
Closing the Loop: Towards Control-aware Design
of Adaptive Real-Time Systems

Tobias Klaus∗, Florian Franzmann∗, Maximilian Gaukler†, Andreas Michalka†, Peter Ulbrich∗
∗Chair of Distributed Systems and Operating Systems

†Lehrstuhl für Regelungstechnik (Chair of Automatic Control)
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
{tobias.klaus, florian.franzmann, max.gaukler,

andreas.michalka, peter.ulbrich}@fau.de

Abstract—Current trends, such as mixed-criticality real-time
systems, boost performance by leveraging system dynamics and
adaptivity. This, however, also amplifies challenges for control
engineering and real-time-system design. Experiments with con-
trol applications indicate problems with traditional assumptions
such as ‘better response times will not decrease the quality of
the results’. Therefore, future real-time-system designs need to be
application aware. Just respecting deadlines will not be enough.
A thorough understanding of which design decision has what
effect on the control application is mandatory.

From the perspective of real-time-system design, control app-
lications often appear as a single monolithic block that performs
the steps of reading sensors, computing control laws and setting
actuators. In truth, the control system as originally designed
consists of a host of small, interdependent activities. Although the
respective meta-information exists, it is repeatedly masked during
the design process, making it impossible to use this information
for control-aware coordination. Even worse, it is impossible to
assess design decisions w. r. t. the Quality of Control.

In this paper we present a report on work in progress on
an important step towards control-aware design. We extract and
retain the original semantics and dependencies of control models
throughout the whole development process. Thereby we allow for
traceability of control activities and thus an assessment of real-
time operating system decisions based on Quality of Control.
This flow of information from the real-time back to the control
domain closes the loop between the two disciplines, enabling
future mechanisms for automated tailoring and evaluation of
real-time control systems.

I. INTRODUCTION

In the future more and more control applications will be
consolidated onto one processing node, sharing a set of
sensors. Additionally, current developments, such as the mixed-
criticality approach or dynamically reconfigurable systems,
are expected to have massive impact on system dynamics
and adaptivity. As automatic control is particularly sensitive
to timing variations [1] due to its close connection to the
outside physical world, these trends will amplify existing
problems when it comes to the execution of control applications
on real-time systems: On the one hand, we expect that
control applications will behave much more adaptively and
thus will have a greater volatility when it comes to CPU as
well as general resource utilization. This adaptation may be
dependent on the current internal criticality level [2] or on
external influences such as a missing GPS signal that makes
the application skip location evaluation. On the other hand

the consolidation onto one computing platform means that
each application must compete for resources with a lot more
applications that also tend to behave dynamically. Thus the
control application is faced with a more dynamic computing
system whose timing properties will be less predictable than
they used to be, which is detrimental to the resulting Quality
of Control (QoC).

The currently prevailing point of view is that system
quality should be optimized by tightening temporal bounds.
For example, mixed-criticality scheduling provides different
timing guarantees in each criticality level, which are typically
associated with the expectation of a certain quality. This
implicitly assumes that an application’s quality, here especially
the QoC, can be approximated as a static function of its current
timing conditions, an assumption often underpinning embedded
control systems design [2–4]. In the following, we want to raise
caution about the validity of such assumptions, even if they
sound convincing for non-control applications such as real-time
data transfer, and highlight the necessity of application-aware
design of real-time control systems.

II. MOTIVATING EXAMPLE

Summarizing the assumptions stated before, real-time engineers
may be tempted to assume that ‘shorter response times are
better’. Let’s take one step back and put this seemingly obvious
statement to the test with an experiment: The controller of an
inverse pendulum, an application often used for benchmarking
control and scheduling methods, was subjected to a switched
input delay, as it might occur from mixed-criticality scheduling.
The QoC was assessed by means of a standard quadratic cost
function. The higher the amplitudes of error and control signal
are, the higher the cost function is. Therefore a high cost means
low system performance and vice versa.

A criticality change from a high level to a low one and back
should result in the step delay pattern as shown in Figure 1,
assuming that the response times for the critical tasks are lower
in a high-criticality level because fewer tasks are competing for
the same resources. From the previous assumptions, it would
be intuitively expected that the QoC matches the response
time pattern, following the mantra of ‘low delay is good and
high delay is bad’. However, the experiment shows a more
complicated picture: After switching to a higher delay, the cost



10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5
re

la
tiv

e 
in

pu
t d

el
ay

 

 
input delay
cost

10 15 20 25 30 35 40 45
0

1

2

3

4

5

co
st

time (s)

Figure 1. Performance of an inverse pendulum controller with discrete timing
properties as anticipated for mixed-criticality scheduling. During low-criticality
operation (20 ≤ t < 35) the input delay was doubled, leading to a slow
degradation of control performance, as can be deduced from an increase in
cost. When the expected delay was reestablished (t = 35), the cost first
unexpectedly overshot, then slowly decreased.

does not rise at once as expected. Instead, the control error
slowly accumulates over the course of many seconds. When
switching back to the lower input delay, surprisingly, the cost
rises at first, and does not settle at a final low value until
multiple control cycles have elapsed.

This counterintuitive behaviour shows that the relation
between timing and control performance is non-trivial. In the
context of applications that actually interfere with the environ-
ment, meeting deadlines is only part of the truth. Therefore,
modern approaches to scheduling control applications e. g., in
mixed-criticality systems, must incorporate application-specific
knowledge and a close cooperation between computer science
and control engineering seems to be of utmost importance [5].

Only with this knowledge application and real-time operating
system (RTOS) can react correctly to changing criticality,
performing mode switching as necessary while respecting all
of the applications’ requirements. Meeting these requirements
mostly boils down to sharing resources more efficiently, which
is a well-researched field. However, since mixed-criticality
adds another dimension of complexity to this problem, a more
thorough and detailed understanding of the applications’ inner
dependencies is crucial to meet their requirements according to
criticality levels. In a first step towards our goal of improving
the cooperation between RTOS and control applications we
extract dependencies and semantic knowledge directly from
Matlab/Simulink1 models and allow for their full traceability
throughout the whole development process. This allows for
end-to-end assessment of execution conditions to determine the
actual influence that RTOS decisions have on control systems,
leading to new control-activity-aware coordination mechanisms.

III. BACKGROUND

In some key aspects, the view control engineers have of a
system is very different from the one of real-time-systems

1http://mathworks.com/products/simulink/

engineers. While control systems are designed in a model-
based, data-flow-oriented fashion, computer scientists think
in terms of jobs and tasks. Consequently, real-time engineers
often perceive control applications as a single monolithic task,
although these actually comprise lots of different activities
which are connected by a data flow elaborately modelled by
the control engineer in a domain-specific tool such as Simulink.
Most of these activities are grouped by functional aspects e. g.,
Digital Signal Processing (DSP), state estimation or computing
the controller’s output, to keep the model maintainable and
well arranged.

Moreover such data-flow models already include annotations
about the anticipated execution period of sub-activities, since
these are needed to correctly design discrete control systems.
However, since the major criterion for grouping sub-activities
is functionality, such blocks often are not modelled as indi-
vidual top-level activities, but as members of larger multi-rate
activities. For example a filter design for several sensors, each
running at its own sampling time, will be mapped to one
single-rate DSP activity instead of multiple single-rate ones
by state-of-the-art code generators. It is obvious that this is
bad for the utilization of the target real-time system, since the
real-time engineer has to schedule the DSP’s entire worst case
execution time (WCET) with the rate of the highest-frequency
sub-activity. In the past it was a cumbersome, yet beneficial
manual task to mark each sub-activity as its own building
block, generate its code and statically re-connect the data flow
with RTOS mechanisms.

Since current generators generally only care about the top-
level modular entities the architecture and data-flow modelled
by the control engineer are hidden by mappings to static
control flow like sequential function calls. Therefore these can
neither be considered at design time nor be handled by RTOS
primitives at runtime. Thus, the state of the art and currently
the only option is to design the system under simplifying
assumptions while overprovisioning the design to counter the
negative impact of ignoring the system semantics.

Most of the activities just described behave exactly as
anticipated by real-time engineers: They are activated peri-
odically and have to be scheduled before their deadline which
is normally located at the end of the current period. A totally
different kind of module are actuators and sensors. Since these
interact with the controlled object directly, the control engineer
has to make certain assumptions about their timing properties.
From the control engineer’s point of view, meeting these
requirements is what scheduling should be about. However,
even in real-time control systems without mixed criticality the
specific semantics of the different control blocks are mostly
neglected by real-time engineers and scheduling algorithms.
Even worse, the response times of the constituents remains
unknown and cannot be provided to the control engineering
design processes.

A tool already able to handle fine-grained dependency
information is the Real-Time Systems Compiler (RTSC) [6],
which is capable of analyzing, transforming and consolidating
real-time applications. It accepts their source code and system

http://mathworks.com/products/simulink/


Control Engineering 
(e.g., [9])

Extractor

RTSC

I/O
Timing

Schedule Simulation QoC
Model Code

Generator Latency

Tailoring

Evaluation

System
Description

Figure 2. Continuous toolchain for the co-design of real-time control systems.
Building upon previous work on the RTSC, we added extensions (shaded
elements) to analyse and extract semantic information from control models
(i. e., Simulink). Consequently, execution latencies can be traced back to their
respective control activities, enabling simulation and evaluation of the resulting
Quality of Control at compile-time. Ultimately, knowledge and traceability of
I/O timing paves the way for automated co-design approaches.

description (i. e., additional information that cannot be extracted
from the source) as input. The input is analyzed, tasks and
subtasks are identified, and, as a result, graphs of Atomic
Basic Blocks (ABBs) are generated. These trace data and
control flows in an abstract manner, with individual ABBs
spanning application code between synchronization points
(i. e., syscalls). Consequently, ABB graphs serve as an RTOS
and real-time-architecture agnostic intermediate representation
of real-time systems. Important information such as task
release times, periods, WCET, etc. are extracted from the
real-time application. Annotating these in the ABB graphs
allows the RTSC to rapidly reconfigure the system, to, for
example, generate time-triggered multi-core systems from an
event-triggered input [7]. For traditional real-time systems the
RTSC already has the necessary abilities to resolve complex
dependencies and generate tailored real-time systems. However,
currently the RTSC does not grasp complex control applications
and cannot identify the semantic properties of components such
as sensors, actuators and computing blocks, which would allow
it to trace the control system’s data flow.

IV. CONTROL-AWARE SYSTEM ANALYSIS AND
TRANSFORMATION

To address these issues, we propose a continuous toolchain from
the original control system model to the resulting schedules,
the overall structure of which is illustrated in Figure 2. As a
first step towards control-aware yet adaptive system design,
we focused on a global, context-sensitive analysis of control
and data flow across control-application layers and threads of
execution. This step is of vital importance as these dependencies
manifest differently on the various levels of abstraction. Since
the fine-grained dependencies between sub-activities in the
control model are usually masked by coarse-grained thread-
based dependencies on the RTOS level we have to extract
and retain this information as well as the semantic knowledge
about control applications for further use. Consequently, we
enriched the ABB graphs with additional semantic knowledge
about control activities – i. e., what ABBs represent sensors
and actors or what range of physical values they require – and
adapted the RTSC’s transformations to retain this information
so that all real-time activities can be traced back to the control

system’s building blocks. As a next step we implemented
an additional front-end, capable of extracting such semantic
knowledge and data-flow graphs from Simulink models. This
is the tool most control engineers use, and we wanted to
avoid introducing yet another abstraction layer, which might
mask the dependencies defined by the control application again.
Therefore, we used Matlab and its Simulink scripting interface
to examine the model itself. In addition to the extraction
of ABB graphs this analysis also instruments the integrated
Simulink Coder to generate dedicated C code for each activity.
Here, the smallest objects of investigation are currently limited
to subsystems due to the inability of the Simulink Coder to
generate code for smaller units. Thus, we expect the model to
be designed in a modular way, grouping functional blocks in
corresponding subsystems that may include nested multi-rate
subsystems. To remedy the already depicted problem of such
multi-rate systems all elementary subsystems are determined
and generated as separate activities. This is done using a depth-
first search identifying all subsystems that can be executed
in one continuous piece with a single period i. e., the model
is decomposed along temporal borders instead of functional
aspects.

Since we assume that the examined control model does not
only consist of blocks that are part of the control system, and
therefore relevant at run time, but also includes subsystems that
are used only during system design for simulation purposes,
these have to be identified automatically. First, all blocks that
do not influence other blocks i. e., these do not have connections
to output blocks via ports or other Simulink constructs,
such as goto blocks, are classified as debugging blocks and
therefore discarded. Subsystems flagged as continuous-time by
Simulink are more important, since these represent the plant
for simulation purposes. Though these blocks are not to be
executed on the real-time system they denote start and endpoints
for the control application. Blocks whose inputs are connected
to such simulation subsystems are considered sensor activities.
Likewise, blocks that connect to the environment simulation
with output ports are interpreted as actuator activities. In
order to maintain the model’s structure the data flow from
sensors to actuators is traced and cycles are identified and
broken. In the RTSC the extracted activities and dependencies
are used to connect the system’s ABB graphs. In addition
to the code generated by Simulink Coder, glue code capable
of connecting the extracted control-activities, including some
simple continuous blocks such as ‘plus’ or ‘minus’, between
generated subsystems is added.

Figure 3 depicts first results of this automatic decomposition
when applied to the Simulink model of the I4Copter [8],
which is a multi-rate DSP and control system. It compares the
utilization and modularity of different approaches for mapping
control activities to RTOS mechanisms. The ‘Simple’ approach
mapped the entire application to a single large software module,
the ‘Manual’ approach identified six functional modules and our
‘Automated’ tool-based approach found all 36 atomic control
activities. Scheduling these small modules with their individual
periods led to a 55 % decrease in utilization compared to the



0 0.2 0.4 0.6 0.8 1

Simple

Manual

Automated

1

0.81

0.45

Normalized Utilization −→

0 10 20 30 40 50

1

6

36

# Components −→

Figure 3. Comparison of the utilization of the monolithic vs. the manually and
the automatically decomposed control model of the I4Copter. The fine-granular
decomposition of the ‘Automated’ approach into 36 activities decreased
utilization by 55 % in comparison to ‘Simple’ and by 36 % when compared
to the ‘Manual’ approach.

‘Simple’ approach where one single module had to be scheduled
with the highest rate present.

V. OUTLOOK: CLOSING THE LOOP

As the motivating example at the beginning of this paper shows,
classical timing properties such as met or missed deadlines are
of limited use for the actually intended result: the Quality of
Control. An all-temporal design and scheduling approach may
lead to overprovisioning of resources or, for example, fail to
provide the required QoC at runtime during mode switches in
mixed-criticality settings.

In this paper we highlighted the need for computer science
and control engineering to collaborate closely when designing
and implementing control systems so as not to lose important in-
formation about the system along the way. Also, we emphasized
the importance of end-to-end traceability of control-activities
to determine the influence of RTOS decisions on the QoC.

A starting point on the way towards control-aware design
is the toolchain presented in Figure 2. Here, dependency
information acquired by analysis of the control model is used
by the RTSC to generate schedules, from which the sensor
and actuator timing can be extracted. Building upon this, the
presented approach allows an assessment based on physical
effects, facilitating the efficient design of future highly dynamic
control systems.

In the future we intend to use the meta-information gleaned
from the control engineering model to improve the suitability of
scheduling decisions. Here the RTSC will show its full potential,
performing deeds at compilation time that ordinarily are
executed by the RTOS at runtime. The end-to-end traceability
allows for a seamless flow of information between the domains
of real-time and control engineering, allowing integration
of a variety of already existing as well as future co-design
approaches: by knowing the exact delay between input and
output of each control system in a static schedule generated by
the RTSC, it becomes possible to adjust the control design as

proposed in [9]. Taking one more step, the RTSC can be used
to simulate schedule switches by calculating different schedules
for various criticality states and tracing the application’s
activities from Simulink to the scheduler and back to Simulink.
This facilitates analysis of the QoC using Simulink’s simulation
or tools such as Jitterbug [1].

Vice versa, control knowledge could also be passed to
future control-application-aware RTOSes, leveraging the QoC
at runtime for adaptive scheduling and resource coordination.

Overall, the design process is no longer a one-way street
from the control model to a generated real-time system in
which important information is lost at every step. The flow
of information from the real-time back to the control domain
closes the loop between the two disciplines, enabling future
mechanisms for automated tailoring and evaluation of real-time
control systems.

REFERENCES

[1] A. Cervin, D. Henriksson, B. Lincoln et al., ‘How
does control timing affect performance? Analysis and
simulation of timing using jitterbug and truetime’, IEEE
Control Systems Magazine, vol. 23, no. 3, pp. 16–30,
2003.

[2] G. Buttazzo, M. Velasco and P. Marti, ‘Quality-of-control
management in overloaded real-time systems’, IEEE
Trans. on Computers, vol. 56, no. 2, pp. 253–266, 2007.

[3] A. Cervin, J. Eker, B. Bernhardsson et al., ‘Feed-
back–feedforward scheduling of control tasks’, Real-Time
Systems, vol. 23, no. 1-2, pp. 25–53, 2002.

[4] F. Flavia, J. Ning, F. Simonot-Lion et al., ‘Optimal on-
line (m,k)-firm constraint assignment for real-time control
tasks based on plant state information’, in IEEE Intl. Conf.
on Emerging Technologies and Factory Automation, 2008.
ETFA 2008., 2008, pp. 908–915.

[5] D. Simon, A. Seuret and O. Sename, ‘On real-time
feedback control systems: Requirements, achievements
and perspectives’, in 1st Intl. Conf. on Systems and
Computer Science (ICSCS), 2012, Aug. 2012, pp. 1–6.

[6] F. Scheler and W. Schröder-Preikschat, ‘The real-time
systems compiler: Migrating event-triggered systems to
time-triggered systems’, Softw. Pract. Exper., vol. 41, no.
12, pp. 1491–1515, 2011.

[7] F. Franzmann, T. Klaus, P. Ulbrich et al., ‘From intent
to effect: Tool-based generation of time-triggered real-
time systems on multi-core processors’, in 19th IEEE Int.
Symp. on OO Real-Time Distributed Computing (ISORC
’16), Washington, DC, USA: IEEE, May 2016.

[8] P. Ulbrich, R. Kapitza, C. Harkort et al., ‘I4copter: An
adaptable and modular quadrotor platform’, in 26th ACM
Symp. on Applied Computing (SAC ’11), (TaiChung,
Taiwan), New York, NY, USA: ACM, 2011, pp. 380–396.

[9] Y. Xu, K.-E. Årzén, A. Cervin et al., ‘Exploiting job
response-time information in the co-design of real-time
control systems’, in 21st IEEE Int. Conf. on Embedded
and Real-Time Comp. Systems and Applications, 2015.


