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ABSTRACT
In a software project as large and as rapidly evolving as
the Linux kernel, automated testing systems are an integral
component to the development process. Extensive build
and regression tests can catch potential problems in changes
before they appear in a stable release. Current systems,
however, do not systematically incorporate the configuration
system Kconfig. In this work, we present an approach to
identify relationships between configuration options. These
relationships allow us to find source files which might be
affected by a change to a configuration option and hence
require retesting. Our findings show that the majority of
configuration options only affects few files, while very few
options influence almost all files in the code base. We further
observe that developers sometimes value usability over clean
dependency modelling, leading to counterintuitive outliers
in our results.

CCS Concepts
•Software and its engineering → Software product
lines; Software defect analysis;
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1. INTRODUCTION
The Linux kernel is a highly dynamic software project.

On average, close to 200 changes are merged into its central
repository every day [14] – and this does not include the
patches which developers propose for submission on the
mailing lists. This speed in development requires a high
amount of automation in the process of finding possible
issues with proposed changes.
The “usual” process a change has to go through involves

several people: After writing the patch, the developer has to
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send it to the maintainer of the modified files in question –
each file (or subsystem) in the Linux kernel is assigned to a
designated developer from the respective domain. The main-
tainer will have a look at the proposed changes, try to clear
up questions which might arise and recommend amendments
if the patch does not meet his or her requirements. If the
maintainer decides that the change should be included in
the next Linux release, he or she will pick up the patch into
their own repository, and ultimately write a pull request to
Linus Torvalds, who will then integrate the patch into the
next mainline Linux kernel.
Before a patch makes it into a Linux kernel release, it

will be subject to some automated testing: Experienced
developers, such as Jim Davis or Stephen Rothwell, the
maintainer of the linux-next tree – which is updated daily
with proposed changes – run automated compile tests with
randomly generated configurations on their trees, and if the
build fails, send a mail with the problem they discovered and
the offending configuration to the Linux Kernel Mailing List
(LKML). Note that in order to properly test the compilation
with a sequence of randomly generated configurations, the
object files have to be cleaned from the source tree and
every file possibly needs to be recompiled with every new
configuration.
Some more sophisticated testing is done by the so-called

“0day” infrastructure by the Intel Open Source team [9, 13].
Their infrastructure runs build, boot, and performance tests
for a number of commits in linux-next, the mainline and de-
veloper’s repositories using over 140 different configurations.
Half of these configurations are randomly generated, while
the other half are configurations custom-built for testing.
After compiling individual commits with all these configu-
rations and statically checking the code using sparse [15]
and Coccinelle [17], the resulting kernels are booted in a
virtual machine and checked for any regressions resulting in
performance degradation or unstable behaviour.
The current testing systems already uncover some bugs

which are caused by inconsistencies in the configuration
system; they are, however, only found by chance. Using
randomly generated configurations might at some times lead
to an error, while at other times the random selection will
have picked a (seemingly) good configuration. In other words:
While different configurations are already used, the testing
infrastructures do not use a systematic approach to find
adverse effects resulting from faulty uses of configurability
inside the code as they do not employ any variability-aware
sampling strategies.
To check Linux for such variability-related defects, we have
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created a tool called undertaker-checkpatch. This tool uses
the undertaker suite [24], which transforms the structure
of #ifdef blocks inside the source files into a boolean formula.
This file-internal formula is then enriched with dependency
information from the configuration system Kconfig. un-
dertaker then applies a SAT solver to the formula to find
dead or undead #ifdef blocks in the source code. We run
undertaker-checkpatch on a daily basis, checking all new
commits in the linux-next tree. For that, we use the in-
formation from the commit itself about the files it modifies,
and add these files to a worklist. By comparing the output
of undertaker for the states of all these files before and
after the patch is applied, we can derive if a patch introduces
(or eliminates) any variability-related defects.

One crucial point, however, is missing in all mentioned
testing procedures: Up to now, no mapping exists between a
configuration option and the files it has an influence on (di-
rectly or indirectly through other options from the Kconfig
system). Thus, when we encounter a commit which changes
the definition of a configuration option, we currently do not
know which files might possibly be affected by that change,
and consequently do not know which files must be rechecked
for build errors or variability defects.
In this paper, we present an algorithm that allows us to

quickly identify the impact of a change in Kconfig on the
source code. To accomplish this, we leverage the information
about dependencies between options from Kconfig to build a
mapping of related configuration options. From this mapping,
it is possible to determine a list of source files which might
be affected by a change to a given configuration option.
The remainder of the paper is structured as follows: In

Section 2, we present an overview of Kconfig, the configu-
ration system of Linux, showing how configuration options
can be specified and connected with each other. Then, we
describe our algorithm to find related symbols as well as
the corresponding source files in Section 3. We present an
evaluation of our findings in Section 4, giving an insight
into the structure of dependencies inside the Linux feature
model as well as their influence on the source code. Subse-
quently, we discuss the results in Section 5, and elaborate
on some extraordinary cases we encountered during our ana-
lysis. After presenting related work in Section 6, the paper
concludes with an outlook on future possible applications of
and improvements to our algorithm.

2. BACKGROUND
In the following, we shall describe how configurable options

are defined and used in Kconfig, and how they can influence
each other.
The Kconfig language allows developers to specify con-

figuration options which can have a short description of the
option, a type, for example, int or hex for numbers, bool for
options that can either be enabled or disabled, or tristate
for options which allow the corresponding code to be built
as a loadable kernel module (LKM). Kconfig options can
also entail dependencies, thus allowing the user to enable
them only if some other options – which might provide some
necessary functionality – have already been enabled earlier.
The following example for a configuration option is taken
from drivers/hid/usbhid/Kconfig, Linux v4.3.

4 config USB_HID
5 tristate " USB HID transport layer "
6 default y
7 depends on USB && INPUT
8 select HID
9 −−−help−−−

10 Say Y here if you want to connect USB
11 keyboards , mice , joysticks , graphic
12 tablets , or any other HID based
13 devices to your computer via USB ,
14 [ . . . ]

The developer defines the configuration option USB_HID
which depends on USB and INPUT, meaning it is only possible
to enable this configuration option if both dependencies
have been enabled previously – if USB or INPUT have not
been enabled, the user simply is not prompted to configure
USB_HID by Kconfig. The default setting for USB_HID
is y, meaning it is enabled; note that the default value
of a configuration option can also be a boolean expression
entailing multiple other configuration options.
Additionally, Kconfig supports select statements, which

are also called “reverse dependencies”. With select, enabling
an option forces another configuration option to become
enabled as well – in the example, enabling USB_HID will
unconditionally enable HID. select statements can further
have conditions, meaning that the corresponding option is
only forced to be enabled if the configurational conditions
are met. In general, the dependencies between configuration
options can become arbitrarily complex and span across
different subsystems of the kernel (see [22]).
When a user configures the Linux kernel, all enabled con-

figuration options are collected in automatically generated
header files which are made available to the build system
and the source code. The kernel’s build system Kbuild uses
the information about configured options in its Makefiles
to make a coarse-grained selection about which source files
are included into the compilation process. As the generated
header file is included into every source file by the compiler,
the configuration options (and their configured values) are
available to the C preprocessor. Therefore, developers can
use #ifdef statements for a more fine-grained selection in-
side the source files, as to include or exclude blocks of code
depending on the selected configuration options.

3. APPROACH
In this section, we present our approach to find relation-

ships among configuration options from the Kconfig system,
and explain how we map these options to files which need to
be retested due to a change made to a configuration option.

3.1 Preparations
First, we need the information about all configuration

options defined by Kconfig including their respective de-
pendencies and select statements. We use a modified stand-
alone version of the conf parser used by Linux itself, which
is also part of the undertaker suite. The result of this
step is a feature model containing all information about
the Kconfig features in the Rigi Standard Format (RSF).
Due to the structure of the configuration process of Linux,
which requires the user to define a target architecture before
starting the actual configuration process, one model is gen-



erated per architecture, representing the information which
would also be available for the user configuring Linux for
that architecture from Kconfig.
After reading the model for an architecture, we preprocess

it for the later steps. Initially, we clean up the feature model:
As the conf parser only reads all configuration files but does
not check the dependencies on a semantic level, the feature
model for an architecture might also contain features which
can never be enabled on the analyzed architecture (e.g., if
the configuration option for a driver depends on MIPS, the
driver can never be enabled when configuring a Linux kernel
for the X86 architecture but is still present in the feature
model for X86). Including configuration options into our ana-
lysis which are not even available on the currently analyzed
architecture would distort the results about relationships
between configuration options. Thus, we use a SAT solver
to eliminate such unselectable configuration options before
running the further steps.
Additionally, we need a mapping that allows us to quickly

look up the set of files that reference and use a given configu-
ration option. To generate this mapping, we perform a scan
of the entire source code for uses of configurable options. In
order to include the influence of coarse-grained variability,
we also extract information from the build system, that is,
which configuration options have to be enabled for a file to be
included into the compilation process and thus, the resulting
kernel image. For this purpose we developed a text-based
extractor using regular expressions which we have shown [21]
to be as precise as the previously employed robust, but slow
golem extractor by Dietrich et al. [3].

3.2 Worklist algorithm
From the cleaned-up feature model, we can now construct

the set of configuration options RelC which are transitively
related to a given initial option C. We use a worklist al-
gorithm to process all relevant options. The worklist is
initialized with the configuration option in question (i.e., the
option which has been modified by a patch). We then take
one element from the worklist and add it to the result set
RelC until there are no more items left to process. For the
element cur we just removed from the worklist, we add the
following new configuration options to the worklist:

• All configuration options which are selected by cur.

• All configuration options which depend on cur.

• All configuration options which can not manually be
selected in Kconfig (i.e., which have no prompt in the
configuration interface), but have cur as their default
value.

• All configuration options which are selected under
a condition involving cur (for example, the presence
of a statement like “select F OO if cur” would add
F OO to the worklist when processing cur).

To speed up processing, we cache the constructed set
of related configuration options for a symbol and use this
precalculated information when we encounter that symbol
in the worklist during the analysis of another option.

3.3 Finding affected files
Once we know the set of configuration options which are

related to a given option, we can use the information from
the build system and the code to find all files which might
be affected through direct references to configuration options
in the related set.
The set of affected files is constructed by collecting all files

which reference a configuration option contained in the set
of related configuration options. More formally: Given the
set of configuration options related to C as Rel(C), the set
of files which directly reference a configuration option C in
the code as F (C), the set of files which contain C in their
build system condition as B(C), the set of files affected by
a change of the configuration option C, affected_directly(C)
is constructed as follows:

affected_directly(C) =
⋃

c∈Rel(C)

{F (c) ∪B(c)}

However, due to the way Linux uses #ifdef to provide a
different implementation depending on if the corresponding
configuration option has been set or not, this is not sufficient
to detect certain classes of errors.

3.4 The #include graph
Developers are encouraged to avoid using the C preproces-

sor and #ifdef statements in .c files by the central coding
guidelines.1 Instead, developers should “use such condition-
als in a header file defining functions for use in those .c
files, providing no-op stub versions in the #else case, and
then call those functions unconditionally from .c files”. This
structuring rule leads to the identification of many head-
ers (which directly use the configuration option) as relevant
files, but causes our simple approach from above to miss
the .c source files which #include these headers. The code
inside the .c files, however, might very well be subject to
variability-related errors when it is compiled with all headers
included.
In order to additionally find the source files which might

be affected by a modification of a configuration option only
used inside a header file, we need to construct the (directed)
include graph for all source files. With the include graph, we
can generate the transitive set of included header files for
each source file, and more importantly, the “reverse mapping”
included_by(h) of the #include structure: Given a header
file h, included_by(h) constitutes the set of source files which
(transitively) include that header.

Thus, we can extend the list of files in affected_directly(C)
to find all files possibly affected by a change in a configuration
option C: For every header file h in affected_directly(C), also
consider the source files in included_by(h) as relevant.

all_affected(C) = affected_directly(C) ∪⋃
f∈affected_directly(C),

is_header(f)

included_by(f)

While this set might be an overapproximation (as not all
source files use all conditional and unconditional functionality
from every header they include), it provides a good starting

1Located at Documentation/CodingStyle in the Linux
source code and considered the official reference for cod-
ing style in Linux.



point for further analysis. Note that we use a simple text-
based scan to find #include statements – this might not
be 100 percent accurate due to the presence of computed
includes or macros; however, we found these special cases
to be the exception rather than the rule. Therefore, we
chose to favor the much better runtime (around 60 seconds)
over the higher accuracy offered by tools like SuperC [8] or
TypeChef [11], which have a total runtime of over 12 and 52
hours, respectively, for all files in the Linux kernel tree.

4. EVALUATION
In the following, we present the results we obtained using

the approach given in Section 3. We use the latest stable
Linux release available at the time of writing (v4.3, released
on November 2nd, 2015). Note that for this work, we restrict
the analysis to the X86 architecture – while there are no
technical restrictions to do so, it simply would not be possible
to present the data for all thirty architectures as part of
this paper. All experiments were conducted on a machine
equipped with a quad-core Core i7 CPU with 3.4 GHz and
8 GiB RAM.

4.1 Performance
Calculating the relationships between all configuration op-

tions and mapping the relationships to affected files takes
around 9.5 minutes. The process of eliminating unselectable
configuration options from the model accounts for the ma-
jority of runtime, taking roughly 8 minutes, or 85 percent of
the total time, due to the fact that the SAT solver needs to
be invoked once for every configuration option present in the
original model – this equals to 11,067 invocations.
The worklist algorithm described in Section 3 computes all

relationships between configuration options in 1.5 seconds.
Finding direct references of configuration options in the
code requires one simple pass over all source files in the
kernel tree and takes about 2 seconds to complete. The
remainder of the runtime is spent constructing the include
graph from the 28,916 source files available for X862 and
building the resulting mapping from the configuration options
to all affected files, which takes roughly one minute.

4.2 Relationships between options
First, we show statistics about the relationships between

configuration options as determined by the worklist algo-
rithm. Out of the original 11,067 configuration options in
the model, only 8,731 remain after eliminating unselectable
options. Figure 1 contains an excerpt of a histogram which
is grouped by the number of configuration options contained
in the resulting set of related options. Here, we see that
4,787 configuration options, or 54.8 percent of all options,
only have one configuration option they are related to – which
is the respective option itself. The arithmetic mean value of
related options, however, is 149.9, which stems from the fact
2The number of files available for the chosen architec-
ture is calculated using git ls-files and excluding the
Documentation/ directory as well as all directories under
arch/ except arch/x86/ - the latter directories represent the
separate hardware abstraction layers for the individual target
architectures. Furthermore, we prune all files which have a
build system condition that can not be enabled on X86 by
building the conjunction of CONFIG_X86 and the build system
condition and checking solvability using a SAT solver.
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Figure 1: Histogram of configuration options grouped by the
number of options they are related to as calculated by the
worklist algorithm (Linux v4.3, x86 architecture). The plot
does not show data for configuration options related to more
than 30 options.

Table 1: The ten configuration options in the X86 architecture
on Linux v4.3 which have the largest scope, that is, the
largest number of affected configuration options by them.

Option Number of
affected options

X86_32 6,623
BLOCK 6,737

X86 6,754
NET 6,814

HAS_IOMEM 7,638
PCI 7,651

UNISYSSPAR 7,654
STAGING 7,773
X86_64 7,805
64BIT 7,984

that some configuration options have many related options.
When we look at the data computed for all configuration
options, we see that there are 281 configuration options, or
3.2 percent, which have more than 1,000 related options.

In Table 1, we show the ten configuration options with the
largest scope along with the number of options they affect,
that is, the ten configuration options with the largest set
of affected options. The options with the largest scope are
mostly directly associated to the architecture (X86, X86_32,
X86_64 as well as 64BIT) or to the largest subsystems in
the Linux kernel (PCI, NET and BLOCK). One interesting
exception is UNISYSSPAR – representing a single driver for
secure partitioning in mainframes – which we will discuss in
greater detail in Section 5.

4.3 Files with direct references
We will now extend the results to affected files, but without

taking the include graph into account (corresponding to
affected_directly presented in Section 3.3). The results show
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Figure 2: Histogram of configuration options grouped by the
number of source files they directly affect (Linux v4.3, x86
architecture). The plot does not show data for configuration
options affecting more than 30 files.

Table 2: The ten configuration options in the X86 architecture
on Linux v4.3 which affect the most files by means of direct
references to configuration options contained in their set of
related options.

Option Number of
affected files

MMU 10,225
NET 10,483

BLOCK 10,672
HAS_IOMEM 11,161

X86 11,413
PCI 12,447

UNISYSSPAR 12,452
X86_64 12,875

STAGING 12,876
64BIT 13,180

us how many files reference configuration options that we
found to be related to a given option (and thus may need
checking after that option has changed).
From the 8,731 selectable configuration options, 3,469 op-

tions (or 39.7 percent) only affect one source file; in addition,
we found 146 configuration options which are not referenced
from any source file – these options mostly change com-
piler flags or are used by Kconfig internally to model more
complicated dependencies. The median number of affected
files is 2, meaning that half of all configuration options only
influence one or two files. The arithmetic mean value is,
as before, much higher, with 240.1 influenced files. These
results resemble the observations made when we looked at
just the configuration options alone – there are many config-
uration options with an influence on only few files, but there
are also a few configuration options which affect many files.
Consequently, the histogram in Figure 2 looks very similar
to Figure 1. Again, we list the ten most “influential” options,
that is, the ten configuration options which (through their

relationship in Kconfig) affect the most files in Table 2. Ex-
cept for MMU – which replaces X86_32 at the tenth place – we
see the same configuration options at the top as in Table 1.

4.4 Files affected through the #include graph
As stated earlier, the Linux developers are encouraged to

use #ifdef statements in headers instead of the source code,
providing empty implementations in case a configuration
option is turned off. Source files which #include such head-
ers might then have build or other errors without directly
referencing the offending configuration option. Our approach
handles this structure by using the #include graph to find
all source files which transitively #include a header and
including those source files into the result (see Section 3.4).
In Figure 3, we see that the majority of configuration

options (3,276, or 37.5 percent of all configuration options)
still only affects one single source file. Furthermore, we
observe that all values in the displayed range are lower than
in the previous measurement – this indicates that there
are now more configuration options affecting more than 30
files. Consistently, the median value of affected files is now
3 (as opposed to 2 when not considering #includes). The
arithmetic mean value increases more than tenfold to 2,940
possibly affected files per configuration option. While these
numbers surely are an overapproximation – no source file
uses all functionality offered by every header it transitively
includes – this, in addition to the coding guidelines which
every developer should follow, shows us how important it is
to take the #included header files into the analysis.
Once more, in Table 3 we show the ten most “influen-

tial” configuration options. The architectural options (X86,
X86_32, X86_64 and 64BIT) still have the largest scopes, as
well as the PCI subsystem, STAGING and UNISYSSPAR, with
the options EMBEDDED (allowing the configuration of certain
options that are reasonable to consider on embedded sys-
tems), EXPERT (which allows tweaking additional standard
kernel configuration options for expert users), and SMP (for
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Figure 3: Histogram of configuration options grouped by
the number of source files they affect when also considering
#included headers (Linux v4.3, x86 architecture). The plot
does not show data for configuration options affecting more
than 30 files.



Table 3: The ten configuration options in the X86 architecture
on Linux v4.3 which affect the most files (including refer-
ences from #included headers) through their set of related
configuration options.

Option Number of
affected files

SMP 21,342
EXPERT 21,374

EMBEDDED 21,374
X86 21,392

X86_32 21,417
PCI 21,433

UNISYSSPAR 21,433
STAGING 21,434
X86_64 21,495
64BIT 21,615

symmetric multiprocessing support) newly showing in the
listing.
Having 64BIT as the most “influential” configuration op-

tion – with and without the #include graph – is not a
surprise: The sub-architectures (X86_32 and X86_64) both
depend on 64BIT to be enabled or disabled, respectively.
Hence, through our approach we also mark all configu-
ration options as relevant which have a Kconfig depen-
dency on the sub-architectures – which is the case for all
architecture-specific device drivers. Similarly, when looking
at the #include graph, we found that the file most often
#included is include/asm-generic/bitsperlong.h (which
is transitively included by 23,161 other files). This file con-
tains the type definition for the long data type and is thus
required by every file in the Linux kernel which uses that
data type.

5. DISCUSSION
In this section, we will discuss the results and elaborate

on their implications.

5.1 Under- vs. Overapproximation
First, we will take another look at the difference between

the results for directly affected files and files affected through
the reverse #include mapping.
Due to the fact that developers are encouraged to imple-

ment variability in header files instead of the source code,
some configuration options might not be referenced directly
at all from .c files. A simple approach – such as looking
for direct references only – will then not find all source files
possibly affected: The files might still contain defects related
to configuration options only mentioned in the header files,
for example, through contradictory Kconfig dependencies
of another #ifdef block surrounding a call to a conditionally
defined function in the code. In this case, our results repre-
sent an underapproximation of the real number of affected
files.
On the other hand, when we take all files into account

which (transitively) #include a header file containing the con-
figuration option in question, we create an overapproximation
in terms of actually affected files. Often, a header file is in-
cluded to be able to use only a few functions or data types
from that header. As some header files in Linux are very
large and #include many other header files themselves, this

effect is amplified for every additional level of #includes.
We argue that the overapproximation does not adversely

affect our approach: If some file which in fact does not use any
#ifdef-guarded functionality from the headers it #includes
is handed to a downstream analysis, for example to the
undertaker tool or the TypeChef [12, 16] tool, these tools
will not report variability-related defects. On the contrary, if
our approach does not find a source file just because it does
not directly reference a configuration option, downstream
analysis tools might miss more complicated types of defects
which are caused by interactions between the source code
and header files – precisely the kinds of defects we need those
tools for.

5.2 Usability vs. Clean Modelling
We will now take another look at one of the most influential

configuration option presented in Section 4, UNISYSSPAR.
This configuration option controls the compilation of a single
driver which provides support for a secure partitioning of
multiple operating-system instances running on the same
machine [26].
It seems surprising that a specific driver appears among

the most influential configuration options – to under-
stand these results, we need to take a look at the defi-
nition of the corresponding Kconfig option (located at
drivers/staging/unisys/Kconfig in Linux v4.3):

8 menuconfig UNISYSSPAR
9 bool " Unisys SPAR driver support "

10 depends on X86_64 && ! UML
11 select PCI
12 select ACPI
13 −−−help−−−
14 Support for the Unisys SPAR drivers

Line 10 tells us that UNISYSSPAR is only available if the
X86_64 option has been enabled earlier, and the kernel is not
compiled as a User Mode Linux (UML). More interestingly,
the lines 11 and 12 select the configuration options PCI and
ACPI. These statements force PCI and ACPI to be turned on
when the user enables the UNISYSSPAR configuration option;
in Kconfig terms, the UNISYSSPAR driver has a reverse
dependency on PCI and ACPI.

In our algorithm, the select statements lead to the in-
clusion of all configuration options that depend on PCI into
the result set for UNISYSSPAR – as PCI is one of the largest
subsystems in the kernel, we end up with more than 6,700 con-
figuration options detected as related to UNISYSSPAR. Note
that UNISYSSPAR is not the only driver making such use of
select statements; among others, the configuration options
SCSI_CXGB3_ISCSI and SCSI_CXGB4_ISCSI also have more
than 5,900 configuration options related to them, due to
selects on NETDEVICES and ETHERNET, which are top-level
configuration options for all networking devices in Linux.
The possibility to force other configuration options to a

desired value is convenient for users configuring the kernel
– they do not need to manually enable PCI and ACPI be-
fore the UNISYSSPAR configuration option becomes visible,
rather they only need to enable UNISYSSPAR. From a mod-
elling perspective, however, this is questionable: If a driver
depends on some functionality like PCI or ACPI, these depen-
dencies should also be modelled using depends on statements



– utilising select instead inverts the original intention. Fur-
thermore, the neglection of dependencies for the target of
a select statement is not intuitive at all and, among other
problems, complicates ensuring consistency of the configura-
tion [1].
The kernel’s documentation for Kconfig3 states that

select should be only be used for “non-visible symbols
(no prompts anywhere) and for symbols with no dependen-
cies”, as the select statement will “force a symbol to a
value without visiting the dependencies”. It is therefore
possible to generate invalid configurations in which depen-
dencies between some configuration options – which are even
formulated in Kconfig – are not met correctly. Among
other issues with the handling of recursive dependencies in
Kconfig, this problematic behaviour is one argument for an
integration of a SAT solver directly into Kconfig itself, as
recently proposed by kernel developers and researchers [20].

6. RELATED WORK
Many researchers are working on modelling and analyzing

variability, often in the context of the Linux kernel. In the
following, we would like to highlight some of these works and
relate them to our contribution.
In previous work [25], our group presented vampyr, a tool

that generates a set of configurations that must be applied
and checked by existing static checkers in order to maximize
the configuration coverage. vampyr, however, requires the
set of .c files modified by a patch as input; by design, it can
not track the influence of modified configuration options on
#ifdef blocks inside unmodified files. This can lead to false
negatives, as not all relevant files will be checked.
In a detailed analysis of the driver subsystem of Linux,

Passos et al. [18] study the scattering of feature code. Their
findings suggest that driver features are often scattered across
several locations in the code. The effects of such feature
scattering on code quality – and thus, the likelihood of
defects in scattered code – are studied by Eaddy et al. [6].
In their work, the researches find evidence for a correlation
between high scattering degrees and the number of bugs
in the scattered code; as many multiple locations might
be of concern for the same feature, it gets harder to fully
understand all possible interactions between the scattered
parts of the code, in turn making it difficult to correctly
and consistently change the source code. These observations
underline the importance of our approach which allows us
to find scattered locations possibly affected by a change
in a single feature (or configuration option) as well as the
influence on other configuration options – which in turn
might be scattered. Furthermore, Queiroz et al. [19] report
that the degree of scattering in Linux follows a power-law
distribution, which aligns with the shape of our result plots
in Section 4.
In order to recover relationships between configuration op-

tions, She et al. [23] present heuristics to find parent features
from the variability model in order to reconstruct the feature
hierarchy. Their evaluation shows that features in Linux have
complicated dependencies, with most dependencies coming
from transitive implications. This confirms the importance
of taking transitive selects and dependencies into account,
which is covered by the design of our worklist algorithm.
3Located at Documentation/kbuild/kconfig-language.txt

Our algorithm relies on an accurate representation of the
configurable options and their dependencies. As the seman-
tics of the Kconfig language are sometimes unclear, El-
Sharkawy, Krafczyk, and Schmid [7] systematically evaluate
the behaviour of all available extractors and show that none
of the generated models fully represents the actual behaviour
of Kconfig. For this paper, we consider the adverse effects
of our extractor’s insufficiencies as not practically relevant
since they mostly affect corner cases in choices – which are
rarely used and changed in Linux anyway [4]. However, our
design would also allow an easy substitution of the extractor
with more accurate tools like kconfigreader[10] by Kästner
et al.
Our approach aims at the detection of files which are

affected by changes to configuration options – hence, to
apply our algorithm, we first need to know if and which
configuration options have changed compared to an earlier
state. For this purpose, Dintzner, Van Deursen, and Pinzger
[5] present FMDiff, a tool which can efficiently compute the
changes between two Kconfig feature models and categorize
the types of changes. We plan to integrate FMDiff into our
daily tests of linux-next in the future.

7. CONCLUSION AND FUTURE WORK
As Linux is a large and rapidly evolving software system,

its developers require tool support in order to verify the in-
tegrity of the system as a whole. Companies and developers
already have some automated testing systems in place which
can detect build errors and performance regressions. Cur-
rent systems, however, do not incorporate variability-related
tests – errors caused by inconsistencies in the configuration
system Kconfig are only found “by accident” when compil-
ing randomly generated kernel configurations. Furthermore,
developers currently lack a mechanism to find out what
configuration options are needed to run a complete set of
tests [2].
In order to better understand the effects of configurable

options on the source code, this paper presents a method
which allows us to quickly compute relationships between
configuration options from a feature model. Additionally, we
show how the relationship information can be used to find the
set of files which might be influenced by a given configuration
option, while also taking the #include structure into account.
Our results show that many configuration options only

affect few others, but also that some configuration options
have up to 8,000 options related to them, and might affect
up to 21,600 files. We also found that some configuration
options misuse Kconfigs select feature for usability reasons,
leading to these options being associated with many others
by our algorithm.
In the future, we will integrate the presented approach

into our daily bot which searches for variability defects in
linux-next in order to possibly uncover more complicated
interactions between configuration options and their use in
the source code. Additionally, we would like to use the data
to optimize the use of configurations during testing: as we
now know which files are affected by a change in Kconfig,
we can analyze all these files for uses of configurable options
and subsequently generate a minimal set of configurations in
order to maximize configuration coverage inside the affected
files. In the long term, this might eliminate the need for
randomly generated configurations for testing and replace
them with configurations tailored to the change in question.



Furthermore, we would like to investigate the relationships
between header files and source files in a more fine-grained
manner; for example, we could evaluate which definitions in
a header file really are used by the code. This would allow
us to reduce overapproximation, as we can then only mark
source files as affected that actually use some #ifdef-guarded
functionality provided by the header.

“There is little disagreement about the need for
better tests – and the need for developers to
actually run those tests. This is an area that
should continue to progress quickly in the coming
year.” [2]

(Jonathan Corbet, Linux kernel developer)
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