
Poster Abstract: Towards Code Metrics for
Benchmarking Timing Analysis

Peter Wägemann, Tobias Distler, Phillip Raffeck, and Wolfgang Schröder-Preikschat
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Appears in: Proceedings of the 37th Real-Time Systems Symposium (RTSS 2016)

Abstract—Comprehensive evaluations of the effectiveness of
worst-case execution time (WCET) analyzers require a selection
of benchmarks that pose a challenge to these tools. In this
paper, we identify pitfalls that are associated with selecting such
benchmarks based on complexity metrics (e.g., the number of
loops contained in a program), which in part are caused by the
fact that complexity measures are not necessarily stable in the
face of compiler optimizations. To address these problems, we
are developing a tool that automatically assesses the resilience
of a benchmark against compiler optimizations by tracking
complexity measures across different optimization levels. In
combination with information on the data dependency of control
flows, which is also provided by our tool, this allows users to
find and discard benchmarks that appear challenging for WCET
analyzers at the source-code level, but in fact are trivial at the
machine-code level where the actual analysis is performed.

I. PROBLEM STATEMENT

A common method to select WCET benchmarks is the use
of complexity metrics such as the number of loops, function
calls, or linearly independent paths in a program, following the
rationale that such elements in general make WCET analyses
more difficult. Having investigated this approach, we found
that there are two major pitfalls associated with it.

Pitfall 1: The measures provided by such metrics are not
necessarily stable across compiler optimizations. As a result,
a benchmark that based on a certain metric is complex at the
source-code level might end up trivial (according to the same
metric) at the machine-code level at which the WCET analyzer
operates. Due to compiler techniques such as loop unrolling
and function inlining, typical examples of metrics affected by
this issue are the numbers of loops or function calls.

Pitfall 2: Interpreting measures in isolation can lead to
misleading assessments of the difficulty of benchmarks. This is
especially true for programs whose control flows are indepen-
dent of their input-data values and which consequently always
execute the same path. Determining the execution times of
such benchmarks is usually straightforward even though other
measures (e.g., a high loop count) might suggest the opposite.

benchmark ha
s

in
pu

t?

lo
op

s
on

O
0

lo
op

s
O
3

/O
0

[%
]

ca
ll

ch
ai

n
on

O
0

ca
lls

O
3

/O
0

[%
]

cy
cl

om
at

ic
co

m
pl

ex
ity

(C
C

)
on

O
0

C
C

O
0

/O
3

[%
]

us
e

flo
at

?

adpcm dec 3 6 0 3 100 32 16 7
test3 7 121 100 22 100 705432 100 7

TABLE I
COMPLEXITY MEASURES FOR TACLEBENCH (EXCERPT)

II. APPROACH

To address the problems that arise when selecting WCET
benchmarks, we are developing a tool to facilitate the selection
process. Our tool runs on the target-agnostic intermediate
representations of the LLVM compiler framework and auto-
matically analyzes benchmarks at different optimization levels,
currently O0 through O3. As a result, it is able to evaluate the
resilience of programs against optimizations, allowing users to
identify benchmarks that do not pose a challenge to WCET
analyzers. Instead of interpreting measures in isolation, our
tool relies on a combination of several metrics (e.g., number of
loops, number of paths, and inputs) and incorporates additional
analyses for detecting data-flow–independent control flows.

III. EVALUATION

Applying our tool to a preliminary version of the TACLE-
BENCH suite [1] shows that 19 of the 54 benchmarks (35%)
are not resilient against compiler optimizations and lose loops
due to loop unrolling. As illustrated in Table I, this is for
example the case for the adpcm_dec benchmark, for which
none of 6 loops at level O0 remain at level O3. In addition, our
analysis reveals that 12 benchmarks (22%) consist of a data-
flow–independent control flow and thus implement a single-
path program. Amongst these is the test3 benchmark which
has the longest call chain (22), the most loops (121), and the
highest cyclomatic complexity (705432) of all benchmarks as
well as a resilience of 100% in all these categories. As a
result, it is the prime example of a benchmark that falsely
appears challenging when only specific complexity measures
are considered, confirming the need of combined metrics.

IV. CONCLUSION & FUTURE WORK

Our tool assists users in identifying and consequently dis-
carding benchmarks that do not pose a challenge to WCET
analyzers due to not being resilient against compiler optimiza-
tions and/or having input-independent control flows. As part
of future work, we will exploit this functionality to improve
the effectiveness of our benchmark generator GENE [2].

REFERENCES

[1] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,
C. Rochange, M. Schoeberl, R. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in Proc. of WCET ’16, 2016, pp. 1–10.

[2] P. Wägemann, T. Distler, T. Hönig, V. Sieh, and W. Schröder-Preikschat,
“GenE: A benchmark generator for WCET analysis,” in Proc. of WCET
’15, 2015, pp. 1–10.

Acknowledgments: This work is supported by the German Research Foundation (DFG),
in part by Research Grant no. SCHR 603/9-1, no. SCHR 603/13-1, and the Transregional
Collaborative Research Centre “Invasive Computing” (SFB/TR 89, Project C1).


	Problem Statement
	Approach
	Evaluation
	Conclusion & Future Work
	References

