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Abstract—Large-scale intra-organizational, yet decen-
tralized software projects that involve various self-
contained organizational units require architecture guide-
lines to coordinate development. Tool support allows
for managing architecture-guideline violations to ensure
software quality. However, the decentralized development
across units results in significant violation-management
hurdles that must be considered.

Derived from our previous research, we have elabo-
rated a set of capabilities required to manage guideline
violations within two of these large-scale software projects
at Siemens. Their main purpose is process support for
resolving violations, aiming to reduce the architects’ and
developers’ effort required to handle them. We developed a
prototype that implements the capabilities and conducted
a qualitative case study on their usefulness, involving
9 experts from our study systems. Our capabilities are
considered as very important and reveal great potential
to ease violation management for large-scale software
engineering.

Index Terms—Software ecosystem, software product line,
decentralized software engineering, architecture-violation
management, technical-debt management, industry case
study

I. INTRODUCTION

Large-scale organizations, such as Siemens, de-
velop a broad field of products for varying domains.
Organizational-wide reuse of software across products,
even across domains, gives these organizations a competi-
tive advantage. This involves large-scale reuse approaches
where (unlike traditional product-line approaches [1] that
are commonly established within distinct organizational
units) software is developed in a decentralized manner by
several internal, yet self-contained organizational units.
Those units are separate profit centers with own business
objectives, organizational independent with own product
management, and have to a wide extent autonomous
processes and software-engineering life cycles. Thus, the
view on the organizational structure moves from strict
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Fig. 1. A simplified illustration of ISECO-A.

hierarchies, as it is common in product-line engineering
[1], towards more decentralized topologies. We define
those software systems as internal software ecosystems
(ISECOs) [2].

We are investigating two of our largest ISECOs at
Siemens. Both study systems, ISECO-A and ISECO-B,
have been under development for more than 10 years and
involve about 500 and 950 active developers, respectively.
They comprise a keystone unit that provides a platform
and multiple client units that build one to a handful large
applications upon it (see Fig. 1). Units partially employ
separated version control systems (VCSs).

Within such a decentralized environment, traditional
process-centric coordination mechanisms become in-
creasingly inefficient. Rather, architecture guidelines
are required to coordinate cross-organizational develop-
ment [2]. Besides defining architecture guidelines, it is
equally important to control guideline compliance at an
ecosystem-wide level. However, feature and schedule
pressure regularly result in intentional and unintentional
violations by several units [2].

Previously, we reported on collaboration practices
among units and resulting architecture challenges for
ISECO-A and ISECO-B [2]. We identified the manage-
ment of architecture violations as the key challenge—both
ISECOs have to deal with thousands of architecture vio-
lations, that have accumulated over time, which implies
significantly increased development and maintenance



TABLE I
TAGGED PLATFORM APIS (LEFT), DOCUMENTED PRE-CONDITIONS (MIDDLE), AND RECOMMENDED FACTORY USAGE (RIGHT)

/// <summary>...</summary>
/// <apiflag>API:PUBLIC</apiflag>
public interface ILayoutRepository {...}

/// <summary>...</summary>
/// <apiflag>API:NON-PUBLIC</apiflag>
public interface INavigationSetupOperations {...}

/// <summary>...</summary>
/// <param name="howOften">
/// Specifies the number of repetitions.
/// Value must be greater than 0.
/// </param>
/// <remarks>The pipeline must be activated
/// first <see cref="Activate"/>.</remarks>
public void RunPipeline( in t howOften) {...}

public class Options {
internal Options() {...}

}
public stat ic class OptionsFactory {

stat ic Options CreateOptions() {
return new Options();

}
}

costs [2]. In this paper, based on our previous research,
we outline a set of violation-management hurdles (e.g.,
late feedback) for our ISECOs that result in high violation-
handling effort. High effort, in turn, results in even more
violations that are not handled—the architecture ages [2].

For that reason, we propose the TRAVIM approach: A
set of violation-management capabilities (from integrated
tool support to automated assignments of resolution tasks)
that tackle the identified hurdles. Their main purpose is
process support for resolving violations, aiming to reduce
the architects’ and developers’ effort required to handle
them. We present a prototype that realizes the capabilities
for our ISECOs. Using the prototype, we conduct a case
study on the capabilities’ usefulness to overcome the
hurdles, involving 9 experts from our ISECOs with an
average professional experience of about 17 years. All of
them consider that the capabilities reveal great potential
to ease violation management. We are currently planning
our prototype’s industrial roll out for our ISECOs.

Our major contributions are (1) the conceptual elabo-
ration of violation-management capabilities for ISECOs,
(2) their concrete realization for our ISECOs, and (3) a
thorough analysis of the capabilities’ usefulness. As
many of the identified hurdles refer to general software-
engineering problems that are likely to appear also in
other mid- to large-scale projects, we think that the elab-
orated capabilities can contribute to the development and
improvement of violation-management tools in general,
in particular for projects that face similar hurdles.

The paper is laid out as follows: In Section II, we
outline example guidelines. In Section III, we present the
hurdles, the elaborated capabilities to address them, and
the capabilities’ realization for our ISECOs. In Section
IV, we outline our case-study research method and results.
In Section V, we discuss the generality of our approach
and limitations. In Section VI, we provide an overview
on related work. In Section VII, we conclude the paper.

II. ARCHITECTURE GUIDELINES

ISECOs require architecture guidelines to coordinate
cross-organizational development. Those guidelines relate

to a variety of architecture concerns, including depen-
dency management, interface stability, or guarantee of
software qualities across the ecosystem [2]. Often, such
guidelines are established problem-driven and they are
specific to the project. Compliance is checked manually
by reviews and fully automatically by static-analysis
and testing tools. Since manual reviews are costly and
time-consuming, both ISECOs spend considerable efforts
to automate the detection of architecture violations,
frequently by highly-customized or homegrown tools
that partially rely on source-code annotations. Automated
checks are executed decentralized per VCS with different
frequencies (e.g., per commit, during the nightly build,
once a week) at various phases of the development
processes, analyzing only sources of units that work
on the respective VCS (see Fig. 1). Below, we outline
example guidelines of our ISECOs:

1) Do Not Use Platform-Internal APIs: The clients’
schedule pressure required both keystones to open the
platform in early stages and to expose a vast amount
of APIs publicly accessible. This led to thousands of
undesired dependencies between client applications and
platform APIs [2]. Over time, the keystone of ISECO-A
explicitly marked APIs either as public for client usage
or as non-public for platform-internal usage only, using
a flag in the APIs’ documentation comments (see Table
I (left)). Clients must only use APIs that are tagged as
public. Compliance is checked fully automatically by
a custom guideline for the static-analysis tool FxCop
[3]. Additional dependencies are not allowed. Already
existing ones are to be resolved incrementally.

2) API Design Guidelines: Platform APIs must be
of high quality to reduce the client-side impact of
platform changes. For ISECO-B, the keystone established
guidelines for designing high-quality APIs that follow
two design principles: First, make APIs easy to find, to
understand, and to use. Second, make APIs evolution
ready and backward compatible. An example for the
former principle is the guideline Do Document Pre-
Conditions to communicate the non-obvious (see Table I
(middle)), an example for the latter one is the guideline



Do Prefer Factories Over Constructors to maximize infor-
mation hiding (see Table I (right)). Platform developers
are trained. Compliance is checked manually by reviews
and fully automatically by custom guidelines for the
static-analysis tools FxCop [3] and NDepend [4].

3) Behavioral Breaking Changes: The keystone does
not always know how (e.g., with regard to assumptions on
external qualities or execution orders) platform APIs are
used. Hence, the client-side impact of behavioral changes
cannot always be assessed [2]. For both ISECOs, clients
support the keystone in testing APIs according their actual
usage. They deliver test cases that are integrated into the
keystone’s test suite to detect behavioral changes. In
this regard, guidelines are implemented by dedicated test
cases. Siemens-internal test frameworks are used to fully
automatically check for compliance. Detected changes
are handled by the keystone and affected clients.

III. TRAVIM APPROACH

We propose the TRACEABLE ARCHITECTURE-
VIOLATION MANAGEMENT (TRAVIM) approach: A
collection of 6 capabilities for managing architecture
violations within ISECOs [5]. The capabilities’ main
purpose is process support for resolving violations. They
tackle 6 major violation-management hurdles for ISECOs.
Those hurdles imply high violation-handling effort—
high effort, in turn, results in an increasing number
of violations over time [2]. Most hurdles (Hurdle3
to Hurdle6) were explicitly identified in our previous
research [2]. Hurdle1 and Hurdle2 were not explicitly
mentioned. However, in this work, we identified the
resolution of both as prerequisites to address the other
hurdles, and therefore included them as implicit hurdles
when developing the TRAVIM approach.

The TRAVIM approach targets decentralized violation
management per VCS (see Fig. 1). In a nutshell, we pro-
cess results of employed compliance-checking measures
to create and track issues for identified violations. Results
of automated measures are processed1 every night. We
track only violations already published to the VCS. We
use separate issue databases per VCS to allow ecosystem
partners to protect confidential information. Developers
and architects create, find, and handle violation issues
using tailored dashboards.

Below, for each capability, we present (1) the identified
hurdle, (2) the derived capability to tackle it, and (3) the
concrete realization of the capability for our ISECOs.

1The report-files’ locations of employed measures must be provided
in a configuration. We process updated reports. We do not execute
checks.

A. Integrated Approach

1) Hurdle1: Within our ISECOs, guideline documents
are spread across repositories. Moreover, compliance is
checked by heterogeneous measures at various phases of
the development processes. The heterogeneity of tools
and methods increases violation-handling effort.

2) Capability1: Integrate all employed compliance-
checking measures into a single data model and provide
explicit and consistent violation-handling processes. Inte-
grate guideline information. Integrate the approach into
employed development tools and processes.

3) Capability1 Realization: Our ISECOs employ a
range of static-analysis tools2 and test frameworks to
fully automatically check for guideline compliance, often
homegrown or highly-customized ones. They also apply
manual reviews as expert knowledge is frequently re-
quired. We process identified violations, convert violation
information to a uniform data format, and store them
in a database. Expected information is reduced to the
essentials required to track a violation: (1) The guideline
that is violated. (2) The item that violates the guideline.
For manual reviews and static-analysis tools, an item is
specified by a file and a line. For test frameworks, an
item is specified by a set of files. The items’ specification
by concrete files and lines is intended as entry point for
handling violations. For manual reviews, this information
must be specified by the user. With regard to automated
measures, required information is extracted from reports.
The static-analysis tools employed by our ISECOs usually
directly map violations to files and lines. If not, we
apply heuristics to determine required information, such
as using the first line of a method if reports provide
only its signature. For test frameworks, guidelines are
implemented by dedicated tests. Reports always include
information on failed tests that represent the guidelines.
In addition, we use a configuration that relates tests to
items.

Moreover, we integrate into employed tools and
processes. We provide dashboards that are seamlessly
integrated into the development environment (see Fig.
2). They deliver a single user interface for architects
and developers to handle violations. For each violation,
we provide relevant information including the item,
the guideline, and the developer the resolution task
is assigned to. In addition to violations, we formalize
and integrate corresponding guidelines and underlying
requirements. For guidelines, we provide information such

2In the remaining paper, we use the terms static-analysis tool and
test framework for fully automated tools.



Fig. 2. Our dashboards are integrated into Visual Studio (A). They allow users to manually create violation issues (B), to find tracked ones
by predefined and custom queries using a database query language (C), to display queried violations with guidelines as parent elements
(D), and to review and update information of selected issues while providing violation-handling functionality (E). They also comprise a
pre-commit view (F) to run checks on developer machines for handling violations in local changes (G). Just as source files, issues can be
opened in separate tabs, too (H).

as descriptions, resolution strategies, and priorities. Items
are linked to violations, violations are linked to guidelines,
and guidelines are linked to requirements. By use of
navigation buttons, users can quickly switch between
these artifacts with only one user action and without
exiting their development environment. For example,
users may directly open a causing source file and line out
of the violation representation to resolve the violation.

Violation-handling processes are modeled by means
of workflows, comprising states and transitions between
states. Once violation issues are created, they flow through
the workflow taking one of the states. Transitions are
triggered manually through the dashboards depending
on user actions or automatically by the system. Fig. 3
shows the manual workflow for ISECO-A and ISECO-B.
The automated workflow is slightly different: Our system
enters the state Resolved if automated checks do not
detect a violation anymore. Likewise, the state Active is
reentered if a violation that was (marked as) resolved is
detected by a subsequent automated check.

B. Traceable Resolution Processes

1) Hurdle2: Automated checks deliver static and
temporally-dependent snapshots of currently existing
violations within a software system, which makes it

difficult to continuously assist and track the resolution
process of individual violations.

2) Capability2: Continuously trace violations through
software evolution in order to assist and track the
resolution process of each individual violation throughout
the life cycle.

3) Capability2 Realization: We map current snapshots
to previously identified violations already tracked in our
database in order to create issues for additional violations
and to update issues of already tracked ones. In order to
map violations, we uniquely recognize violations over
time.

For test frameworks, violations are uniquely identified
by the guideline and the item. As discussed above, each
guideline is implemented by a specific test case that either
fails or succeeds. Hence, information required to map
violations is available.

For static-analysis tools, violations are uniquely iden-
tified by the guideline, the commit where the violating
item changed most recently before the previous analysis,
and the committed item. For each violation the original
commit and the committed item are identified as follows:
Based on analysis reports for the current source-code
version we know the violated guideline as well as the file



and line that violate the guideline. Querying the VCS, we
trace the file’s history across branches back to the commit
where the given line has been added or edited. Along the
descending history, we map the line given in the current
report to the corresponding line of each version in order
to check if it has been changed. In the process, we ignore
white-space changes, ignore pure merges resulting in new
versions, and consider moved and renamed files.

C. Temporal Differentiation

1) Hurdle3: Usually, guidelines are not fully defined
in initial project phases, but evolve progressively over
time [2]. This requires to deal with thousands of already
existing violations that overwhelm developers when
guidelines are adopted, calling for pragmatism [2].

2) Capability3: Differentiate between Legacy Viola-
tions and New Violations. Legacy Violations are violations
that do already exist before adopting a guideline. Trigger
their resolution incrementally on demand. New Violations
are violations that are created afterwards. Trigger their
resolution instantly.

3) Capability3 Realization: All violations identified
during the initial run of automated checks are marked as
Legacy Violation. From this point in time, additionally
identified violations are marked as New Violation, which
is possible since we trace violations through software
evolution (see Capability2). For manually created issues,
users define the violation type. We mark a tracked Legacy
Violation as New Violation if the specified line changes.
If desired, architects can manually change the type,
for example to perform refactorings. All violations are
tracked (see Capability1), which is essential to provide
a profound base for technical-debt removal decisions.
Resolution processes are triggered depended on the type:
Legacy Violations are initially hidden from developers in
order to not overwhelm them by thousands of violations.
Architects manually trigger their resolution incrementally
on demand, either for collections of violations or for
single ones. From this point in time, they appear on
developer dashboards. For New Violations, resolution
processes are triggered automatically instantly after their
identification. Developers are immediately notified on
their dashboards.

D. Individual Violation-Handling Plans

1) Hurdle4: Organizational units must build consensus
on guidelines to be established [2]. Guidelines may imply
varying costs and benefits for involved units, which
results in long negotiation phases where violations are
not handled [2].
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Resolved Resolved

Marked 
Ignore Ignore

[Request Review]

[Request Ignore]

[Accept]
[Reject]

[Accept]

[Reject][Confirm]

Support
[Provide Support]

[Request Support]

Architect Developer

Fig. 3. The manual workflow for ISECO-A and ISECO-B. For
simplification, not all possible transitions are depicted.

2) Capability4: Allow definition of individual viola-
tion-handling strategies for each organizational unit
according to individual capabilities and priorities. Trigger
resolution processes accordingly.

3) Capability4 Realization: We support the definition
of individual violation-handling plans per guideline for
each unit. They comprise New-Violation Reaction Periods
and Legacy-Violation Remediation Objectives. In our
ISECOs, such plans are decided on consensually in
architecture boards involving the main architects of all
units.

New-Violation Reaction Periods define the timeframe
provided to an unit to resolve New Violations. For each is-
sue, we automatically set resolution deadlines accordingly.
We consider the following reaction periods: (1) Violations
are not allowed. The resolution deadline is set to date
of identification. (2) Violations are temporarily allowed
but must be resolved within a defined timeframe (e.g.,
within the current release). The resolution deadline is set
accordingly. (3) Violations are allowed. No resolution
deadline is set, but violations are tracked to make them
explicit.

Legacy-Violation Remediation Objectives define points
along the project timeline along with selected Legacy
Violations to be resolved or measurable objectives such
as performance improvements to be achieved. Resolution
deadlines are set manually by architects when triggering
resolution tasks.

E. Automated Assignments & Pre-Commit Checks

1) Hurdle5: Late feedback implies additional effort to
get familiarized again with already completed tasks [2].
It proved difficult to resolve added violations that are not
handled close to point in time where code is created [2].

2) Capability5: Provide early feedback by automat-
ically assigning resolution tasks to architects and de-
velopers for violations that are already published to the
VCS. Assign tasks close to point in time where checks are
executed and provide immediate notifications. In addition,
allow for pre-commit checks on developer machines to
avoid violations.



3) Capability5 Realization: We process updated re-
ports of automated checks during the nightly build.
Violations are assigned to architects by assigning them
to the architects’ unit, using the item and a configuration
that maps directories to units. The heuristic works well
for our ISECOs where each unit owns a sub tree in the
project’s directory structure. For a violation detected by
static-analysis tools, we determine the commit where the
affected item changed most recently (see Capability2). We
assign the resolution task to the developer who performed
the commit. Similarly, we allow users to initiate the
assignment of tasks for manually detected violations.
For test frameworks, suitable developers are determined
by a configuration that relates test cases to items and
developers. If desired, developers may reassign tasks or
move them to a pool of tasks to be manually assigned by
architects. We only assign tasks to developers for New
Violations but not for Legacy Violations, which allows
starting violation handling in a brown field. Based on
the assignments, our tailored dashboards display only
violations that are relevant for the respective developer
or architect.

Moreover, we support pre-commit checks on developer
machines to handle violations before publishing them
to the VCS. Developers can configure target sources
and measures to be checked. Using the dashboards,
they can trigger the measures’ execution and handle
identified violations. Developers are informed about New
Violations in their local changes only but not about Legacy
Violations, having the following opportunities for action:
(1) They may navigate between source files, violation
details, and guideline details to resolve the violation. Its
resolution can be confirmed by rerunning the checks. No
violation issue is created. (2) They can request resolution
support with predefined contacts. An e-mail is generated
including the request message, the local changes, and
optional attachments. No issue is created. (3) They can
explicitly decide to commit affected files. A violation
issue is created and optionally opened to enter additional
information.

F. Collaborative Violation Handling

1) Hurdle6: The handling of specific violations com-
monly lacks efficient processes, defined roles and respon-
sibilities, and mechanisms to collaborate, in particular
across organizational units [2].

2) Capability6: Provide violation-handling processes
that are tailored to the organizational and product context
and support the collaborative resolution of violations with

dedicated contacts accordingly. Track all collaborative
actions and provide a full history for each violation.

3) Capability6 Realization: In our ISECOs, developers
may require resolution support, they need a permit for
ignoring violations, and fixes of manually identified
violations must be reviewed. Architects may require
support from each other. We support the collaborative
resolution of violations accordingly.

For each unit, we define a default contact responsible
for requests. Contacts can be overwritten on guideline
level. Users can initiate a request for a violation issue by
selecting the corresponding workflow state (see Fig. 3).
By default, the contact defined for the unit to which
the violation is assigned to is preselected as receiver.
Users can change the receiver to any person with a
valid user account. After entering mandatory information
(e.g., a rationale for ignoring a violation) users can
submit the request. Receivers are immediately notified
on their dashboards. Issues contain information relevant
for providing support, performing reviews, and deciding
on ignore-permit requests, including a full history of all
actions already performed and a list of related commits.3

Users respond by selecting the corresponding workflow
state (see Fig. 3).

We target decentralized violation management per VCS.
However, individual violations may require collaboration
across VCSs, for example to resolve undesired depen-
dencies between applications and platform APIs. We
allow architects to request resolution support across VCSs.
Violation issues are stored in separate databases for each
VCS. By default, each database holds only issues assigned
to units that work on the corresponding VCS. To enable
collaboration by use of issues, we copy and continuously
synchronize selected ones between databases. Exchange
happens by clearly defined interfaces to control access
to confidential data. Thus, we allow users to collaborate
uniformly regardless of their distribution to VCSs.

G. Prototypical Implementation

Our prototype extends Microsoft’s Team Foundation
Server (TFS) [6], in particular its workflow-based issue
tracker, which is already in use within our ISECOs.
We developed custom issue types for violations and
guidelines that define the violation-handling workflow
and information to be tracked. We developed a set of
parsers to process violation reports of automated measures
employed by our ISECOs, such as FxCop [3], NDepend

3In our ISECOs, commits by convention must be linked to related
tasks and issues. This allows providing review functionality out of
the issue.



[4], and a compiler for a Siemens-internal domain-specific
language. Our business logic uses the API of TFS
to determine commits violations were created and to
programmatically create, find, and update violation issues
as part of the nightly build. Issues are stored in the data
warehouse of the respective TFS. To collaborate across
TFSs, we developed a trusted interface to be installed
on each TFS and a trusted interface connector realized
by a set of WCF services [7]. Our dashboards (see Fig.
2) integrate into Visual Studio [6] and extend the issue-
tracker’s user interface. The pre-commit view is realized
as Visual Studio plug-in.

IV. INVESTIGATING THE CAPABILITY’S USEFULNESS

In the previous section, we elaborated capabilities to
resolve the hurdles of violation management in ISECOs.
By describing their realization and the implemented
prototype for our ISECOs, we show that the hurdles
in general may be tackled. In the following we give a
more in-depth view on the capabilities’ benefits from the
perspective of practitioners to get an impression of the
approach’s feasibility. Therefore, we present a qualitative
case study on the capabilities’ usefulness. We investigate
the following research question:

RQ: What is the capabilities’ usefulness for managing
architecture violations within ISECOs? How well do the
capabilities tackle the identified hurdles?

We have investigated both ISECOs for a period of more
than 3 years, starting with the case study on architecture
challenges [2], continuing with the development of the
TRAVIM approach to tackle selected challenges [5],
and concluding with this investigation to evaluate the
usefulness of the approach. We developed a case study
protocol and structured our study based on the guidelines
by Runeson and Höst [8].

A. Methodology

In this section, we depict the research setting we have
investigated and the research method we have applied (see
Fig. 4). The study involves 9 experts from our ISECOs.
Their professional experience ranges from 6-30 years
with an average of about 17 years. They are involved in
our ISECOs for 1-13 years with an average of about 8
years. In a nutshell, they used the prototype to perform
8 violation-management tasks. We observed, surveyed,
and interviewed them to understand the capabilities’
usefulness. Below, we describe each study phase:

A) Case Study & Literature Review: We prepared a
questionnaire and an interview guideline based on our

E) Transcribing, 
Coding & Concluding

Design and Planning Data AnalysisData Collection Validation

G) Cross-Participant 
Analysis

C, C‘) Task 
Execution

D, D‘) Questionnaire 
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A) Case Study &
Literature Review

B) Prepare 
Evaluation Setting

Fig. 4. Research method.

previous study [2] and existing research on usefulness
(e.g., [9], [10]).

For the questionnaire, we phrased statements claiming
the capabilities’ usefulness to tackle the corresponding
hurdle. For example: “Temporal differentiation is useful
to deal with evolving guidelines that imply a range of
already existing violations.” Participants were asked to
rate statements on a five point likert scale, from strongly
agree to strongly disagree.

For the interview guideline, we prepared the following
four open questions to access the capabilities’ usefulness:
What did you like? What did you dislike/should be
improved? What are the opportunities when using this
approach in daily business? What are the risks when
using this approach in daily business?

B) Prepare Evaluation Setting: To minimize risks for
our study systems, we reduced usage of their productive
TFSs. We simulate a realistic evaluation environment for
a randomly selected set of violations of ISECO-A: (1) We
used all FxCop reports of ISECO-A as FxCop is its most
employed compliance checking measure. In addition, we
used the compliance-checking reports generated by a
compiler for a Siemens-internal domain-specific language.
We randomly selected 500 source files that contain at least
one violation. (2) For each violation within the 500 files,
we queried the TFS of ISECO-A to determine the commit
the violating item changed most recently, the commit date,
and the developer who made the commit. (3) We set up
a TFS along with our extensions, committed the selected
files, created the corresponding requirement, guideline
and violation issues, and assigned resolution tasks to the
determined units and developers. Violations where the
item had changed within the previous 5 months were
considered as New Violations. (3) For exemplification,
we created issues for a set of violations identified by
test frameworks and manual reviews, too. (4) Next, we
committed a sub-project of ISECO-A that can be build
separately to evaluate the pre-commit checks, employing
FxCop to check for compliance to the already formalized



TABLE II
VIOLATION-HANDLING TASKS.

Developer Tasks

Pre-Commit Checks We instructed participants to execute pre-commit checks, to resolve* one detected violation, and to confirm its resolution by
rerunning the checks. (In advance, we included violations to the local changes.)

View and Check
Dashboard

We asked participants to view and check assigned violations, corresponding guidelines, and underlying requirements. This should
be the initial use case for developers.

Resolve Violation We asked participants to select one assigned violation, to view violation and guideline details, to resolve* the violation, to commit
the fix, and to link the commit to the violation issue.

Request Support Participants selected one assigned violation, formulated a request message, selected the predefined contact for their unit as
receiver, and submitted the request. (The participant was predefined as contact.)

Architect Tasks

Assign Legacy Violations We asked participants to trigger the resolution of their unit’s Legacy Violations with highest priority and to assign resolution tasks
to the first researcher. They set a resolution deadline, too.

Provide Support We instructed participants to open a received support request, to view the request message, to view the source files, and to provide
support. (They answered the request they have previously sent to themselves.)

Review Violation Fix Participants selected a received violation-fix–review request, viewed violation details, reviewed related commits, and accepted or
rejected the fix. (In advance, we sent a request to the participant.)

Manual Check We asked participants to review source files, to identify one violation to a given guideline, to manually create a violation issue, and
to assign the issue to the developer who created the violation.

*Participants resolved easy-to-fix violations. Our evaluation targets process support.

guidelines. (5) We installed Visual Studio along with our
extensions and FxCop on two laptops. (6) Each session
targeted a particular unit. We cover the keystone and all
core clients. Before each session, we randomly selected
a set of developers of the respective unit and reassigned
their violations to the first researcher.

C) Task Execution: We contacted 3 of the architects
who participated in our previous study [2] and briefed
them on the goal and process of our investigation. We
clarified if they feel suitable to participate again and asked
them for further participants. Thus, we got 6 architects
for our main study: 1 keystone architect and 2 client
architects of ISECO-A. 2 keystone architects and 1 client
architect of ISECO-B. Half of them started as developer
for our ISECOs, which was desired as we asked them to
consider both perspectives.

We held an individual session with each participant,
comprising the following steps: (1) Briefing. We started
with a briefing on the objective of our study and our
notion of violation management. (2) Discuss Capabil-
ities. We extensively discussed the capabilities along
the hurdles (about 45 minutes), in particular aspects
not completely covered in subsequent tasks. (3) Train-
ing. We introduced our evaluation setting and trained
the participant for about 30 minutes. (4) Tasks. Each
participant performed 8 violation-handling tasks (see
Table II). First, 4 developer tasks on the developer laptop
using the first-researcher’s developer account. Second,
4 architect tasks on the architect laptop using their
own architect account. We used two laptops to support

the role play. We instructed the participant to speak
out loud performed actions—think aloud protocols are
recommended to understand the process going on [11].
With the participant’s consent, we used a screen cast
tool to record the screen including all mouse movements
and an audio track. The first and the second researcher
observed the participant and took notes on additional
observations not explicitly stated. The execution of all
tasks lasted about 30 minutes on average.

D) Questionnaire & Interview: After completing all
tasks, the participant completed the usefulness question-
naire. Finally, we performed the semi-structured interview
[8] based on our interview guideline. The first researcher
guided the interview, the second researcher took notes and
participated in discussions. The interviews lasted about
30 minutes on average and were digitally recorded with
the interviewee’s consent. By employing observations,
interviews, and questionnaires we achieve triangulation,
which improves validity [8], [11].

C’, D’) Task Execution, Questionnaire & Interview:
On advice of our participants, we were invited by the
keystone of ISECO-A to present our work to the lead
architect and to 2 integrators responsible for architecture
compliance. Since the session’s procedure was similar
as described for C) and D) we dwell on differences
only: We did not hold separate sessions but involved
all 3 participants at once. Participants did not execute
tasks, instead the first researcher presented the tasks by
means of a live demo. Participants were not interviewed
separately, instead we discussed the questions together.



TABLE III
USEFULNESS QUESTIONNAIRE RESULTS
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ISECO-AA1 (++) (++) (++) (++) (++) (++) (+)

ISECO-AA2 (++) (++) (++) (+) (++) (++) (+)

ISECO-AA3 (++) (+) (+) (+) (+) (++) (−)

ISECO-BA1 (++) (++) (++) (+) (++) (+) (◦)
ISECO-BA2 (+) (++) (++) (++) (++) (++) (◦)
ISECO-BA3 (++) (+) (++) (++) (+) (++) (++)

ISECO-AA4 (++) (+) (++) (++) (++) (++) (++)

ISECO-AI1 (+) (+) (+) (+) (◦) (◦) (◦)
ISECO-AI2 (+) (++) (+) (++) (+) (+) (+)

(++) = Strongly Agree, (+) = Agree, (◦) = Neutral, (−) = Disagree, (−−) = Strongly Disagree

E) Transcribing, Coding & Concluding: The first
researcher transcribed the screen-cast and audio record-
ings, created codes for the capabilities, and coded the
transcripts as described by Seaman [11]. This resulted
in a total of 414 coded participant statements. Conclu-
sions were drawn and summarized separately for each
participant: This was an iterative process where the
first researcher searched for patterns in the coded data,
grouped the data accordingly, and analyzed related notes
that were taken during the interview and observation.
Results were carefully checked by the second researcher.

F) Member Checking: Member checking is a recom-
mended method to validate conclusions [11]. We sent our
conclusion summaries (about 1000 words on average)
to the respective participant and sought for feedback.
All participants agreed with the conclusions, only minor
adaptations were suggested.

G) Cross-Participant Analysis: We performed a cross-
participant analysis inspired by Eisenhardt [12]. Using
the same technique as above [11], the first researcher
created codes for the findings and coded the conclusion
summaries. He arranged the coded data in a table where
rows represent findings, columns represent participants,
and cells are marked if a finding is confirmed by the
respective participant. This technique supported us to
identify cross-cutting findings that are confirmed by
multiple data sources, which increases validity [8], [11].
Results were carefully reviewed by the other researchers.

B. Case-Study Results

Table III shows the result of the usefulness ques-
tionnaire. Our participants confirmed the validity of the
identified hurdles and, overall, they rated the capabilities

as very useful to tackle them. Below, we outline our major
findings derived from the participants’ comments and
our analysis. We use the notation (x/y) to denote that a
finding is confirmed by data of x out of y participants. For
the quantification, we aggregate data of the 3 participants
who were involved at once since, frequently, those
participants agreed on topics that came up, and we do not
want to double or even triple-count their voices. None
of the findings is contradicted by any collected data.

1) Efficient Process Support: Feature and schedule
pressure regularly result in violations to architecture
guidelines—known as technical debt. Most participants
highlighted the challenge to convince their managers
to invest in its refactoring since refactoring costs are
immediate whereas benefits are usually long-term and
vague. This is particularly challenging for ISECOs where
multiple managers of self-contained business focus on
features their individual customers pay for. On the other
hand, architecture compliance is even more important
in such a decentralized environment to enable effective
software engineering. Most participants confirmed that
developers require efficient violation-handling support as
soon as violations are created—it turned out to be very
difficult to get the permission to refactor those architecture
violations later on. They also confirmed that the effort
required to handle violations is a decisive factor for
developers to resolve them or not—if the effort is too
high developers do not resolve violations. This is in line
with our previous research on architecture challenges [2]
and confirms the relevance of the TRAVIM approach.

2) Customized Tool Support: Most participants com-
mented that important aspects regarding usefulness are



Finding 1: ISECOs require process support for handling
violations (7/7) that reduces the developers’ effort
(7/7).

the full integration into the existing IDE, issue tracker,
and VCS as well as the formalization and integration
of violations and guidelines. They highlighted that
the approach allows developers to efficiently resolve
violations as developers can monitor violations and
navigate to related guidelines and source files within their
development environment. They consider integration as
enabler for efficiently managing violations as developers
can handle them while completing development tasks
without significant interruptions and context switches.

Our ISECOs employ various compliance-checking
measures, frequently customized or homegrown ones that
are specific to the development context. Most participants
said that the integration of all employed measures and
the consistent handling of violations saves time and
improves efficiency. Currently, developers have to deal
with various tools, if there is tool support at all. Moreover,
our participants emphasized the opportunity to track
violations identified by reviews. Those are often of high
severity and the approach provides a consistent medium,
prioritization, and process for handling them.

Most participants stated that, for large-scale projects
like ISECOs, it is worth the effort to develop and maintain
a seamlessly-integrated custom tool for managing archi-
tecture violations—this significantly reduces violation-
handling efforts.

Finding 2: ISECOs require customized violation-
management tools (7/7) that integrate into the used
IDE and tool chain (7/7) and that allow integration
of a variety of project-specific compliance-checking
measures (7/7).

3) Gated Check-Ins: Both ISECOs employ gated
check-ins. Each commit triggers the execution of test
suites and static-analysis tools on a server cluster to
automatically check for compliance to selected high-
priority guidelines. Commits are rejected in case of any
violation—for including guidelines all Legacy Violations
must be resolved, first.

Most participants highlighted the usefulness of the
pre-commit checks, in particular in combination with
the differentiation logic that informs developers only
about added violations. They consider early feedback

as essential to increase the developers’ willingness for
resolving violations. All of them recommended to inte-
grate the checks into the commit process and to enforce
their execution for each single commit. The opinion
concerning the handling of violations was rather diverse:
Half of them suggested to strictly reject each commit
with any New Violation during the gated check-in—the
temporal-differentiation logic allows immediate handling
of New Violations to all guidelines (where checks are
executable in an acceptable time) while Legacy Violations
can be handled incrementally. Thus, New Violations can
be completely avoided. The other participants preferred
a voluntary handling of violations. They stated that by
only warning developers, these may still decide whether
to commit the violation. If not possible, developers are
strictly forced to find their way around the compliance
check, at worst by creating additional not detectable
flaws. For our ISECOs, the degree of strictness would
be decided separately by the lead architects of involved
units.

Finding 3: Pre-commit checks must be combined
with temporal-differentiation logic (6/7). They require
commit-process integration (6/7) and architects should
be able to choose between settings where developers
must resolve New Violations or where they are allowed
to commit them (6/7).

4) Automated Assignments: Violations cannot always
be handled before committing them to the version control
system. Schedule and business pressure may require
violations, long-running checks cannot be executed during
the gated check-in, and compliance cannot be enforced
across the ecosystem. Hence, committed violations must
be managed afterwards.

Most participants mentioned that the automated assign-
ment of resolution tasks for New Violations during the
nightly build facilitates and accelerates violation handling.
They stated that, currently, resolution tasks need to be
manually assigned and triggered. Violation reports are
manually compared to determine added violations and
suitable developers are manually identified and notified.
Frequently, there is not enough time to consider all
violations, which results in an increasing number of
violations over time eroding the software. Our participants
highlighted that the automated-assignment feature saves
time. One of them even stated that the feature would
save him up to 30 minutes each day which he spends for
triggering resolution tasks. Furthermore, they emphasized
that completeness is ensured since all detected violations



are handled. Finally, they pointed out that automated
assignments are required to provide early developer
feedback. All participants consider early feedback as
basic requirement for managing violations—experience
has shown that late feedback significantly hampers their
resolution.

Finding 4: Early developer feedback is a basic re-
quirement for managing violations within ISECOs
(7/7). Automated assignments save time (5/7), ensure
completeness (4/7), and are required to provide early
developer feedback (5/7).

5) Team Structures: In our ISECOs, developers are
arranged in development teams with dedicated team
architects. Our participants commented that most vi-
olations can be handled within teams and, usually,
developers primary need to interact with their team
members for resolving them. They recommended to allow
modeling of roles, responsibilities, and team structures
within the violation-management tool and to preselect
contacts for developer requests accordingly. This would
also increase reusability in other organizational contexts.
Default contacts, who are actually defined for our ISECOs,
are important for violations that cannot be handled within
teams but should not be preselected for each request. The
current lack of team structures is also notable in the
usefulness assessment of the collaboration feature (see
Table III).

We provide developer and architect dashboards based
on the assignment of resolution tasks to developers
and organizational units, respectively. Four participants
recommended additional team dashboards by additionally
assigning resolution tasks to development teams, in
particular with regard to violations that require more
costly refactorings.

Finding 5: Violation-management tools should allow
representation of roles, responsibilities, and team struc-
tures (4/7), contacts should be preselected accordingly
(3/7), and violations should be also assigned to teams
(4/7).

6) Structured Violation Management: Our ISECOs
are under development for more than 10 years. Most
guidelines were not known in initial project phases. They
evolve progressively over time, frequently problem driven,
such as the guideline Do Not Use Platform-Internal APIs
(see Section II).

Most participants consider the temporal-differentiation
between New and Legacy Violations as very important
for the approach’s usefulness. They stated that, usually,
hundreds to thousands of violations do already exist
when new guidelines are adopted, partially within already
highly-matured components. The risk of changing those
matured components frequently outweighs the benefit
of guideline compliance—those violations will not be
resolved. Existing violations that should be resolved
cannot be handled instantly—they overwhelm developers.
Our participants consider the huge amount of existing
violations as a crucial hurdle for exercising governance.
They perceive temporal differentiation as a prerequisite
for managing violations in a structured and controlled
manner—whereas New Violations are handled instantly
Legacy Violations can be handled incrementally on
demand.

Architecture guidelines may imply varying efforts and
benefits for ecosystem partners, resulting in long negotia-
tion phases where violations are not managed. Our partic-
ipants consider the ability to define individual violation-
handling plans as very useful for managing violations
right from the beginning. They highlighted that ecosystem
partners need to specify violation-handling strategies—
strategies are explicit. And they pointed out that violation-
handling processes are triggered accordingly—violations
are managed. Three participants recommended to support
the definition of violation-handling plans for development
teams, derived from the plan of the corresponding
organizational unit.

Finding 6: Evolving guidelines imply a huge amount
of Legacy Violations (7/7). Temporal differentiation
(6/7) and violation-handling plans (5/7) are required
to manage them in a structured and explicit manner.

7) Organizational Aspects: We track and manage
violations to architecture guidelines—we make them
explicit. All participants consider the explicit management
of violations as necessary to avoid their accumulation
over time, in particular for long-running projects like
ISECOs.

However, several participants mentioned that an im-
portant step for exercising explicit violation management
is the establishment of an organizational mindset that
allows explicit violation management. They stated that,
otherwise, the high degree of transparency on software-
quality deficits may not be necessarily desired by all
ecosystem partners. They also highlighted the risk of
misusing the achieved transparency, in particular by the



management for over-controlling the project. Moreover,
resources required to execute the process must be pro-
vided by the management. Otherwise, developers and
architects might not be able to rigorously adhere to the
process.

Finding 7: The explicit management of architecture
violations requires the establishment of an organiza-
tional mindset towards explicit violation management
(5/7).

V. DISCUSSION

In the following, we discuss the generality and limita-
tions of the defined capabilities, their realization for our
ISECOs, and our case-study results.

A. Generality

We present 6 capabilities for managing architecture
violations. Our list of capabilities is not intended to be
definitely exhaustive. Rather, it intends to tackle those
violation-management hurdles that turned out to be most
crucial for two of the largest ISECOs at Siemens. We
evaluate the capabilities’ usefulness to tackle them.

Our results show that, for our ISECOs, the capabilities
are very well suited to address the hurdles and reveal
great potential to ease violation management. It seems
likely that, because of the size and complexity of our
ISECOs, the identified hurdles rather constitute a superset
of hurdles expected to appear in other decentralized and
other mid- to large-scale projects [2]. The capabilities’
realization is tailored to our organizational and product
context. However, we consider that the capabilities and
our findings, which basically outline requirements for
violation-management tools, can be of general use for
other projects that face similar hurdles. They may serve
as a starting point for practitioners to develop customized
violation-management tools for their ISECOs, which is
considered as very important by our findings. In addition,
the identified capabilities and findings outline a set of
real-world requirements that should be investigated by
the research community.

The TRAVIM approach enables the management of
architecture violations. Equally important (and maybe an
important step for successfully fielding the approach) is
the establishment of an organizational mindset towards
architecture compliance, considering all roles from de-
velopers to managers. Our ISECOs apply, for example,
regular trainings and conferences.

B. Limitations

We discuss potential limitations of our study along
common validity threats: A threat to construct validity
is the potential bias caused by the selected evaluation
setting. However, our study does not focus on ISECO
details but on the capabilities’ usefulness utilizing the
setting. According to our participants, the setting was
representative of our ISECOs. Regarding conclusion
validity, there is a threat that data analysis depends
on our interpretation. We used recommended methods
to improve conclusion validity, such as triangulation,
member checking, and spending sufficient time with
the cases (see Section IV-A). With regard to internal
validity, participants might have behaved unnaturally and
might have given answers that do not fully reflect reality
since they were recorded. To address this, we guaranteed
anonymity and assured that we will seek for feedback
on conclusions to avoid misunderstandings. In addition,
results might be biased as we did not involve developers.
However, all participants were well experienced and in
central positions. They worked closely together with
developers and half of them even started as developer
within our ISECOs. We asked them to consider all
viewpoints. Also the number of participants may seem
small. Each session lasted about 3 hours and after 9
participants hardly any new insights were gained—we
neared “theoretical saturation” [8], [12].

C. Capability Realization

A potential weakness of our realization is its reliance
on heuristics for several capabilities (e.g., assigning
tasks to developers who committed items, setting the
violation type to New Violation when the item changes).
However, heuristics are required to automate violation
management, in particular within large-scale industrial
settings. Automation, in turn, is required to keep violation-
handling effort manageable. By applying the prototype
for its own development, first results indicate the validity
of our heuristics. Our follow-on longitudinal study after
industrial roll out will allow us to validate them in detail.
We consider the development and validation of heuristics
for automating violation management as an important
research topic that should be further investigated by the
community.

VI. RELATED WORK

In this section, we outline related work considering
violation-management approaches, architecture guidance,
and case-study research on decentralized software engi-
neering.



A. Violation Management

For violation-management approaches, we discuss
related work along a use-case–driven categorization for
quality-management tools proposed by Deissenboeck et
al. [13], including sensors, system analysis workbenches,
project intelligence platforms, and dashboard toolkits:

1) Sensors: Sensors comprise static-analysis tools
(e.g., FxCop [3], NDepend [4]) and testing tools (e.g.,
NUnit [14], JUnit [15]) that fully automatically check for
compliance to implementation and architecture guidelines
[13]. We track and assist resolution processes of identified
violations, with a focus on architecture.

2) System analysis workbenches: System analysis
workbenches support experts to interactively analyze
architectures considering a system snapshot [13], often
by use of dependency structure matrices, source-code
query languages, and reflexion models [16]. Several work-
benches have been developed, such as Lattix Architect
[17], Understand [18], Sonargraph [19], and Titan [20].
Experts of our ISECOs partially use them to check for
compliance to guidelines that cannot be checked fully
automatically. We track and assist resolution processes
of identified violations.

3) Project intelligence platforms: Project intelligence
platforms automatically measure and store product- and
process-related metrics in ongoing projects to support
quality analysis and project controlling [13]. Prominent
examples are Hackystat [21], PROM [22], and Team
Foundation Server [6]. For our purposes, intelligence
platforms might support experts to identity and analyze
quality issues for which concrete guidelines should be
implemented for.

4) Dashboard toolkits: Dashboard toolkits are mostly
related to our work. They allow users to configure
analysis dashboards that automatically collect, aggregate,
and visualize data of sensors [13]. Well known toolkits
are SonarQube [23], ConQAT [13], and Teamscale
[24]. All of them realize a subset of our proposed
violation-management capabilities, at least to some extent.
However, none of them realize all capabilities. Moreover,
they target different use cases: They are separate tools
for detecting and monitoring violations to best coding
practices (e.g., clones, long methods, god classes), in
particular by means of status reports and trend analysis.
Guidelines are selected on a project level. In contrast,
we target seamlessly integrated, tailored, and continuous
process support for resolving violations to project-specific
architecture guidelines according to individual capabilities
of involved ecosystem partners. Furthermore, we are not

aware about any study that investigates the usefulness of
violation-management capabilities in real-world settings.

B. Architecture Guidance

Several knowledge-management approaches have been
developed to support architecture-decision making by
reusing codified knowledge. For example, Zimmermann
et al. present a design method that combines pattern
languages and reusable architecture decision models [25].
Moreover, Zimmermann proposes a decision-modeling
framework for service-oriented architectures [26]. Tang
et al. provide a comparative study of tools that support
management and reuse of architecture knowledge [27].
In our context, such knowledge-management approaches
may support experts to define guidelines.

C. Decentralized Software Engineering

Rommes et al. [28] discuss architecture, process and
organization aspects of their medical imaging product line,
which involves a set of independent product groups. Van
Ommering et al. [29] coin the term product population
for their decentralized software product line. Toft et al.
[30] present a community-driven approach that allows to
share components across their products without involving
a central platform organizational unit. Dinkelacker et
al. [31] depict the adoption of open-source software
development practices within their organization. Riehle et
al. [32] conduct an industry case study on challenges and
opportunities of inner-source approaches in decentralized
platform-based product engineering. Lettner et al. [33],
[34] conduct an exploratory characteristic study on in-
dustrial software ecosystems. Based on their results, they
propose feature feeds [35], a publish-subscribe approach
to foster the awareness about feature implementations in
industrial software ecosystems.

All of them conduct case-study research on intra-
organizational decentralized software engineering. They
analyze emerging challenges and approaches to counter
them. However, none of them investigate the management
of architecture violations.

VII. CONCLUSION

Large-scale decentralized software projects require
architecture guidelines to coordinate development. Fea-
ture and schedule pressure regularly result in guideline
violations. We investigate two of our largest decentralized
projects at Siemens. Both projects have to deal with thou-
sands of architecture violations, that have accumulated
over time, which results in substantially increased develop-
ment and maintenance costs. Architecture violations must



be explicitly managed, including both the management of
existing violations and the prevention of future violations.
However, the decentralized development context results
in various formidable violation-management hurdles.

We propose a set of capabilities (from integrated tool
support to automated assignments of resolution tasks) that
tackle the identified violation-management hurdles. We
spent considerable effort to present a practical realization
of the capabilities for our projects and performed a thor-
ough case study on their usefulness from the perspective
of practitioners. The practitioners expressed that our
capabilities are highly valuable and hold great potential to
ease violation management. We are currently planning our
prototype’s industrial roll out for our projects. We think
that the capabilities can contribute to the development and
improvement of violation-management tools, in particular
for projects that face similar hurdles.
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