities, which is induced by the increasing het-

erogeneity at hardware level. Power-saving strategies need

to weave in local and global aspects in order to pursue the

shared objective of optimizing the performance yield while

reducing the energy footprint of the overall system. Results

from previous research [9] suggest the operating system to be

the right level of abstraction [18] for this functionality as it

has the necessary information available for provisioning input

to existing job schedulers. Such external schedulers take care

of global operations whereas the operating system carries out

self-governed local optimization actions.

III. BACKGROUND

The reduction of energy consumption without suffering

tremendous performance degradation serves as primary goal

of our system design. However, there are other dependencies

that are in close relation to energy consumption. For example,

it can be beneficial not to exceed a power limit because of

temperature implications (e.g., modern CPU designs follow

an over-provisioning approach by prohibiting the simultaneous

clocking at maximum speed of all cores [14]) or limited

available power because of power outages or brownouts. Keep-

ing the temperature below a certain value can dramatically

decrease cooling costs of the whole data center [13].

Our proposed approach for increasing the energy propor-

tionality of HPC systems is motivated by results of our

previous research. First, it is necessary to statically ana-

lyze and optimize the program code to be executed. We

encourage to use corresponding tooling support [10] which

assists developers in the process of analyzing and optimizing

the program code. Second, we argue that support at the

level of the operating system is inevitable. Here, we build

upon previous work using a Linux-based operating-system

kernel [9] which reduces the energy demand for executing

tasks. This kernel provides energy measurements at runtime

which are controlled by system calls and it implements fine-

grained energy optimizations by exploiting an extended set of

power-saving features (e.g., DVFS, C-states, and sleep states).

Conceptually, our presented approach is operating-system ag-

nostic and, hence, can be applied to systems such as IBM’s

BLRTS [1]. We discuss integration aspects of our approach

in Section V. Third, in the context of distributed, replicated

systems, we have shown that the energy proportionality of a

system can also be improved with dynamic software decisions

at runtime [6]. Thus, although the software exploits many

hardware mechanisms to achieve that (e.g., using power caps),

it is not the hardware manufacturers’ responsibility alone to

improve energy proportionality with hardware innovations.

IV. SYSTEM DESIGN

In this section, we present the substantials of our system

design. Figure 1 gives an overview of all phases (pre-analysis,

grouping, runtime analysis) that bundled tasks (= jobs) to

be processed run through. In general, there is no limitation

of jobs that can be submitted and processed simultaneously;

however, jobs are likely to be retained in favor of, for example,

processing them as energy efficiently as possible.

At first, jobs are being analyzed to derive resource claims
(see § IV-A and § IV-B). Subsequently, assuming that most jobs

are moldable [4], the pre-analyzed jobs are partitioned and

grouped into bundles that can be efficiently executed together.

After this static analysis process, a dynamic analysis process

follows, which continuously decides in a feedback loop when

and where sub-jobs or whole jobs are actually being executed.

This decision is based on information and feedback, so-called

resource grants (see § IV-C), retrieved from the nodes in the

cluster. Our system design builds around a main component,

the RESOURCEREGULATOR, which is responsible for the

runtime–decision-making process and forwarding (sub-)jobs

to the job scheduler.

11151115

A. Resource Claims

To increase the efficiency of the job processing, it is

necessary to map the resources required by each job to the

resources available on all potentially highly diverse compute

nodes in the cluster. Typical resources are CPU specifics, such

as number of cores and available CPU features (e.g., SSE,

TSX, VT-x), or overall disk and memory space. Moreover,

the specifics of peripherals (e.g., maximum network bandwidth

between certain machines, disk speed) need to be incorporated

into the pool of available resources. Machines differentiate

from each other by the availability of special-purpose hardware

components, such as hardware accelerators, making them

especially useful or even mandatory for certain kinds of jobs.

Before starting a job, it is necessary to claim the required

resources (RES1, ...,RESn) for its execution by sending a

resource-claim message CLAIM<RES1, . . . ,RESn> to the

regulator. These claims consist of certain criteria that have to

be defined individually for each job. The higher the weight of

a certain criteria, the higher its importance and the higher its

consideration in the regulator’s decision process that follows.

Figure 2 shows a possible criteria configuration (green,

solid line). Values that are closer to the outside margin imply

that the respective criterion is more important. For example,

a higher value for the power criterion means that the power

value should not exceed a certain value. On the contrary, a

higher value for the performance criterion implies that the job

has to be processed as fast as possible—potentially within

a predefined period of time. Therefore, it is not enough to

define the level of importance for each criteria but to describe

the criteria with concrete values for each limit (e.g., absolute

precision). We further differentiate between strict and loose
criteria, where strict criteria must be fulfilled and loose criteria

may be ignored within specific limits in order to fulfill all strict

criteria. In Figure 2, strict criteria are marked with a circle.

In the shown example, accuracy and costs do not have the

highest importance values but they are strict criteria, meaning

that the regulator’s solution for this optimization problem

must fulfill the respective criteria’s concrete values. A possible

configuration found by the regulator is exemplified by the

dotted line: In this case, in order to fulfill the strict criteria

for accuracy and costs, it is necessary to degrade all other

criteria. The red, dashed line indicates a criteria configuration

that is possible when the user is only interested in an energy-

optimal solution and has no further requirements to the other

criteria. In this instance, the other criteria are lowered in order

to achieve the highest amount of energy savings.

B. Application-Induced Claims

To establish an initial set of resource claims, we encourage

a pre-analysis that autonomously retrieves requirements from

existing information such as user-supplied code annotations

or the program source code. The resource claims contain all

relevant resources, such as the number of required compute

cores, but also the type of hardware that is necessary to

efficiently execute program code (e.g., CUDA-enabled GPUs,

cryptographic accelerators, special-purpose arithmetic units).

High

Accuracy

Low

Response Time

Low

Costs

High

Performance
Low

Power

Low

Energy

Fig. 2. Spiderweb showing examples for weighted strict and loose criteria.

Resource claims which express energy demands need to be

treated differently, as energy requirements can not directly

be retrieved from hardware specifications. To determine the

energy consumption of individual hardware components, we

use platform-dependent energy profiles. That is, energy pro-

files are the basis for estimating a program’s or job’s energy

consumption. This information is supplemented during the job

processing with runtime statistics, for example, performance-

counter data. Other useful periodically monitored statistics are

CPU utilization and memory usage, network bandwidth, and

execution durations. The system runs a continuous feedback

loop, taking into account all available data points in each

decision to improve the matching of pending resource claims.

This monitoring mechanism can be coupled with existing

system components, for example, service nodes. To extract

runtime information also from compute nodes, according API

extensions must be established if they are unavailable yet.

C. Resource Grants

The regulator, depicted in Figure 1, is continuously invoking

a MATCH<CLAIM,GRANT> function. We speak of (partial)

resource grants when a job’s resource offer is (partially) ac-

cepted by the compute nodes’ job scheduler. If a resource offer

can not be fully granted, resource claims as requested may be

violated with regard to one or more criteria. At the same time

this may be of benefit for another resource which is part of

the resource claim. It is then the regulator’s responsibility to

realign the resource offers and find an optimal set of matches.

When a resource claim is granted, the regulator notifies and

informs the compute nodes’ job scheduler about available

resources via an API call. Although it is the scheduler’s

responsibility to use these available resources as efficiently

as possible and meet the resource grants’ parameters, the

regulator can additionally propose suggestions on static and

dynamic power management. We see a great potential in

exploiting power-saving features emerging from the domain

of embedded systems, as they gradually become available in

the domain of larger systems (i.e., HPC), too.

11161116

V. INTEGRATION AND IMPLEMENTATION

Currently, we evaluate the exact hardware and software con-

figuration to implement our presented system design. For the

system hardware we consider a heterogeneous combination of

powerful, yet energy-efficient ARM processors in combination

with nodes which provide high compute performance. We

consider the use of many-core systems (e.g., Intel Xeon Phi)

as part of our cluster of compute nodes. We will build a system

that comprises a pool of nodes which are grouped in classes

(i.e., compute, management, and service nodes). The nodes of

the individual classes will operate with a highly customized

version of the Linux operating-system kernel. In previous

work [9], we successfully deployed such a kernel in order to

reduce the energy demand of the system. The low-level kernel

code of our operating-system kernels will make aggressive use

of both, power-saving and power-capping features which are

available on the distinct hardware platforms. In addition to our

node-specific operating-system kernels we will evaluate a RE-

SOURCEREGULATOR implementation aligned to our system

design (Section IV). We will explore how existing HPC-cluster

software [3] benefits from supplemental system software as

proposed in this paper. For multi-criteria optimization in the

course of resource management, we consider to build on recent

approaches such as [19].

We will further investigate the benefits of our approach for

established supercomputer systems such as IBM Blue Gene [1]

or Tianhe-2 [12]. We see a great potential in heterogeneous

HPC systems that contain a large number of energy-efficient

embedded processors. Rajovic et al. have shown [15] that such

systems can already keep up with existing HPC systems. As

novel functional features (e.g., improved floating-point units)

currently are implemented for embedded processors, too, they

will become also available to HPC applications. Thus, we

expect that the performance gap between a traditional and a

hybrid HPC system will gradually decrease whereas the energy

efficiency greatly improves.

VI. CONCLUSION

To address current changes and upcoming challenges, we

proposed a system design for energy-efficient HPC systems.

Our approach extends the scope of power-management func-

tionalities at operating-system level and exploits heterogeneity

at hardware level. The adaptation of powerful yet energy-

efficient embedded-computing components is eased by the

proposed system design. Only by exploiting operating-system

support it is possible to align the requirements and character-

istics of HPC workloads with available hardware resources to

efficiently decrease the system’s overall energy demand.

ACKNOWLEDGMENTS

This work was supported in part by the German Research

Foundation (DFG) under grants no. SCHR 603/11-2, SCHR

603/13-1, and the Transregional Collaborative Research Centre

“Invasive Computing” (SFB/TR89, Project C1).

REFERENCES

[1] G. Almási, R. Bellofatto, J. R. Brunheroto, C. Cascaval, J. G. Castaños,
L. Ceze, P. Crumley, C. C. Erway, J. Gagliano, D. Lieber, X. Martorell,
J. E. Moreira, A. Sanomiya, and K. Strauss. An overview of the
Blue Gene/L system software organization. In Proceedings of the 9th
International Conference on Parallel and Distributed Computing (Euro-
Par ’03), pages 543–555, 2003.

[2] P. Bailey, D. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and
B. de Supinski. Adaptive configuration selection for power-constrained
heterogeneous systems. In Proceedings of the 2014 International
Conference on Parallel Processing (ICPP ’14), pages 371–380, 2014.

[3] E. Caron and F. Desprez. DIET: A scalable toolbox to build network
enabled servers on the grid. International Journal of High Performance
Computing Applications, 20(3):335–352, 2006.

[4] W. Cirne and F. Berman. A model for moldable supercomputer jobs.
In Proceedings of the 15th IEEE International Parallel & Distributed
Processing Symposium (IPDPS ’01), pages 59–67, 2001.

[5] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler. BOSS: Building operating system services.
In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), pages 443–457, 2013.

[6] C. Eibel and T. Distler. Towards energy-proportional state-machine
replication. In Proceedings of the 14th ACM Workshop on Adaptive
and Reflective Middleware (ARM ’15), pages 19–24, 2015.

[7] S. Gary, P. Ippolito, G. Gerosa, C. Dietz, J. Eno, and H. Sanchez.
PowerPC 603, a microprocessor for portable computers. Design & Test
of Computers, 11(4):14–23, 1994.

[8] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. Energy
efficient HPC on embedded SoCs: Optimization techniques for Mali
GPU. In Proceedings of the 28th IEEE International Parallel &
Distributed Processing Symposium (IPDPS ’14), pages 123–132, 2014.

[9] T. Hönig, C. Eibel, B. Herzog, H. Janker, P. Wägemann, and
W. Schröder-Preikschat. Playing hare and tortoise: The FigarOS kernel
for fine-grained system-level energy optimizations. In Proceedings
of the 2015 Brazilian Symposium on Computing Systems Engineer-
ing (SBESC ’15), 2015.

[10] T. Hönig, H. Janker, O. Mihelic, C. Eibel, R. Kapitza, and W. Schröder-
Preikschat. Proactive energy-aware programming with PEEK. In
Proceedings of the 2014 USENIX Conference on Timely Results in
Operating Systems (TRIOS ’14), pages 1–14, 2014.

[11] D. Jensen and A. F. Rodrigues. Embedded systems and exascale
computing. IEEE Computing in Science & Engineering, 12(6):20–29,
Nov. 2010.

[12] X. Liao, L. Xiao, C. Yang, and Y. Lu. MilkyWay-2 supercomputer:
System and application. Frontiers of Computer Science, 8(3):345–356,
June 2014.

[13] E. Pakbaznia and M. Pedram. Minimizing data center cooling and
server power costs. In Proceedings of the 2009 ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED ’09), pages
145–150, 2009.

[14] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supin-
ski. Exploring hardware overprovisioning in power-constrained, high
performance computing. In Proceedings of the 27th ACM International
Conference on Supercomputing (ICS ’13), pages 173–182, 2013.

[15] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez.
Tibidabo: Making the case for an ARM-based HPC system. Future
Generation Computer Systems, 36:322–334, July 2014.

[16] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz. Beyond DVFS: A first look at performance under a hardware-
enforced power bound. In Proceedings of the 26th IEEE International
Parallel & Distributed Processing Symposium Workshops (IPDPSW ’12),
pages 947–953, 2012.

[17] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch. Adagio: Making DVS practical for complex HPC
applications. In Proceedings of the 23rd ACM International Conference
on Supercomputing (ICS ’09), pages 460–469, 2009.

[18] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–288,
Nov. 1984.

[19] M. Shafique and J. Henkel. Agent-based distributed power management
for kilo-core processors. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’13), pages 153–160,
2013.

11171117

