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Abstract—The use of standardized programs is a necessary
means for benchmarking the effectiveness of worst-case execution
time (WCET) analysis tools and enables a comparison between
different tools. For comprehensive evaluations of these tools and
their methods, a characterization of benchmark properties is
inevitable, as it indicates the potential analysis complexity for
WCET tools. A challenging problem is the fact that complexity
measures are not necessarily stable across different program
representations from source to machine code, since modern
compilers fundamentally transform control-flow structures due
to aggressive optimizations. Additionally, selecting an unsuitable
set of metrics potentially causes misleading complexity measures.

In our ongoing work, we develop a tool that gathers complexity
measures from code, such as numbers of (nested) loops and paths
or call-stack depths. We also exploit a method to automatically
reveal data-flow—independent control flows, to identify bench-
marks that are unsuitable for WCET benchmarking. The tool
correlates these complexity numbers across different levels of
optimization and enables a combined interpretation of applied
metrics. As part of our evaluations, we applied the metrics
on the suite TACLeBench to investigate which benchmarks are
resilient against compiler optimizations and maintain challenging
properties for benchmarking WCET analyzers.

I. INTRODUCTION

Worst-case execution time (WCET) analysis tools are cru-
cial for determining upper bounds on execution times of sched-
uled tasks in real-time systems. To verify the effectiveness
of these tools and their implemented methods as well as to
enable a comparison between different WCET tools, a variety
of benchmarks is available [1], [2], [3], [4]. In order to conduct
a comprehensive evaluation that reveals the full potential of
WCET analyzers, it is important to select benchmarks that
due to their complexity pose a challenge to the tools. This
selection process usually involves the use of metrics [5], [6]
yielding complexity measures such as the number of loops,
function calls, or linearly independent paths in a benchmark
program, following the rationale that such elements in general
make WCET analyses more difficult.

In this paper, we identify two major pitfalls associated
with the selection of WCET benchmarks based on complexity
metrics. Pitfall 1: The measures provided by such metrics
are not necessarily stable across compiler optimizations. As a
result, a benchmark that based on a certain metric is complex
at the source-code level might end up trivial (according to
the same metric) at the optimized machine-code level where
the WCET tool performs its analysis. Due to compiler tech-
niques such as loop unrolling and function inlining, typical
examples of complexity metrics affected by this problem are
the numbers of loops or function calls contained in a program.

Pitfall 2: Interpreting measures in isolation can lead to mis-
leading assessments of the difficulty of benchmarks. This
is especially true for benchmarks whose control flows are
independent of their input-data values and which consequently
always execute the same path. Determining the execution times
of such benchmarks is usually straightforward even though
other measures (e.g., a large number of loops and/or function
calls) might suggest the opposite.

To address these problems that arise in the context of
selecting WCET benchmarks, we are currently developing
a tool to facilitate the selection process. In particular, our
tool automatically analyzes benchmark programs at multiple
code levels, thereby tracking and comparing measures across
different degrees of compiler optimizations. As a result, the
tool is able to evaluate the resilience of programs against
optimizations, allowing users to identify and consequently
discard benchmarks that only appear complex at the source-
code level but in fact do not pose a challenge to WCET
analyzers. Instead of interpreting measures in isolation, our
tool relies on a combination of several metrics (e.g., number of
loops, number of paths, and inputs) and incorporates additional
analyses for the detection of data-independent control flows in
order to enable a comprehensive evaluation of WCET tools.

The paper is structured as follows: Section II elaborates on
the pitfalls associated with using metrics for WCET analysis.
Section III describes our approach towards code metrics for
benchmarking timing analysis as well as the prototype imple-
mentation of our tool. Section IV presents evaluation results,
Section V discusses related work, and Section VI concludes.

II. PROBLEM STATEMENT

In the following, we analyze different metrics typically
used for categorizing WCET benchmarks in order to identify
potential pitfalls associated with them.

A. Loops, Paths, and Function Calls Across Optimizations

The number of loops, paths, and function calls usually varies
in programs on different levels of compiler optimization. The
problem when using such metrics is discussed as follows.

1) Loops: One of the most common metrics used for
quantifying the complexity of a WCET benchmark is the
existence and/or number of loops in a program, following the
assumption that automatically determining loop bounds is a
challenging task for WCET tools. However, while this might
be true for nested loops in which the number of iterations of
the inner loop depends on the iteration variable of the outer



loop, there are many loops at the source-code level that do not
pose a problem to WCET analyzers, mainly because the tools
do not see them when conducting their analyses on optimized
machine code. Listing 1 shows an example of such a loop
where the loop bound is fixed through the bounded size of the
input data. As a consequence, compilers are able to fully unroll
the loop, resulting in optimized code that no longer contains
the loop header and thus is easier to analyze (see Listing 2).

Listing 1. Unoptimized, bounded loop Listing 2. Unrolled loop

#define INPUT_SIZE 4 work (0) ;
for (i=0; i<INPUT_SIZE; ++1){ work (1) ;

work (1) ; work (2);
} work (3);

2) Number of Paths: Static WCET analysis considers paths
from a given control-flow graph as constraints for the analysis.
Therefore, the number of paths in the program indicates the
complexity of the benchmark. When reconsidering the code
examples in Listing 1 and Listing 2, similar problems as with
loops under optimizations arise for the number of paths.

The cyclomatic complexity introduced by McCabe [6] pro-
vides a software metric that yields the number of linearly
independent code paths through a control-flow graph. For a
single function, the cyclomatic complexity M can be formu-
lated as M = E — N + 2, where E denotes the number
of edges and N the number of nodes in the control-flow
graph. Depending on the representation of the loop as control-
flow graph of Listing 1, the cyclomatic complexity is at least
M = 2. As a result of compiler optimization, the original
complexity caused by branches in the loop header is reduced
due to the loop unrolling and the loop pattern degraded to a
straight-line sequence of code (M = 1).

3) Number of Function Calls: The code in Listing 2 can po-
tentially be further transformed by an optimizing compiler: the
instructions behind function work () can be inlined into the
caller function in order to increase performance. This means
that inlining changes the number of function calls making the
number-of-calls metric as optimization-level-dependent as the
metrics number-of-loops or number-of-paths.

4) Conclusions: Based on the observations discussed above
we draw the following conclusions: First, metrics such as the
number of loops or paths can provide significantly different
values depending on the code level at which they are applied;
consequently, it is important to always specify the correspond-
ing code level alongside the actual measures. Second, when
selecting benchmarks for the evaluation of a WCET analyzer,
it is crucial to especially take the code level into account at
which the analysis is actually conducted. Third, WCET-tool
evaluations should preferably rely on those benchmarks whose
complexity is not reduced by compiler optimizations.

B. Isolated Interpretation of Complexity Measures

Describing the complexity of benchmarks by applying
isolated metrics can be misleading, requiring a combined
application of metrics. This holds especially for measures that
are necessary preconditions for challenging benchmarks, such
as the existence of data-dependent control flows.

1) Number of Loops versus Number of Function Calls:
Besides actually reducing complexity (e.g., by loop unrolling),
compilers potentially apply transformations that shift complex-
ity from one complexity measure to another. A typical example
for such a transformation is function inlining. Functions that
are subject of inlining potentially contain loops. During in-
lining, new independent loops of the same shape are inserted
into the code and, as a consequence, the number of loops
increases while the number of calls decreases. In this example,
the benchmark maintains its overall complexity for WCET
analysis, although the number-of-loops measure increases.

2) What are Inputs to Programs? An understanding of
input data used for benchmark programs is crucial for timing
analysis. The MALARDALEN benchmark suite [1] provides a
notion of input data [7]: if variables (i.e., function parame-
ters, external variables) exist that affect the control flow, the
benchmark is not a single path and consequently has an input.
Otherwise, the program has a data-flow—independent control
flow. Data-flow—independent control flows are common for
bounded input sizes. For example, encryption algorithms are
usually agnostic to actual input-data values and therefore
implement single-path functions. These data-flow—independent
control flows are straightforward to analyze': When the input
does not affect the control flow, WCET tools are able to
perform an end-to-end simulation of the single path through
the program. Independent from the input values, the program
always has the same execution time, which is problematic for
benchmarking timing analysis tools.

3) Conclusions: We draw two main conclusions from the
above-mentioned observations: First, compiler optimizations
potentially shift complexity from one measure to the other. As
a consequence, an isolated interpretation of one metric might
lead to false conclusions when the complexity is hidden behind
another measure. Second, combined application of metrics is
especially important with a detection of data-flow—independent
control flows. If a benchmark contains only a single path, the
program is straightforward to analyze by WCET tools.

III. APPROACH TOWARDS WCET METRICS

The main advances of our approach, which measures com-
plexity on different optimization levels and enables a com-
bined interpretation of metrics, are presented in the following.

A. Measures Across Optimization Levels

To avoid the pitfall of unstable complexity measures across
compiler optimizations, our approach considers different op-
timizations levels. From the comparison of complexity num-
bers between unoptimized (source) code and highly-optimized
(machine) code, we formulate measures on the resilience
against compiler optimizations: the resilience factors R;. For
each metric (e.g., number of loops), we formulate a distinct
resilience factor (e.g., Rioops). For example, a program with NV
loops in source code and zero loops in machine code is likely
to be unsuitable for benchmarking, since the factor indicates

I'We assume that, for WCET benchmarking, architectures are used without
unbounded timing anomalies and that execution traces are deterministic.



Rivops = % = 0% resilience against optimizations. Another
example for the necessity of measures across levels is that
values of Ripops > 100 % indicate that new loops of equal
shape were generated due to function inlining.

B. Combining Metrics & Interpreting Measures

Isolated interpretations of complexity measures potentially
lead to false conclusions. To avoid this pitfall, our approach
considers a combined application of different metrics. Specif-
ically, our approach considers seven distinct analyses:

1) Detection of inputs (i.e., data-dependent control flows)
2) Detection of recursion

3) Detection of function-pointer usages

4) Detection of floating-point usages

5) Longest call chain

6) Number of loops including their nesting depths

7) Cyclomatic complexity (number of independent paths)

The steps of assessing the suitability of a benchmark for
WCET benchmarking is sketched in the following: The ex-
istence of data-flow—dependent control flows is a necessary
precondition for a suitable benchmark. Next, metrics with
low resilience factors are considered as weak. However, this
only applies if a low resilience of one metric (e.g., Rioops) 18
not compensated by another metric (e.g., Rq15), since com-
plexities can be shifted from one metric to another, because
of optimizing control-flow transformations (see Section II-B).
Benchmarks with reports of unboundedness and comparatively
high complexity measures indicate suitable benchmarks.

C. Implementation

The current prototype of our tool for building complexity
measures is implemented as distinct analysis passes inside
the LLVM compiler framework, a framework that targets
highly optimized code. Our analyses run on the target-agnostic
intermediate representations of LLVM. This setup provides
the possibility to gather complexity measures of benchmarks
written in many high-level programming languages. Besides
the source code, an entry point (i.e., function name) for the
analysis is required, which enables analyses from arbitrary
program points while omitting unwanted initialization code.

Measures possibly report unboundedness: for example,
when recursive function calls are detected, the longest call
chain cannot be derived statically in the general case.

Our analyses make conservative assumptions. Two examples
outline these conservative assumptions: First, when a cycle
in the call graph is detected, the benchmark is marked as
recursive. However, call-graph cycles are a necessary, not a
sufficient, condition for recursiveness. Second, the detection
of data-flow—dependent input is not straightforward to achieve
if programs use pointers. As a consequence, our detection
algorithm in such cases relies on information from alias
analyses to determine whether an input affects the control
flow. If the result from the alias analysis indicates potential
aliasing, our algorithm conservatively marks this benchmark as
input dependent. Further advanced context-sensitive analyses
and refinements are subject of future work.
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adpcm_dec v 6 0 3 100 32 16 X
adpcm_enc v 7 14 4 75 39 28 X
ammunition v 71 155 00 00 1465 102 X
anagram v 19 137 | oo 0o 74 107 X
audiobeam v 19 58 7 57 121 88 v
basicmath v 11 145 5 80 329 108 | v
binarysearch v 1 200 2 50 4 125 X
bitcount v 4 1 125 | oo 00 20 | 105 X
bitonic v 2 100 | oo 00 10 90 X
bsort v 2 150 2 50 6 67 X
cjpeg_transupp v 56 66 2 100 73 86 X
cjpeg_wrbmp v 5 140 3 67 55 71 X
complex_updates|| X 1 100 1 100 2 100 | v/
countnegative X 2 100 2 50 4 75 X
cover X 3 100 2 50 194 95 X
cre v 3 100 3 67 19 100 X
dijkstra v 5 120 3 67 19 84 X
duff X 0 — 2 50 10 10 X
epic X 40 110 5 100 211 236 v
fac v 1 300 S [SS) 4 | 200 X
fft X 6 100 2 100 9 122 X
filterbank v 14 93 2 | 150 15 113 | /
fir2dim X 13 15 2 | 100 22 14 | v
fmref v 11 | 209 6 67 167 107 | v
2723 _enc v 6 117 5 80 83 98 X
gsm_dec 4 17 141 7 71 119 111 X
gsm_encode v 48 96 7 71 250 102 X
h264_dec v 13 38 2 100 123 8 X
huff_dec v 12 167 4 75 38 150 X
huff_enc v 20 135 oo oo 100 116 X
iir X 1 0 1 100 2 50 | v/
insertsort v 2 100 1 100 7 114 X
jfdctint X 2 100 2 100 3 100 X
lift v 6 50 5 60 60 70 X
Ims X 5 60 2 100 6 67 | v
ludcmp v 9 122 3 100 15 140 | /
matrix 1 X 3 67 1 100 4 75 X
md5 v 9 133 7 71 62 | 100 X
minver v 17 82 3 100 33 103 | v/
mpeg?2 v 33 106 6 83 531 68 X
ndes 4 12 92 4 | 100 29 | 214 X
petrinet v 1 100 1 100 126 100 X
pm v 30 | 103 3 133 67 143 | /
powerwindow v 6 67 5 100 168 80 X
prime v 1 | 200 4 25 8 138 X
quicksort v 10 180 | oo &) 55 135 | /
recursion v 0 - &) [SS) 5 80 X
rijndael_dec v 8 75 3 100 34 88 X
rijndael_enc v 10 70 3 100 39 79 X
sha v 17 59 5 80 80 99 X
st v 4 | 225 4 25 23 113 | /
statemate v 1 100 3 100 183 63 X
susan v 52 96 6 33 813 83 v
test3 X | 121 100 22 | 100 | 705432 | 100 X

TABLE I

EXCERPT OF COMPLEXITY MEASURES OF TACLEBENCH

IV. EVALUATION

We evaluate our tool on a preliminary version (September
2016) of the benchmark suite TACLEBENCH [2]. All analyses
start at the entry-point function annotated in each benchmark.
Table I shows an excerpt of complexity numbers. In this table,
a checkmark indicates a positive answer to a posed question
and the symbol oo indicates unboundedness of analysis results.

The suite contains benchmarks with a huge range of com-
plexity measures. Regarding the reduction of complexity, 19
of the total 54 benchmarks (35 %) are not resilient against
compiler optimizations and lose loops due to loop unrolling.
For example, the complexity of the program adpcm_dec is



radically reduced by these optimizations: it contains 6 loops
on level 00. After optimizations, all loops are unrolled and
none remain on level 03 (i.e., Rjpops =0 %).

The number of, for example, loops can actually increase
from OO0 to O3 (see values above 100 % in column 3). This
is because of function inlining where loops modularized into
functions on level 00 are directly inserted into the optimized
code, which then creates new loops of equal shape. For exam-
ple, in basicmath, the number of loops increases by 45 %.
However, our tool reveals that the longest call chain decreases
from 5 to 4 (Rcq11s =80 %), which is an indicator for function-
call inlining. The combined consideration of measures reveals
that the complexity was shifted from one measure to another
and avoids the pitfall of interpreting measures in isolation.

The first column of Table I shows results from the de-
tection of data-dependent control flows. In summary, 12 of
the 54 benchmarks (22 %) consist of a data-flow—independent
control flow and consequently implement a single-path pro-
gram. Amongst these is benchmark test3, which is the
prime example for the necessity of combined metrics: the
test3 benchmark contains the maxima for longest call
chain (22), number of loops (121), and a cyclomatic com-
plexity (705432) of all benchmarks. Additionally, it has a
strong resilience against compiler optimizations: no call is
inlined (Rcq115 =100 %), no loop is unrolled (£2;50ps = 100 %),
and no paths are removed (Rcc =100 %). However, the pro-
gram has no data-flow—dependent control flow and conse-
quently its WCET, which is equal to the best-case execution
time, is analyzable by a trace through the single path, which
is not challenging to analyze for WCET tools.

V. RELATED WORK

The MALARDALEN WCET suite [1] provides a categoriza-
tion of benchmarks that includes measures indicating whether
a benchmark uses include files, calls external library routines,
is a single-path program, contains loops, contains nested loops,
uses arrays and/or matrices, uses bit operations, contains
recursion, contains unstructured code, or uses floating-point
calculations; it also reports the size of the source-code file
and the lines of source code. In our tool we reuse most of
these metrics that are applicable on LLVM intermediate repre-
sentation. Additionally, we compare measures across different
optimization levels to expose the resilience of benchmarks
against compiler optimizations.

Audsley et al. [8] proposed a framework to assess code
quality of automatic code-generator tools. In their evaluations,
they apply metrics such as lines of code or the cyclomatic
complexity using the tool CCCC [9]. To evaluate the com-
plexity of code for WCET analysis, further metrics such as
number-of-loops, inputs, or call chains are of interest as well
as a correlation of these numbers on highly optimized code.

The EEMBC benchmark suite [3] provides a characteriza-
tion of properties with the focus on performance analysis.
The programs are structured by their usage of functional
units in the processor (e.g., load-store unit, arithmetic logic
unit). For benchmarking timing analysis, these values are not

sufficient, since the challenging aspects are problems such as
the detection of loops or value constraints. However, adding
such categorizations for WCET benchmarking is considerably
helpful for the low-level hardware-related part of the analysis.

VI. CONCLUSION & FUTURE WORK

We developed a tool that applies several code metrics and
respects the impact of compiler optimizations. As a result, the
tool yields measures that indicate the resilience of benchmarks
against optimizations. Furthermore, the detection of inputs and
combined interpretation of metrics enable an identification of
programs that are suitable for WCET-tools benchmarking.

Other large-scale benchmark suites, such as the LLVM
test suite [10] containing ten thousands of source-code lines,
demand for an automated approach to assess properties. We
assume that running our tool on this suite will reveal further
potential for WCET benchmarks. These suitable benchmarks
can then be integrated into standardized suites.

Our metrics tool currently operates at the granularity of
entire benchmark programs. Building on this functionality, as
future work we will focus on an automatic identification of
challenging program patterns that are known to be complicated
for WCET tools [11]. The determined patterns will then be
integrated into our benchmark generator GENE [12].

The source code of our prototype to gather measures from
code is publicly available: gitlab.cs.fau.de/gene/
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