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ABSTRACT

Linux is a highly configurable operating-system kernel which
has been widely studied in the context of software product
lines over the past years. Understanding the challenges and
perils of evolving and maintaining feature models of the size
of Linux is crucial to provide the right tools for development
today and to direct future research. Unfortunately, previous
studies show contradictory observations when analyzing the
evolution of Linux feature models. We explain how pecu-
liarities of the feature models of the Linux kernel lead to
those differing observations, and show how the results can
be re-aligned. Moreover, our findings also demonstrate that
symbolic differencing on feature models used by researchers
so far has limited value, depending on the use case. We show
how the limitations can be addressed by means of semantic
differencing, and ironically invalidate the results we sought
to re-align.

CCS Concepts

eGeneral and reference — Experimentation; Reliability;
Management; eSoftware and its engineering — Software
configuration management and version control systems;
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1. INTRODUCTION

The open-source code base of Linux attracted the contribu-
tions of hundreds of companies and thousands of individuals
over the past 24 years and lead to a feature-rich and open
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operating system (OS). With more than 15,200 configurable
features in version 4.2, Linux is able to run in literally count-
less configurations on numerous hardware architectures and
platforms — from small mobile devices to extremely tailored
high-speed trading systems. Feature models (FMs) of such
size present an important real-world case study to variability
management and to software product lines (SPLs) in general.

Managing the variability of feature-rich software systems
such as Linux is difficult due to the number of features and
the complexity of the relationships among them. Mistakes
when updating features can lead to various kinds of errors
that may manifest in inconsistencies between the feature
model and the implemented variability (e.g., #ifdefs, build
system, etc.) at compile time [5] |6l 9], or in complex bugs
that can only be revealed during execution of the kernel
[10, 11). As those studies have shown, it is important to
understand the FM of Linux in order to properly evolve the
system and to develop tools for researchers and developers,
for instance, to detect dead code |5]. Thorough tool support
is especially needed for extracting variability information
from the FMs, which is barely possible by hand, even for
experienced developers |13] . As part of the CADOSE] project
we have been developing tools, such as undertakerE] to detect
and analyze inconsistencies between the configuration space
(i.e., configuration files) and the implementation space (i.e.,
source files, headers and build system). In cooperation with
kernel developers, we contribute parts of our tools upstrearrﬂ
and run daily consistency checks with undertaker-checkpatch
on newly integrated git commits in linux-next (i.e., the Linux
git repository for continuous integration) and accordingly
report detected issues to the responsible developers and main-
tainers. Until now, our daily checks include the detection of
dead code in source files [5], and of finding variability bugs
in and induced by the build system [6]. We plan to extend
the functionality of undertaker-checkpatch to also analyze
changes applied to the Kconfig feature model of Linux. For
this purpose, we require a fine-grained diff of feature models
in order to map them to changes of Kconfig configuration
files. Having fine-grained FM diffs allows us to analyze the
causes of variability bugs in greater detail, for instance, when
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certain changes to configuration files cause contradictory
#ifdef conditions in the code [5].

A tool to generate fine-grained diffs of feature models in
Linux has first been proposed by Dintzner et al. [12] in the
form of FMDif'fEl The authors were especially interested
in the question which architectures are affected by changes
of the FM. Since Kconfig configuration files in Linux are
hierarchically organized by architectures, a change applied to
such files may only affect some but not all architectures. An-
alyzing the impact of a change helps to know exactly which
architectures need to be (build) tested, and can thereby
improve performance of current testing frameworks of the
Linux community since only affected and not all architec-
tures will be checked. By reading the related papers |12, |15|
about FMDiff, we stumbled across a seemingly contradictory
observation with previous work from our group. On one
hand, Dietrich et al. [7] state that more than 60 percent
of all features are shared among the FMs. On the other
hand, Dintzner et al. [15] discovered when diffing the FMs
of Linux over a range of Linux versions, that changes to
shared features affect the FMs in the same way but only 37
percent of changes affect all FMs. Since changes to code are
proportional to its size [18], the results actually seem to be
inverted. Besides a general research interest, it is important
for us to reveal the causes of those inconsistent results since
either previous research, FMDiff or the FMs of Linux suffer
from undiscussed issues — our fine-grained consistency checks
of git commits rely on their correctness.

Contributions

In this paper, we investigate the inconsistent observations of
previous studies, and show that even small peculiarities of
Kconfig and of configuration files can alter the underlying fea-
ture models and conclusions drawn from it to a high degree.
By taking our observations and additional information from
kernel developer Greg Kroah-Hartman into account, we can
re-align and explain those results. Our findings also reveal
certain properties of the FMs of Linux limiting the applicabil-
ity of those models without further reasoning. In particular,
we raise the issue of feature selectability in feature models:
the symbolical presence of a feature in a given architecture-
specific FM does not imply that the feature can actually
be selected for the given architecture. The selectability of
features has considerable impact on the interpretation and
use of the results of previous studies. We thereby invalidate
the common and often cited assumption that Linux architec-
tures share more than two thirds of features and that they
evolve similarly. Ironically, the motivation of this paper was
to prove, not to invalidate this assumption — an unexpected
journey. Furthermore, we propose a methodology based on
SAT solving to address the issue of feature selectability in
the context of feature-change classification.

The paper is structured as follows. We first give an overview
of FMDIiff and describe its workflow in Section In Sec-
tion [3] we explain the inconsistent results of previous studies,
show where they stem from and analyze their causes. In Sec-
tion E[, we raise the issue of feature selectability and discuss
its impact on previous and future studies. We further show
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how the issue of feature selectablility can be addressed in
the context of feature-change classifications.

2. BACKGROUND

Supporting and maintaining the evolution of large scale
software product lines offers challenges to both, industry and
research. The Linux kernel, in particular, is under heavy
development with 8,600 lines added, 5,800 lines removed and
2,100 lines modified — every day [18]. With nearly 4,000
active developers and 430 involved companies, Linux is the
largest collaborative software project we know of |18|. The
feature model of Linux shows remarkable growth rates as well.
Given that Linux v2.6.12 (2005) was shipped with nearly
5,000 configurable features, the feature model of Linux has
tripled in size hitting the 15,000 features mark with Linux
v4.1 (2015).

To analyze the evolution of feature models and to examine
changes applied to configuration files on a fine-granular level,
Dintzner et al. [15] proposed an approach to diff the feature
models of Linux in the form of FMDiff® Taking two feature
models as input, FMDiff compares both models in order to de-
tect and classify changes of features. Figure [1] illustrates the
workflow of FMDiff which can briefly be split into three steps:

(1) Model Reconstruction: A required step before comparing
feature models is to translate the Kconfig configuration files
into a textual representation that is easy to diff. FMDiff em-
ploys the Kconfig extractor dumpconf from the undertaker®
suite, which parses Kconfig files and accordingly generates
one feature model for each architecture in the Rigi Standard
Format (RSF).

Selecting an architecture is the first mandatory step when
configuring the Linux kernel. Due to the hierarchical organi-
zation of Kconfig files, choosing an architecture constrains
which Kconfig files will be parsed and hence which Kcon-
fig configuration options (i.e., features) are included in the
FM of the architecture. Consequently, there is one FM and
hence one RSF file per architecture. Moreover, undertaker-
kconfigdump is based on the parser of Kconfig, which extracts
and transforms the FM but does not evaluate any condition
or expression. Hence, some parsed features may not be se-
lectable since their constraints cannot be satisfied; a RSF file
represents the FM of a given Linux architecture symbolically
but not semantically.

(2) Model Comparison: As soon as the models are recon-
structed in the RSF format, they can be compared. Taking
two versions of one architecture-specific RSF model, FMDiff
compares the attributes of each feature as defined by the
Kconfig language. Therefore, FMDiff ships a meta model de-
scribing the Kconfig language and uses the Eclipse Modeling
Framework to perform the differencing algorithm on both
models.

(3) Change Classification: FMDIiff uses a three level clas-
sification scheme [15] of feature changes, namely change
category (i.e., feature modification, addition and deletion),
change sub-category (e.g., modification of dependencies), and
the change type describing the actually performed change.
An exemplary diff of feature models is depicted in Figure[l]
The change of the depends statement is classified as a modi-
fication of the feature BAR, while feature FOO2 is added to
and feature FOOL1 is removed from the FM. FMDiff stores
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Figure 1: Diffing feature models with FMDiff.

the changes in a separate data base that can later be queried
for further analysis.

Detailed descriptions of FMDiff and the Kconfig language can
be found in |12} [15]. Note that in the context of this study,
we reimplemented the functionality of FMDIff in Python,
since we want to integrate the differencing classification into
the undertaker suite. We compared our implementation with
FMDiff, which is based on the Eclipse Modeling Framework
(EMF), and receive almost equal results. When comparing
boolean formulas, the EMF framework seems to be inaccu-
rate in the detection of logical equivalence such that it sees a
difference in formula ¢4 (A && B) and formula ¢p (B && A).
Our implementation uses limbooleEl to check if two given for-
mulas are logically equivalent, and correctly detects boolean
equivalence such as in the case of formula ¢4 and ¢p.

3. FEATURE-MODEL EVOLUTION

In this section we describe in detail the observations made
with FMDiff. We answer the question how and why those
observations conflict with previous research, and highlight
properties of the feature models of Linux that limit their
usability for feature-change classifications.

3.1 Classifying Feature Changes

When diffing the architecture-specific feature models
of Linux over a range of versions (v2.6.39 to v3.14)
Dintzner et al. |[15] discovered that “relatively few feature
changes affect all architecture-specific FMs of the Linux ker-
nel”. In other words, if a feature is changed, the change is
likely not to be visible in all feature models. This observation
does not align with previous results, such that feature models
of the Linux kernel evolve similarly with comparable growth
rates [2] and that Linux architectures share more than 60
percent of all features [7]. By having a closer look at the
feature distribution of Linux v4.2, we see that 67 percent
of all features are shared among all feature models. Since
changes to common features affect the feature models in
the same way [15] and since the number of changes is di-
rectly proportional to the size of source code [18], one would
expect that the majority of changes to configuration files —
statistically around two thirds — affects all feature models
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and not only a subset of models. Hence, it is confusing that
when using FMDIiff between Linux v2.6.39 and v3.14, one
observes that most changes (i.e., 63%) do not affect all FMs.
In fact, the expected result is nearly inverted. This raises
the question: How do architecture-specific FMs really evolve?

To answer this question, we must find out why the obser-
vations of previous studies differ. Let us first look at how
FMDiff classifies changes applied to Kconfig configuration
files with respect to affected architecture-specific FMs. The
authors define an architecture-generic change as a change
that occurs in all feature models, otherwise it is classified
as an architecture-specific change |15]. Let us consider a
change adding Kconfig option FFOO to Kconfig. This change
is classified as architecture-generic iff the change affects all
architecture-specific FMs (i.e., FOO is added to all FMs).
Otherwise it is classified as architecture-specific. Under the
assumption that a generic change affects all feature mod-
els, the change classification of FMDiff is perfectly sound,
but the results presented by Dintzner et al. |15] clearly indi-
cate that there are more architecture-specific changes than
architecture-generic changes. Hence, let us further investi-
gate the analyzed data, the feature models.

Table[Il shows the distribution of features over architectures
from Linux v2.6.39 (May 2011) to Linux v3.11 (September
2013), and hence shows how many features are shared among
how many architectures. The table is to be read as follows:
Linux v2.6.39 has 24 different architectures, 3,989 distinct
features are included in only one architecture, 182 features
are included in two architectures, 50 features are included in
three architectures, 2,617 are included in all 24 architectures,
etc. We can see that starting with Linux v3.11 the majority of
features (i.e., 66.59%) is included in all architectures, which
has not been the case in previous versions. Before version
v3.11 there are clusters — displayed in dark gray — of cardinal-
ity three (v2.6.39 to v3.1) and two (v3.2 to v3.10) indicating
that from version v2.6.39 until v3.10 the majority of features
was present in almost all architecture-specific feature models.
Thereby, the clusters in Table [I| are strong indicators for the
dominance of architecture-specific changes as observed with
FMDiff. Between Linux v2.6.39 and v3.10 only 22 percent
to 34 percent of features were present in all feature mod-
els. Since changes are equally distributed, and since most
features are not generic, most changes potentially could not
affect all FMs resulting in more architecture-specific changes
than architecture-generic changes as observed by Dintzner
et al. [15]. By analyzing the features included in the clusters
of Table [T] we make the following observations:

(a) The features in the clusters are included in all
architecture-specific FMs except in the architectures
um (v2.6.39 to v3.2), cris and h8300 (v2.6.39 to v3.11).

(b) 12 percent of those features are defined in the subsystem
sound, 88 percent are defined in the drivers subsystem.

We find that in the analyzed Linux versions, only the archi-
tectures um, cris and h8300 did not include the main config-
uration file of drivers (i.e., via “source drivers/Kconfig”).
In 2003, drivers/Kconfig has been introduced to reduce
duplication in Kconfig, since “[it was a] pain for architecture
maintainers to keep the top-level Kconfig files in sync”EI How-
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Table 1: Distribution of features from Linux v2.6.39 to v3.11. How many features are shared among how many architectures?

v2.6.39 50 209
v3.0 24 3990 183 53 227
v3.1 25 4026 184 52 228
v3.2 26 4028 181 57 233

24 1
1
0
0
v3.3 27 4077 180 51 232 5
5
0
0

3989

v3.4 27 4087 183 51 242

v3.5 27 4129 179 50 243

v3.6 27 4158 184 51 244

v3.7 28 4139 183 50 248 O

v3.8 28 4148 178 35 255 13

v3.9 30 4269 177 36 261 14
v3.10 30 4280 173 35 273 13
v3.11 30 4270 178 33 288 16
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ever, um, cris and h8300 had not been converted to use this
Kconfig file. Instead of including the generic driver Kconfig
file, all three architectures included only such sub-directory
configuration files that were really needed. As a consequence,
many features of drivers were missing in either the FM of
um, cris, h8300 or all of them. All features of the sound
subsystem were affected as well, since drivers/Kconfig is
the only place to include sound/Kconfig. Hence, the lack of
um, cris and h8300 including the main driver Kconfig file
explains the observation (a) and (b). By analyzing the git
history of Linux, we find that uml’| has been converted with
Linux v3.2, and that criﬂ and h830d€| have been converted
with Linux v3.11, which explains the change of the cluster’s
cardinality from three to two (v3.2) and from two to zero
(v3.11) in Table

3.2 Re-Aligning Results

The delayed conversion of drivers/Kconfig, explains the
observation of Dintzner et al. with FMDiff. Since most
driver features and all features of sound have not been
included in all architecture-specific FMs, there are more
architecture-specific changes than generic changes between
Linux v2.6.39 and v3.11. Still, this does not explain the
inconsistent results with Dietrich et al. , who analyzed the
distribution of features in Linux v2.6.35 and found that 62
percent of features are shared among the main architectures
of the Linux kernel. However, Dietrich et al. excluded the
architectures um, cris and h8300 from their analysis, which
may explain why those studies produce seemingly inconsis-
tent results — one included the other excluded um, cris and
h8300. In order to investigate if the inclusion and exclusion
of those architectures causes the different results, we apply
the feature differencing algorithm of FMDIff on the range
of previously analyzed Linux versions (i.e., v2.6.39 to
v3.14) by including and excluding um, cris and h8300 from
analysis.

Table [2| compares the results. We applied the FM differ-
encing as proposed by FMDIiff, and classified changes once by
including and once by excluding um, cris and h8300. Note,
that we exclude those architectures only in versions where
they are not yet converted to use drivers/Kconfig (i.e., um
prior to v3.3, cris/h8300 prior to v3.12). In Table [2| we

"git commit |3369465ed1a6
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Table 2: Comparison of detected architecture-generic changes
by including and excluding the architectures cris, um and
h8300.

v2.6.39 44.83% 14.99%
v3.0 72.66% 10.71%
v3.1 66.96% 11.25%
v3.2 73.36% 15.39%
v3.3 63.29% 23.67%
v3.4 59.81% 33.03%
v3.5 65.93% 40.24%
v3.6 72.79% 35.21%
v3.7 78.39% 28.73%
v3.8 53.91% 28.72%
v3.9 78.50% 53.31%

v3.10 55.33% 32.99%
v3.11 58.00% 12.54%
v3.12 47.93% 47.93%
v3.13 52.99% 52.99%
v3.14 53.46% 53.46%
Average 62.38% 30.94%

can see that excluding um, cris and h8300 reveals consis-
tently more generic changes than including them in versions
prior to Linux v3.12. After, the results remain equal. Those
observations can be explained with the fact that prior to
v3.12, the architectures um, cris and h8330 have not yet been
converted to use drivers/Kconfig. Most features of drivers
and all sound features have been missing in the FMs of those
architectures, causing more architecture-specific than generic
changes. The table also shows expected results for classifica-
tions when excluding those architectures. Since around 60
percent of features are shared among architectures [7] and
thus are generic to the FMs, statistically around 60 percent
of changes affect all FMs — 62.38 percent on average in our
data. Hence, the table shows that excluding those architec-
tures from analysis with FMDiff re-aligns the observations
of Dietrich and Dintzner.

However, even though we can re-align previously inconsistent
results with our data, previous work does not explain the ob-
served data for um, cris and h8300. Hence, we are interested
in the question why those three architectures have not been
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converted for a considerable period of time. We analyzed
the previously detected git commits that converted um, cris
and h8300, but we could not detect any technical reason for
those architectures not to include drivers/Kconfig before.
Personal correspondence with Greg Kroah-Hartman, the
maintainer of the driver core among many other subsystems
of the Linux kernel, validates our conclusion that there was
no technical reasons not to convert um, cris and h8300. In
fact, he points out a much simpler reason: “people being
lazy”. The conversion to use the generic driver Kconfig file
has first been applied to the x86 architecture, so that “it was
up to the [remaining] arch maintainers to do the conversion,
and given that there was no active maintainers for those
arches, they never did it (or did it late as was the case with
um)”. Hence, the conversion of um, cris and h8300 had been
delayed for a considerable amount of time — nearly 10 years —
since those architectures had not been actively maintained.
We argue that both approaches, including and excluding
them from analysis, are valid since the inclusion compares
the actual state of all architectures, whereas the exclusion of
such reveals more similarities of actively maintained archi-
tectures.

To conclude, when analyzing the evolution of Linux FMs
between Linux v2.6.39 and v3.14, Dintzner et al. [15] ob-
served more changes being generic to some but not all
architecture-specific FMs since the architectures um, cris
and h8300 did not include the generic drivers configuration
drivers/Kconfig in the analyzed range of Linux versions.
Hence, most driver features and all sound features have been
missing in the FMs of those architectures. On the other
hand, Dietrich et al. |7] found that 62 percent of features are
shared between the FMs of Linux, but they excluded um,
cris and h8300 from analysis which explains the seemingly
different observations. Personal correspondence with Greg
Kroah-Hartman revealed that the conversion of um, cris and
h8300 had been delayed since they remained unmaintained
in the range of analyzed Linux versions.

However, the data presented in Table |I] and the exchange
with Greg Kroah-Hartman emphasized another, yet more
fundamental problem when it comes to the FMs of Linux:
the pure symbolic presence of a feature in a shared, generic
Kconfig file does not imply that this feature can be selected
on all architectures. Hence, when using current techniques
to know if a feature change affects one or more architecture-
specific FMs, we ignore the fact that the architecture-specific
FMs of Linux reflect Kconfig and its constraints symbolically,
but not semantically. For instance, when considering drivers,
only half of the available architectures support PCI so that
all PCI drivers are selectable only for those architectures. As
a consequence, we expect that many as architecture-generic
classified changes do not affect all architectures semantically,
since the changed feature may only be selectable for some
but not all architectures. We discuss this issue in the follow-
ing section and show how falsely classified changes can be
detected by means of semantic filtering.

4. SYMBOLS VERSUS SEMANTICS

In the context of a software product line such as Linux, it is
desirable to reduce or even avoid code redundancy to enable
code sharing among different users (i.e., architectures) and
to make the code more maintainable. Hence, all subsystems
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of Linux are designed to be architecture-generic. However,
there are means to restrict code parts to certain features or
architectures. By means of the C preprocessor, source-code
artifacts can be conditionally compiled via #ifdef blocks, and
entire source files are conditionally included into compilation
via build-rules declared in Makefiles |6]. Similar in- and
exclusion applies to the feature model of Linux as defined
in Kconfig files. In Linux v4.2, 10,080 of all 15,204 features
are included in every architecture-specific FM. However, it
is important to understand that the symbolic presence of a
feature in a FM does not imply that the feature can actually
be selected for the given architecture — feature constraints
need to be taken into account. Consider the following Kconfig
code:

config PATA_CS5535
tristate "CS5535 PATA support (Experimental)"
depends on PCI && X86_32
[...]

Listing 1: Kconfig snippet from drivers/ata/Kconfig (Linux
v4.2)

The feature, in the Kconfig language denoted as configura-
tion option, PATA__(CS5535 is defined in drivers/ata/Kconfig.
This Kconfig file is included only by drivers/Kconfig, so
that PATA_ CS5535 is included in all architecture-specific
feature models. Even though PATA__(CS5535 is included in
all FMs, it can be selected only on the x86 architecture due
the dependency in line 499. Such cases, where features are
included in all but selectable only for some architectures,
raise several questions: Does it make sense to classify a
feature and changes applied to it as part of an architecture-
specific model if the feature does not exist semantically? Do
architecture-specific FMs evolve similarly and really share
two thirds of features?

4.1 Distribution of Features

To give a first impression of the size of the semantic prob-
lem, we compare the number of shared features that are
selectable only for some architectures by analyzing the FMs
of Linux v4.2 as follows:

(1) Collect a set Fgym of features that are included in all
and hence shared among all architecture-specific FMs.

(2) Iterate over Fsym and check the satisfiability of the
constraints of each feature by means of a SAT solver. If
the feature can be selected on each architecture-specific
FM, it is semantically generic.

We used undertaker-kconfigdump to generate the feature
models in the RSF format, and employed PicoSAT [1] as a
SAT solver. We find that only 2,523 of 10,080 symbolically
shared features are actually selectable on all architectures.
This means that architecture-specific feature models of the
Linux kernel have 75 percent less generic features as they
may symbolically indicate.

We conclude that feature models of Linux do mot share
most features. In fact, only 17 percent (2,523) of all features
(15,204) are semantically generic in Linux v4.2. In the fol-
lowing we measure the impact of feature selectability on the
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Figure 2: Comparison of semantic and symbolic feature-change classification.

evolution of FMs to answer the question if feature models of
Linux evolve similarly.

4.2 Semantic FM Evolution

A major use case of FMDIff is described as determining
the impact of a change to Kconfig in terms of build test-
ing , If a Kconfig option is changed, it is desirable to
re-build only those architectures that are affected by the
change. The Intel Open Source Technology Center, for in-
stance, is build-testing over 180 different Linux development
repositories, every single day . Knowing which changes
affect which architectures can greatly improve performance
of such test-frameworks, since it avoids unnecessary builds
of unaffected architectures. The gained time can be used
for additional builds which thereby increases the amount of
tested commits on a daily basis. However, current feature
differencing techniques, as used by FMDiff, must be con-
sidered with care. If a change is classified to affect a given
architecture, we must be sure that the changed feature can
actually be selected on this architecture. Without this check,
more architectures are build-tested than necessary, having a
counter-productive effect on the purpose of enhancing cur-
rent build-testing frameworks. Similar to the approach in
Section such false positives can be filtered by means of
a SAT solver:

e A changed feature f affects architecture arch only if
the feature constraints of f are satisfiable on the FM
of arch (i.e., there is at least one valid configuration of
arch containing feature f).

e Changes that do not affect the FM of a given architec-
ture semantically need to be filtered.

We applied such semantic filtering of changes over a range
of Linux versions, from v2.6.39 to v4.2. Figure [2] compares
the results of architecture-generic and architecture-specific

changes with and without semantic differencing. The re-
sults with semantic differencing are denoted as Semantically
Generic and Semantically Specific Changes. The results
without semantic differencing are denoted as Symbolically
Generic and Symbolically Specific Changes. We can see that
there are consistently more architecture-generic changes that
impact the FMs symbolically than semantically. In total
numbers, there are 1,689 changes between Linux v2.6.39
and v4.2 that semantically affect all FMs of Linux. From a
symbolical point of view 9,968 changes affect all FMs.

On one hand, Figure [2| shows us that feature-change classifi-
cations without semantic differencing are highly imprecise:
98 percent of architecture-generic changes are false positives.
On the other hand, the figure also shows us that feature
models of Linux evolve very differently. Only 5.8 percent of
changes (i.e., 1,689 of 29,091) affect all FMs semantically.
Thereby, we show that Linux architectures evolve very dif-
ferently. Note, the peaks at Linux v3.2 and v3.11 are caused
by the conversion of um, and cris and h8300 respectively to
use the generic drivers/Kconfig configuration file. Those
conversions caused the additions of all remaining drivers
and sound features to the affected FMs which are thus clas-
sified as architecture-specific feature changes. We further
conclude that current feature-differencing techniques do not
work as expected in the context of build-testing. Since those
techniques diff on a symbolic level, more architectures will
be build-tested than necessary. Those false positives can
be avoided by semantic filtering in order to re-assure that
changes really affect a given architecture or not.

4.3 Discussion

Understanding the difference between the symbolical pres-
ence of a feature and its semantic selectability is crucial for
any kind of study based on the feature models of Linux.
Our results show that 2,523 of all 15,204 features in Linux



v4.2 are semantically generic. Furthermore, less than six per-
cent of changes affect all architectures of Linux. We thereby
show that feature models of Linux are inherently different
from a technical point of view. How can a virtualized kernel
architecture, such as User Mode Linux, share 60 percent of
features with a bare-metal x86 kernel that supports thou-
sands of different hardware devices? We want to make clear
that for any research that is about facts of variability models
in Linux, only a semantic approach makes sense. Otherwise,
data is being measured that does not reflect reality and that
— depending on the context — has no practical impact.

Our approach aims at avoiding false classifications by
means of semantic filtering and can also be applied to gener-
ate semantic models (i.e., FMs that only include selectable
features). By means of a SAT solver, the satisfiability of the
feature constraints of each feature has to be tested. Hence, a
model can be transformed into a semantic model by checking
the satisfiability of each feature and by removing those that
remain unsatisfiable. Semantic models can be interesting for
qualitative studies on the feature models of a given archi-
tecture. However, our study and the presented approach is
limited by the accuracy of the models extracted from Kconfig
configuration files, which we discuss in the following section.

S. THREATS TO VALIDITY

The precision of our study is constrained by the accuracy
and correctness of the extracted models, which we take as
an input for diffing feature models. On one hand, incon-
sistent models may lead to false classifications (e.g., when
dependencies are falsely propagated). On the other hand, an
accurate translation of the semantics is crucial for reliably
checking the satisfiability of feature constraints with respect
to a given architecture.

El-Sharkawy et al. [16] have shown that the models gener-
ated by undertaker’s dumpconf, among other tools, do not
accurately reflect the semantics of Kconfig. The authors
investigate the semantics of Kconfig in great detail and for-
mulate several corner cases which are not translated correctly
in the models we used for our analysis. Inaccuracies in the
semantics of the model are especially unsatisfactory when
solving a SAT problem, as in our case. However, at the cur-
rent state the impact of the models’ inaccuracies on analysis
as such performed in this study is unclear; some unsupported
cases affect only certain versions of the Linux kernel or do
not practically impact its models (e.g., the option module
case [16]). Most of the mentioned corner cases affect choices
(i-e., mutually exclusive selects) in the Kconfig language.
Since choices are barely changed in Linux [15], we do not
expect major impacts on the presented results of our study.

Nonetheless, more accurate models can be generated with
kconfigreader [17], developed by Késtner, which should be
preferred over dumpconf in future Kconfig-based analysis
and especially in production systems to improve accuracy.

6. RELATED WORK

Linux, among other software systems, has been intensively
studied in the context of configurability and variability man-
agement. In the following, we want to list related work and
similar studies.

Passos et al. [19] performed and extensive study extracting
variability-coevolution patterns capturing changes in the
variability model of the Linux kernel with subsequent changes

to related artifacts (i.e., Makefiles and C source code). The
authors created a catalog of (common) patterns describing
how certain classes of changes affect different code artifacts,
the frequency of such changes and how they are used in
development.

Passos et al. [20] further investigated the scattering of
driver features in Linux in a quantitative and qualitative
study over 8 years of Linux development history (i.e., from
Linux v2.6.12 to v3.19). The authors consider a feature to be
scattered when it is not implemented in a modular way, but
distributed over multiple source-code locations (e.g., multiple
#ifdef blocks reference a specific feature or configuration
option). Their results show that a majority of 82 percent
of driver features can be introduced without causing scat-
tering, and the amount of scattered features remains at a
rather constant level of 20 percent. The authors conclude
that scattering using pre-processor directives is a natural
mechanism when dealing with system software of the size
of Linux, although the usage yields potential maintenance
efforts.

In (3], She et al. present a quantitative study of the Linux
kernel, investigating certain properties of its variability model
(e.g., characterization of features, code-granularity of features,
and the model’s hierarchy). The authors conclude that the
variability model of the Linux kernel should be considered
as a real-world benchmark for tool designers.

Nadi et al. [13] proposed an automated approach to
(re)construct variability models from C code by extracting
configuration constraints from the code base. Although the
developed heuristics show a considerably high accuracy of
77 percent, the overall approach can recover only 19 percent
of all model constraints. The authors further conclude that
manual extraction of technical constraints is barely possible,
even for experienced developers.

Among others [4} |9} |11], our group aims to support the
aforementioned efforts of maintaining variable software by
developing methods and tools to detect variability-related
bugs, such as identifying dead #ifdef code [5], extending vari-
ability models with information from build systems [6] and
developing a systematic approach to reveal configurability
related build issues [14]. Our study aims to extend those
bug-detection techniques to reliably analyze and locate vari-
ability bugs and their causes in git commits, which requires
detailed information from Kconfig when feature models are
being changed.

7. CONCLUSION

This paper was initially motivated by integrating fine-
grained FM diffs into our tools. We require such diffs to
determine the impact of changes applied to Kconfig files on
the feature models in order to improve the analysis of dead
features and dead #ifdef blocks. In course of the paper,
we have shown that current feature models of Kconfig, as
extracted by undertaker-kconfigdump, suffer the limitation
that they do not reflect Kconfig semantically. In order to
overcome this limitation and to make feature-model diffs
applicable for our use case, any observed change affecting
an architecture-specific FM must be validated by means of a
SAT solver.
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