
SysWCET: Whole-System Response-Time Analysis
for Fixed-Priority Real-Time Systems

Christian Dietrich∗, Peter Wägemann‡, Peter Ulbrich‡, Daniel Lohmann∗

{dietrich, lohmann}@sra.uni-hannover.de {waegemann, ulbrich}@cs.fau.de
∗Leibniz Universität Hannover (LUH)

‡Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)

978-1-5090-5269-1/17/$31.00 c©2017 IEEE

Abstract—The worst-case response time (WCRT) – the time
span from release to completion of a real-time task – is a
crucial property of real-time systems. However, WCRT analysis
is complex in practice, as it depends not only on the realistic
examination of worst-case execution times (WCET), but also on
system-level overheads and blocking/preemption times. While the
implicit path enumeration technique (IPET) has greatly improved
automated WCET analysis, the resulting values still need to be
aggregated manually with the system-level overheads – an error-
prone and tedious process that yields overly pessimistic results.

With SysWCET, we provide an integrated approach for the
automated WCRT analysis across multiple threads of execution,
locks, interrupt service routines, and the real-time operating
system (RTOS) in particular. Our approach spans a single IPET
formulation over the whole system and exploits RTOS and
scheduler semantics to derive cross-kernel flow facts in order
to significantly reduce pessimism in the WCRT analysis.

We evaluate our approach with a fully functional implementa-
tion of SysWCET for the automotive OSEK-OS standard (ECC1),
including threads, alarms, interrupt-service routines, events, and
PCP-based resource management.

I. INTRODUCTION

The worst-case response time (WCRT) is a vital temporal
property of real-time tasks with hard deadlines. Such tasks
are usually embedded in a larger system context by mapping
them to preemptive threads provided by a real-time operating
system (RTOS). Hence, the WCRT of an individual task
cannot be determined in isolation from its worst-case execution
time (WCET), but needs to reflect worst-case overheads and
interferences induced by other tasks and the RTOS.

The common approach to the inclusion of such task-extrinsic
factors is compositional WCRT analysis. Components are
analyzed and aggregated bottom-up, which essentially leads
to a summation of their WCRTs and latencies for preemptive
priority-based scheduling. For example, Figure 1a illustrates
this approach by the WCRT analysis of thread A, which is im-
plemented as an RTOS thread and accompanied by thread B and
an interrupt-service routine (ISR). In a first step, the individual
WCET evaluates to 103 cycles for thread A, 200 cycles for
thread B, and 300 cycles for the ISR, respectively. Subsequently,
precedences and interference are handled by summation of
these local worst-case estimates. Thread-preemption delays
can be easily accumulated: The activation of thread B (with
higher priority) in the right branch bloats the WCRT of A
to 303 cycles (103 + 200, neglecting the RTOS influence for

thread AISR

thread B
1

100 10

2

200

50

250

Real-Time Operating System

E

21

activa
te

14

(a) Compositional WCRT analysis: The WCET of all system com-
ponents (ISR = 300, thread A = 103, thread B = 200, RTOS = 21)
is computed in isolation. Since the RTOS acts as a natural boundary
for the analysis knowledge we can achieve only pessimistic results.

thread AISR

thread B
1

100 10

2

200

50

250

Real-Time Operating System

21 E

11

21

14
activ

ate

11

(b) Integrated WCRT analysis: A permeable RTOS boundary allows
the integration of global cross-kernel flow facts, which result in tighter
WCRT bounds due to inter-thread knowledge. For example, the ISR
takes a shortcut exit, if it interrupted thread A in the left branch.

Fig. 1: Motivating example: WCRT analysis of thread A.

now). Asynchronous events are more difficult to handle, as
their occurrence is unpredictable from a task-local perspective.
Assuming only a single activation and servicing of the ISR in
our example raises the WCRT to 603 cycles (303+ 50+ 250).
Finally, there is the RTOS itself. In practice, its timing impact
is either neglected or estimated overly pessimistically [24],
but rarely realistically: Syscalls, for example, are generally
assumed to be synchronous and their costs are approximated
by the WCET of the longest path through the kernel [10]
(i.e., 14 and 21 cycles for each OS-interaction in thread B
and the ISR, respectively). Finally, all these local estimates
need to be aggregated to determine the WCRT of thread A,
which here leads to a total of 659 cycles (603+2 · 21+2 · 14).

We will soon show that this result can be brought down to
238 cycles (1 + 10 + 14 + 200 + 11 + 2, rightmost path) by
employing additional system knowledge.

A. Problem Statement

Overall, the commonly applied bottom-up aggregation of
individual, local WCETs is easy to implement, yet fraught with
inevitable over-estimations that rise tremendously on higher
levels. In this context, we identified the segregation between the
RTOS and the application as a major obstacle for improvements.
The application–RTOS boundary is virtually impenetrable for
bottom-up analysis, denying access to valuable knowledge.

We therefore suggest a top-down approach with a global
WCRT analysis that, in particular, integrates RTOS semantics
as well as thread interactions into the analysis. For intra-thread
analysis, the implicit path enumeration technique (IPET) [21,
28] has already drastically reduced pessimism in the estimation
of WCETs. It composes well with techniques for the analysis
of hardware effects, such as the influence of caches and
pipelines [22]. Further refinements of the IPET already remove
infeasible and mutually exclusive paths [8, 9, 19] by exploiting
knowledge about the control flow and data dependencies. In
this paper, we leverage the IPET for an automated whole-
system WCRT analysis in order to solve the aforementioned
problems with automated inter-thread analysis. In a nutshell,
our approach makes it possible to also remove paths that
become infeasible across the RTOS: Informally, such an
infeasible system execution path is a path that we can only
prove infeasible due to the current RTOS state, which in turn
is determined by control-flow decisions taken by other threads.

Figure 1b demonstrates the potential for tightening the
WCRT estimates: The central issue is the absence of flow
facts for non-hierarchical control flows. If thread A has taken
the left path in our example, thread B becomes infeasible and
will never be dispatched. Additionally, the path through the
ISR depends on the actual interruption context: If triggered in
thread A’s block 100, the handler always takes the shortcut exit
(50 cycles vs. 50+250 cycles). Likewise, not all paths through
the kernel itself are independent from their calling site and the
RTOS state. Self-termination of thread B, for example, may
be faster than other context switches (11 cycles vs. 14 cycles)
since the kernel certainly resumes to thread A. This kind of
RTOS-context sensitivity is hard to analyze and requires global
knowledge about the system semantics (e.g., scheduling and
synchronization). Finally, WCRT analysis is a fix-point search
problem [4], as the physical environment impacts the behavior
of the system and thereby also possible paths. For instance, the
minimal inter-arrival time of interrupts (whose handling takes
computational time) leads to a cyclic dependency between
WCRT and number of interrupts. Assuming that such global
system knowledge is available, we could derive the actual
WCRT for thread A of 238 cycles (rightmost path).

B. Our Contributions

Multiple challenges arise form pursuing the envisioned top-
down approach: (1) analysis of RTOS–application interaction

for a given task set and derivation of global control flows,
(2) incorporation of semantics for fixed-priority scheduling and
synchronization as well as interrupt handling, and (3) construc-
tion of an integrated IPET problem formulation.

In this paper we present SysWCET, an integrated analysis
approach to tackle the aforementioned limitations of com-
positional WCRT estimation. Based on IPETs, our approach
facilitates formulations of whole-system analyses that span
over multiple threads of execution and ultimately break
up the segregation of application and RTOS. Additionally,
SysWCET integrates the semantics of fixed-priority scheduling
and synchronization along with the impact of asynchronous
interrupts. The key contributions of this paper are:
• Whole-system control-flow and RTOS-state analysis.
• Formulation of response-time problems for global, non-

hierarchical control-flows as an integer linear program,
which enables cross-kernel analysis in particular.

• Full integration of fix-priority RTOS semantics, preemp-
tive scheduling, and resource management.

• Handling of asynchronous events and interrupts by inclu-
sion of minimal inter-event and inter-arrival times.

• A fully operational prototype for OSEK ECC1: The
SysWCET toolchain that automatically analyzes given
OSEK applications and constructs the IPET problem as
well as the concrete RTOS instance.

II. SYSTEM MODEL AND RESTRICTIONS

Our automated cross-kernel WCRT analysis demands three
basic properties from the real-time system: (1) An RTOS
with a deterministic scheduling policy, such as fixed-priority
preemptive scheduling. (2) All scheduling-relevant system
objects (threads, ISRs, resources, etc.) and their configuration
are known ahead of time; either provided by some configuration
file or statically extractable from the source code. (3) Syscall
locations and system–object-referencing arguments are known
at compile time. Although we rely on a mostly static application
structure, the system has not to be deterministic in its dynamic
behavior – asynchronous timers and ISRs that influence the
scheduling are well supported.

The proposed SysWCET approach operates on the system-
wide control-flow level and aims to reduce the RTOS-related
pessimism in WCRT analysis. Therefore, we focused on a
system-wide IPET formulation and chose a simple processor
model [29] without inter-instruction effects or caches. Hence,
WCET values basically depend only on the number of executed
instructions. We are aware that this hardware-timing model is
realistic only for few relevant architectures (e.g., ARM Cortex-
M0+ [3]); however, it perfectly fits the focus of this work. In
fact, the SysWCET approach itself is not dependent on the
hardware timing model and should be combinable with more
advanced models (and even increase their feasibility), such as
techniques to refine cache-related preemption delays [11, 37].
We shall discuss this topic further in Section VIII.

A. Overview of OSEK-OS
The OSEK standard defines a widely used class of fixed-

priority RTOSs and has been the dominant industry standard

for automotive applications for the last two decades. Without
loss of generality, we based our approach on the system model
mandated by the OSEK-OS standard [26]. In the following,
we briefly introduce the abstractions provided by its API.

Basically, OSEK offers two main control-flow abstractions:
ISRs and tasks (i.e., threads and not to be confused with abstract
real-time tasks or jobs). ISRs are activated asynchronously by
the hardware and have limited access to system services, while
threads possess a statically assigned priority and are activated
synchronously by software. Threads are allowed to use all
system services and are executed according to a fixed-priority
preemptive scheduling policy. On each new activation, threads
start from the very beginning until their (self-) termination.
Whether ISRs are nestable is implementation defined; for this
work, we assume non-interruptible ISRs.

Critical sections can be synchronized either by a coarse-
grained global interrupt lock, or more fine-grained resource
objects. Based on a stack-based priority-ceiling protocol [1],
OSEK resources ensure mutual exclusion while preventing
deadlocks and unbounded priority inversion. Furthermore,
precedence constraints can be stated by events: A thread can
wait for an event to be set and remains in the waiting state
until another control flow signals the arrival of the event.

Recurring periodic as well as aperiodic activations and events
are triggered with the help of statically declared alarms. These
are configured with a phase and a period, triggered by a
hardware-timer interrupt and can either be started automatically
at system startup or dynamically at run time.

For a specific application, the developer declares all system
objects and their parameters in a domain-specific configuration
file. At compile time, a system generator derives the concrete
RTOS instance statically, allocating fixed-sized arrays of
preconfigured system objects, and links application and OS
library into a single system image.

III. BACKGROUND

In a nutshell, we calculate the WCRT by modeling system-
wide control flows with the implicit path enumeration tech-
nique [21, 28]. We extract information about the possible
control flows for a given task from the operating-system state-
transition graph (STG) [14]. In the following, we briefly
introduce necessary background knowledge and basic concepts.

A. Atomic Basic Blocks

For static analyses, application code is usually partitioned
into linearly executed basic blocks that are connected in the
control-flow graph (CFG). Nevertheless, for a system-wide
examination, the regular CFG structure is too fine-grained as
it exposes too many nodes. Hence, we choose atomic basic
blocks (ABBs) [15, 30] to partition the code and to abstract
from the application’s microstructure.

An ABB is a control-flow super structure that subsumes
one or more basic blocks and conceptually spans between
syscalls, forming a single-entry single-exit region: it has
exactly one entry and one exit block, which typically is the
delimiting syscall. Furthermore, ABBs may be split arbitrarily

for optimization reasons as long as the result complies with
the single-entry single-exit rule.

These construction rules imply that an ABB executes, if
no interrupt occurs, atomically from a scheduling perspective.
While syscall blocks are determined in their size, the extent
of computation ABBs (no syscall) is variable, but restricted
by the surrounding syscall blocks. For our implementation, we
use ABBs of maximal size. In Section VIII, we will discuss
the influence of the ABB size on the analysis results.

For the rest of the paper, we will stick to the example system
shown in Figure 2a, which consists of one ISR and three threads
with high, medium, and low priority. The code is partitioned
into ABBs; only ABB2 and ABB5 contain an explicit syscall.
To make the example more concise, only ABB1 and ABB4

are interruptible by the hardware. Furthermore, we assigned
costs to reflect required computation times.

B. Operating-System State Transition Graph
At this point, the ABB only captures a static view on the

application structure. In order to also incorporate the dynamic
behavior of the whole system, we employ the operating-system
state-transition graph [13, 14]. It explicitly enumerates (a) all
possible (abstract) system states and (b) all transitions between
them. The system states include information like the list of
runnable threads, acquired resources, and the currently running
control flow. The transitions express all possible execution paths
through the system, including thread switches. Transitions are
caused by application control flow, syscalls, or external interrupt
activations. In sum, the STG captures the complete system
behavior including environmental influences like interrupts.

Conceptionally, the full STG contains all possible RTOS
states S and the transitions T between them. It has exactly one
entry state (Sb) that is set up by the boot code. In the system-
state enumeration [14], the application logic (i.e., ABB graph),
RTOS semantics (i.e., fixed-priority scheduling and resource
protocols), and the environment model (i.e., minimal inter-
arrival times of interrupts) are combined to calculate the STG.
From the entry state, all OS states are explicitly enumerated by
simulating the application logic on an abstractly instantiated
and configured model of the RTOS. The RTOS model also
complies OSEK’s PCP-locking [1] mechanism, which achieves
mutual exclusion by raising the priority of the lock-holding
thread.

S = {Si | Si is reachable from Sb} T ⊆ S × S
Besides the currently executed ABB (abb(S)), each state has

exactly one currently running thread (thread(S)). According
to source and target state, we partition transitions into three
semantically distinct groups: Local Transitions (Tlocal) proceed
within the same thread. Dispatch Transitions (Tdispatch) switch
to another thread. Interrupt Transitions (Tirq) dispatch to an
ISR entry state and are activated asynchronously by hardware.

Tlocal = {t | t ∈ T, thread(t.from) = thread(t.to)}
Tdispatch = {t | t ∈ T \ Tlocal, t.to 6= isrentry}

Tirq = {t | t ∈ T \ Tlocal, t.to = isrentry}

th
re

ad
M

ed

th
re

ad
Lo

w

th
re

ad
H

ig
h

IS
R ABB1

E

3
ABB2

5

ABB3

7
ABB4

E

4

ABB5

1

ABB6

12

α
β

γ δ

ω

activates

ac
tiv

at
es

(a) The application is structured into three threads with high, medium,
and low priority and one interrupt service routine. The application
code is partitioned into atomic basic blocks (ABBs). In ABB2 (cost:
5), the low-priority thread activates the high-priority thread with a
syscall. The ISR can be triggered in ABB1 and ABB4. The ISR
issues a syscall that activates the medium-priority thread.

ABB1 ABB2 ABB4

ABB3

ABB5

ABB6 ABB4 ABB5

ABB5 ABB6

a b c

e

f

E x

g

h

E z

k

m
n

d

E y

p

thread local
thread dispatch

E IRQ activation
System State

(b) This state-transition graph (STG) expresses all possible state
transitions from the start to the termination of the low-priority thread.
Every state carries and executes exactly one ABB.

Fig. 2: Example system

Figure 2b illustrates the resulting STG for our previous example
(Figure 2a): Again, the response time of the low-priority thread
is sought. Consequently, the graph spans from its initial start
state (ABB1, edge a) to the thread’s termination state (ABB3,
edge e). Subsequent states and branches result from either
local, dispatch, or IRQ transitions. ABB4, for example, is
only reachable by a consecutive execution of the low-priority
thread (ABB2, edge b) and the synchronous activation of the
high-priority thread. Such syscalls (dashed edges), which are
issued from the application code, manipulate the OS state and
may lead to rescheduling and preemption. After termination of
ABB4, the low-priority thread is certainly resumed, as indicate
by edge d. In a similar manner, edges (flash-tagged) are added
for all possible asynchronous transitions to the ISR. Here, the
system eventually returns to the interrupted state after ISR and
all higher-priority threads are finished. In the end, each node
in the STG represents a dedicated system state associated with
a single ABB that is executed in this context. Consequently,
ABBs may appear multiple times within the graph. For further
details on the STG, we refer to our previous work [14, 13].

C. Implicit Path Enumeration Technique

The implicit path enumeration technique (IPET) [21, 28] is
an established approach to derive a safe upper bound for the
execution time of a program in a control-flow sensitive manner.
Basically, the control-flow graph is translated to an integer
linear program (ILP) with execution costs as weights from
which a specialized solver derives an upper WCET bound. The
control-flow graph is modeled with integer-valued frequency
variables – one variable for each edge and each block.
Structural constraints over these variables limit the possible
value combinations and, therefore, encode the control-flow.
Additional constraints about upper loop bounds or infeasible
paths are added to the problem to assist the solver and cause a
tighter bounding. To illustrate the technique, we give a small
IPET model for the control-flow graph of the low-priority
thread from Figure 2a (ABB1, ABB2, and ABB3):

WCET = max (xABB1
· 3 + xABB2

· 5 + xABB3
· 7)

1 = xα

xα = xABB1
= xβ + xγ

xβ = xABB2
= xδ

xγ + xδ︸ ︷︷ ︸
in-flow

= xABB3
= xω︸ ︷︷ ︸

out-flow

First, we introduce a positive, integer-valued variable for
each ABB and each control-flow edge (e.g., xABB1

, xα). For
each block, the sum over the incoming edges, and sum over
the outgoing edges is constrained to be equal to the frequency
of the block. For example, xABB1 = xβ + xγ corresponds to
the control-flow decision in ABB1 to take either edge β or
edge γ but not both. Furthermore, a constraint ensures that the
entry edge (α) is executed exactly once to make the problem
bounded in the first place.

The ILP optimization objective is constructed by assigning
an execution cost (centity) to every variable. The maximized
sum over the products of execution cost and frequency is an
upper bound for the actual WCET. All frequency variables
constitute the execution count on the longest execution path.

In our example, we assigned arbitrarily chosen execution
costs for all three ABBs (cABB1

= 3, cABB2
= 5, cABB3

= 7).
In a real analysis, these execution costs stem from a hardware-
specific instruction analysis. With this cost vector, the ILP
solver derives a WCET estimate of 15 for the low-priority
thread’s body and outputs the maximizing assignments for the
variables: all ABBs are executed once and only xγ is zero; γ
is not visited in the longest execution.

However, the value of 15 for the low-priority thread’s WCET
only considers the thread-local CFG, so it holds only if the low-
priority thread runs in isolation. To obtain a valid WCRT, we
have to further add the WCETs of all possibly preempting
control flows (threads Med, High, and the ISR) plus any
RTOS-induced overhead for the respective context switches
and syscalls. This summing up of WCETs obtained by local
analyses is state of the art but often leads to overly pessimistic

results. In the following, we overcome this by spanning the
IPET over the whole system instead.

IV. WHOLE-SYSTEM RESPONSE-TIME ANALYSIS

SysWCET is an approach to whole-system response-time
analysis based on ILP. The overarching goal is to overcome
application–RTOS boundaries by a global, top-down analysis
that integrates environment, RTOS semantics, and thread in-
teractions. Leveraging this system-state knowledge, SysWCET
reduces analysis pessimism and tightens WCRT bounds.

A. Integration of Fixed-priority Scheduling Semantics

A key element of our approach is to identify global execution
paths that are infeasible or mutually exclude each other in
the given context and system state. An activation of a thread
with higher priority will, for example, always preempt the
running thread, whereas an activation of a lower-priority
thread will never lead to preemption. In any case, the results
are well-defined control-flow decisions within those threads.
Consequently, we call paths that are only infeasible due to the
given RTOS system context infeasible system execution paths.

In contrast to data-flow–driven intra-thread analysis of
infeasible paths, our inter-thread analysis is based on the system
state in order to capture the semantics of the RTOS and, in
particular, its fixed-priority scheduling and resource handling.
Instead of formulating the global system state and, thus, the
scheduling semantics as part of the ILP, SysWCET leverages
the STG for that purpose: During STG construction, a model of
OSEK’s fixed-priority scheduling and the stack-based priority-
ceiling protocol (PCP) for locks and resources [1] is used
to add feasible transitions accordingly. Hence, the STG is
by construction already in full compliance with all possible
execution paths through the concrete RTOS instance (including
locks, scheduling, and interrupts) when transformed into an
ILP. This way, the system state is handled independently and
does not bloat the ILP unnecessarily.

B. Initial ILP Transformation

Technically, SysWCET relies on the IPET, which is applied
on a subgraph of the STG to calculate the maximal execution
cost for the processing of a thread under consideration of the
environment and RTOS semantics.

First, we have to identify a subset of the STG that is relevant
for our analysis. For example, we extract a partial STG for a
given thread that spans from its release until its completion.
Start and end point are indicated by two ABB sets (ABBstart
and ABBend). From these, we derive a start-state set Sstart
and an end-state set Send, and extract the subgraph between
them with a depth-first search. The resulting partial STG (Ssub,
Tsub) has possibly multiple entry states, multiple exits, and
may consist of several disconnected components:

Sstart = {s | s ∈ S, abb(s) ∈ ABBstart}
Send = {s | s ∈ S, abb(s) ∈ ABBend}

Ssub = {s | s ∈ S, ss
T∗−−→ s, s

T∗−−→ se,

ss ∈ Sstart, se ∈ Send}

Since the partial STG is the defining input for our IPET
construction, we will reference it only as STG from now on.

C. SysWCET IPET Construction

Our IPET problem consists of two layers: (1) the state layer
models the STG and exposes state-frequency variables that
indicate how often the system visits the corresponding system
state. (2) The ABB layer consists of one IPET fragment for
every occurring ABB. Deriving an activation frequency for
each ABB from the state frequencies connects both layers.
Thus, the actual flow facts are already included in the STG.

1) State Layer: Within the IPET problem, we formulate a
subproblem from the STG and include the following system-
level constraints. For each state and every transition, we
introduce a positive, integer-valued frequency variable (xs and
xt, respectively): structural constraints ensure that incoming
and outgoing transitions have the same frequency as the state-
frequency variable:

∀s∈S
 ∑
t∈{∗→s}

xt = xs =
∑

t∈{s→∗}
xt

As there are multiple entries and exits, we introduce artificial
state transitions to entry and from exit states. Their combined
frequencies have to be equal to one:∑

s∈Sstart

x→s = 1
∑

s∈Send

xs→ = 1

Besides regular control-flow loops, additional loops may occur
on the STG level. These are caused by interrupts, whose control-
flow returns to the interrupted state (see Figure 2b, x→ g → h)
once serviced. Giving an explicit loop bound for interrupt-
induced loops is impossible in general. Nevertheless, we have
to ensure that an interrupt loop is only accounted for, if one
of its entries is taken at least once. To express this structural
constraint, we use an artificial yet sufficiently large loop bound
M . If no loop entry is executed, the sum of all back edges in
the loop must be ≤ 0:∑

t∈backlink edges

xt ≤
∑

t∈loop entries

M · xt

However, restricting the mere occurrence of interrupt-induced
loops is insufficient and we therefore model their overall count
in addition. Consequently, for each interrupt source I we relate
its minimal inter-arrival time (IAT), the WCRT (TWCRT), and
the frequency-variables (xt) of all related interrupt transitions
(Tirq,I). The resulting ILP optimization objective is repli-
cated to a newly introduced variable T ∗WCRT . With this self-
referential technique, loop constraints (i.e., interrupt frequency)
are fed back to the optimization process of TWCRT . This
accounts for the factor that the longer the execution time,
the more potential interrupts and vice versa. Consequently, a
maximal interrupt-activation frequency can be derived from
TWCRT and the minimal IAT, limiting the combined interrupt-
transition count. Furthermore, we take a possible release jitter
JI [4] of the source into account and allow the first interrupt

to occur JI ticks before the scenario starts, reflecting a delayed
delivery of the interrupt:

IATmin,I ·
∑

t∈Tirq,I

xt ≤ (IATmin,I + JI + TWCRT)

With this constraint, the solver is free to distribute the
maximal interrupt frequency over all interrupt transitions,
which corresponds to an arbitrary arrangement of interrupts.
In practice, multiple periodic alarms may be implemented
and driven by a single timer ISR, which in turn has to fire
multiple times before an alarm expires and issues a syscall. If
the period of an alarm is constant, we constraint the activation
path by deriving a maximal alarm-expiration frequency from
the alarm’s period and the basic timer frequency. This way, we
eliminate over-approximations (e.g., thread activation) due to
ineffective timer activations.

2) ABB Frequencies: The state layer provides a frequency
xs for every state s in the STG. To drive a machine-level IPET,
we have to derive an activation frequency xa for every ABB.

Since we allow interruption of threads by ISRs, the ABB
frequency may be less than the combined state frequencies
over all states executing the ABB. To illustrate this, assume
that the start state in Figure 2b (a = 1, b = 1) is interrupted by
the ISR (x = 1). Then ABB5 executes and the RTOS resumes
to ABB1 (h = 1), resulting in a state frequency (a+ h) of 2,
although ABB1 is completed only once.

We achieve a tighter WCRT bound by subtracting the number
of completed interrupt-resume cycles from the state-frequencies.
To reiterate, this is only valid for completed interrupts: if ABB5

would be a terminal state (a = 1), the interruption would not
resume (h = 0) and subtracting x = 1 from the frequency
would lead to an under-approximation (a+ h− x = 0).

For each ABBa, we analyse the number of activations: first,
states executing ABBa (Sa) are identified For this state set,
all interrupt (Ta,i) and resume transitions (Ta,r) derived. In
the resume set, we only include transitions that are reachable
via an interrupt transition, as these edges can form actual
interrupt-resume cycles:

Sa = {s | s ∈ Ssub, abb(s) = a}
Ta,i = {t | t ∈ Tirq, t.from ∈ Sa}
Ta,r = {tr | tr ∈ Tdispatch, tr.to ∈ Sa,

ti ∈ Ta,i, ti
T∗−−→ tr }

From the interrupt and resume sets, we derive the number
of interruptions that lack an associated resume (xa,i). We use
a special ordered set (SOS) of type 1 with two variables
xa,i and xa,r; only one variable can be larger than zero,
while the other must be zero. We subtract the interruptions
from the resumptions. If there are more interruptions, the
sum is negative and −xa,i absorbs it; if there are additional
resumptions, the sum is positive, xa,r absorbs it, and xa,i = 0.
Finally, we calculate the ABB frequency xa: add all state

frequencies, subtract all interrupt frequencies, and, again, add
all “incomplete” interruptions xa,i:

SOS1 : xa,i > 0 Y xa,r > 0

−xa,i + xa,r =
∑
r∈Ta,r

xr −
∑
i∈Ta,i

xi

xa =
∑
s∈Sa

xs −
∑
i∈Ta,i

xi + xa,i

We calculate the frequency x4 for ABB4 in our example
from Figure 2b: The first constraint captures the number of
additional interruptions with a SOS (x4,i, x4,r). The second
uses the transition variables and x4,i to derive x4:

−x4,i + x4,r =

resumes︷ ︸︸ ︷
(xp + xk)−

IRQs︷ ︸︸ ︷
(xz + xy)

x4 = (xc + xk + xp)︸ ︷︷ ︸
in-flow

− (xz + xy)︸ ︷︷ ︸
IRQs

+ x4,i︸ ︷︷ ︸
unresumed IRQs

3) ABB Layer: Finally, we embed an IPET problem for each
ABB and activate the ABB scope with the ABB frequency
xa. Since ABBs are single-entry single-exit regions, we can
construct a regular IPET including all loop bounds and path
refinements. Note that we encode every ABB only once, even
if it is referenced from many states.

Besides the application code, the ABBs also include all
RTOS code and, therefore, we take the actual RTOS overheads
into account. For example, ABB2 from Figure 2a contains
exactly the kernel path for the activation of thread High, which
is not necessarily the longest path through the kernel.

At last, we assign a timing cost to all entities in the
combined IPET problem: From the machine-code analysis,
we get execution costs for basic blocks and intra-ABB edges.
On the state layer, costs from the source’s exit block to the
target’s entry block are assigned to state–state transitions.
Furthermore, interrupt transitions Tirq carry the worst-case
cost that arises in the source ABB if it is interrupted. By this
over-approximation, we avoid the need to consider interruptions
after every single instruction. For a more complex timing model
that includes interference between different basic blocks, edge
and block frequency variables can be used to drive specialized
ILP fragments that add to the overall WCRT. However, this is a
topic of further research and briefly discussed in Section VIII-A

D. Interrupt-Detection Latency

Up until now, we calculated the WCRT from a start ABB
to an end ABB; we assumed that the processing starts in a
well-defined start state ABBstart. But real-world systems do
not immediately transition into this state when the activating
event (i.e., interrupt request (IRQ)) occurs. Therefore, we have
to determine a detection delay, which the system needs to
transition into one of the start states.

This detection delay can stem from several sources: On the
hardware level, the interrupt controller might have an arbitration
delay to determine the highest-priority IRQ source. On the
software side, the activation of ISRs is delayed, if applications
or the kernel disable the interrupts (e.g., for synchronization).

disable(){c=1}
work() {c=7}
switch() {c=3}
enable() {c=1}

disable(){c=1}
switch() {c=3}
work2() {c=4}
enable() {c=1}

c=16

c=
12

c=
9

Fig. 3: Maximal interrupt detection latency

To complete our WCRT analysis, we calculate the interrupt
detection pessimistically and add it to the WCRT.

The challenge in calculating the worst-case interrupt-
blockade time is located within the RTOS: If the kernel disables
interrupts during the context switch, the enable() instruction
is executed in the context of the resumed thread. Since a context
switch is a non-local control flow, it is not sufficient to find
the lexically next enable(), but we need to find the most
distant enable() in all resumed threads.

We calculate three WCETs adhering only local control flows
with an IPET: from disabling interrupts to a lexically following
enable (Td→e), from a disable to the context switch (Td→s),
and from any resume point to a following IRQ enable (Ts→e).
The maximal interrupt-detection latency is then the maximum
of Td→e and (Td→s+Ts→e). In Figure 3, the detection latency
analysis reveals: Ts→d = 12, Td→s = 11, Ts→e = 5, and
therefore the maximal interrupt detection delay is 16.

V. IMPLEMENTATION

We integrated the SysWCET approach into the dOSEK [17]
generator framework and the platin [27] WCET analysis
tool. The SysWCET toolchain automatically analyzes an OSEK
application, generates the RTOS instance, calculates the STG,
compiles a system image, and constructs the IPET problem. The
complete toolchain, including our evaluation data, is publicly
available [35].

dOSEK is, both, a generator framework and a RTOS that
conforms to the OSEK [26] (see Section II-A) conformance
class ECC1. This conformance class includes waiting states and
OSEK resources, but only allows one thread per priority and
no multiple thread activations (activations on already activated
threads have no effect). dOSEK does, furthermore, not allow
nested interrupts or interrupts during the kernel execution; both
are implementation decisions that the OSEK standard allows.
Originally designed to provide a fault-tolerant, application-
specific RTOS implementation, dOSEK is also able to emit
unhardened OSEK instances and already includes the STG
calculation.

Our WCRT analysis starts with an application written in
C++ and a system configuration provided by the developer
expressed in an OSEK-specific configuration language (OIL).
Furthermore, the developer annotated starting and end points
(ABBstart, ABBend) within the application with marker
function calls. dOSEK compiles the application with CLang and
extracts the application CFG from the LLVM [20] intermediate
representation (IR).

We extended dOSEK to emit its analysis results in platin’s
PML format [27]: the ABB to basic-block mapping, deduced
flow facts for the kernel code, and the partial STG. The partial
STG, which is located between the marker function calls, is

extracted from the full STG with a depth-first search starting at
all Sstart states. The search stops descending if we encounter
a local-transition edge (Tlocal) originating from a stop state
(Send).

As a target platform we choose PATMOS [33], a timing
predictable hardware architecture that eases WCET analysis
and thus allowed us focus on the core aspect of this work:
the system analysis. PATMOS comes with its own analysis
framework platin, which allowed for an easy integration of
SysWCET. platin imports the program information, the STG,
and kernel-level flow facts to construct the IPET. It should,
however, be noted that the SysWCET concept is oblivious to
special hardware features and thus the platform choice has no
major implication for our approach (cf. Section II).

One problem of flow-fact handling is the mapping between
CFG and machine code, since the compiler is allowed to
reorganize code. Because ABBs are formed from LLVM
basic blocks, we encountered the same problem. Luckily,
platin already includes handling of control-flow relation
graphs (CFRG) [18] to solve the mapping problem. A CFRG
consists of ordered pairs that may reference a LLVM basic
block in the first element and a machine-code basic block in
the second one. A pair with two valid elements is called a
progress node, since its execution synchronizes the progress
on the LLVM and the machine level. Along these progress
nodes, we propagate ABB- and LLVM-level flow facts down
to the machine level.

In operating-system code, not everything is analyzable by
our LLVM toolchain: Inline assembler (i.e., context switch and
interrupt entry/exit) is handled by LLVM as a mere string that
is copied verbatim into the generated assembly. Therefore, we
fill up these gaps by parsing the disassembled machine code
and integrate the missing instructions back into the PML file.

VI. EXPERIMENTAL RESULTS

For an experimental validation, we apply our approach
on application fragments and complete systems of differing
sizes. We calculate the interrupt-detection latency, compare
the accumulated WCRT and the SysWCET WCRT, and give
actual observed execution times.

A. Evaluation Scenarios

We use dOSEK [17] on the PATMOS [33] architecture as the
base for our evaluation and choose three classes of benchmarks:
system microbenchmarks, application microbenchmarks, and
one larger control application.

With the first class of benchmarks, we show that our OS-state–
based approach is well suited to measure WCRTs of typical
RTOS usage patterns. This includes the activation of another
thread, the minimal round-trip time for a wait-and-wakeup
operation, or the WCRT of an ISR that activates a regular thread.
The second class of scenarios consists of three applications that
expose thread inter-dependencies and interaction with operating
system and environment. With the third class of benchmarks,
we demonstrate that our approach scales to larger systems with
several interrupt sources.

(#4) (#5)

(#6)

Sampling
3 ms

Digital
Sensor

Analog
Sensor

Signal
Processing

Actuator
Data

Flight
Control Actuate

9 ms
Update

Actuators

IP Stack Remote RX Copter
Control

WD
Counter

Watchdog
10 ms

PanicSteering

reset

+1 x > 25

Synchronized via Resource (Shared SPI Bus)

Task

Event

Data

Benchmark
RC Signal

Fig. 4: The task setup of the I4Copter.

1 void th_HI_computation() { ... }
2
3 void th_LO_control() {
4 for (i=0; i < 3; i++) {
5 activate(th_HI_computation);
6 }
7 }

Listing 1: Triple Modular Redundant Application

(#1, Listing 1) Triple Modular Redundancy: A low-priority
thread activates a high-priority thread three times from a
bounded loop. After the activate, dOSEK immediately
switches to th_HI_computation. After completion, con-
trol is returned to the low-priority thread; both executions are
interwoven. This scenario resembles a thread setup for a triple-
modular redundant computation located in the high-priority
thread. The actual result voting would take place after the loop.

(#2, Listing 2) Alarm-interfered Computation: The low-
priority thread computes for over 750 000 instructions. Mean-
while, a timer interrupt with a minimal IAT of 100 000
instructions drives an OSEK alarm that triggers on every third
timer interruption. The alarm activates a high-priority thread
that is dispatched after the interrupted is completed.

(#3,Listing 3) Abortible Computation: A high-priority thread
delegates a long running computation to a low-priority thread
and waits for one of two events: either the computation thread
itself signals completion or an interrupt with an IAT of 10 000
arrives and also wakes the high-priority thread to abort the
computation.

(#4-#6) I4Copter: We derived the third class of benchmarks
from the I4Copter [39] demonstrator, a safety-critical embedded
control system (quadrotor helicopter) developed in cooperation
with Siemens Corporate Technology. We extract the thread
setup (i.e., no real computation code), including the RTOS
interactions and the environment model, and analyze three
different components of the system (Figure 4): (#4) signal
gathering consists of 5 threads with a high priority. The

1 void th_LO_computation(){/* 760021 instrs.*/}
2 void th_HI_urgent() { ... }
3
4 void isr_timer() {
5 counter++;
6 if (counter % 3 == 0) {
7 activate(th_HI_urgent);
8 }
9 }

Listing 2: Computation interrupted by periodic Alarm

component is activated periodically by an OSEK alarm and
synchronized through an OSEK resource with the flight-control
component. (#5) flight control is implemented in 3 threads
with a medium priority. It is also activated periodically, but
only on every third signal-gathering cycle. (#6) the remote-
control component is activated asynchronously by an interrupt.
The associated ISR activates a low-priority thread that blocks
interrupts for synchronization. Periodic activations are driven
by a timer interrupt, similar to Listing 2. The system contains
another watchdog thread with the lowest priority, which does
not interfere with the other components.

Naturally, all of our results will be highly specific for the
application under test and a carefully crafted benchmark could
overestimate the WCRT savings SysWCET can achieve. Imag-
ine a constructed benchmark with an excessive computation
on a path that we later can prove infeasible by our cross-
kernel approach and, thus, would bring SysWCET an arbitrarily
large WCRT reduction. Instead, we decided to remove all
application-level computations and reduce our benchmarks to
only the necessary code to set up the desired interaction pattern:
Only (#2) and (#3) contain a tight computation loop; all other
benchmarks include no actual computation.

Removal of application code has two consequences: (1)
the lack of complex application microstructure reduces the
analysis time. Nevertheless, since we only removed the contents
of ABBs, the application-OS interaction pattern remains
untouched. (2) Our WCRT savings look worse than they
actually will be in reality: For instance, if SysWCET detects
an unfeasible preemption in a conditional branch, the WCRT
now only reflects the reduced kernel overhead, not the WCETs
of the (assumingly) preempting higher-priority computation.

B. Interrupt Detection Latency

First, we analyze the system’s latency for accepting hardware
events that is introduced by code paths with disabled interrupts.
The dOSEK RTOS disables interrupts during the whole kernel

1 void th_HI_control() {
2 activate(thread_LO_computation);
3 wait_for(sig_done || sig_abort);
4 }
5 void th_LO_computation() {
6 do_computation(); // 55613 instrs.
7 wakeup(sig_done);
8 }
9 void isr_abort() { wakeup(sig_abort); }

Listing 3: Abortible Computation

TABLE I: Interrupt Detection Latency and WCRT Estimates.

[instructions] Detection
Latency

Worst-Case Response Time

SysWCET Accumulated Observed

Activate w/o Disp. 224 318 318 123
Activate w/ Disp. 224 596 596 395
Terminate w/ Disp. 224 593 601 398
Wait & Wakeup. 233 607 610 436
Interrupt w/ Dispatch. 396 464 466 339

#1: TMR 206 3319 3319 2893
#2: Alarm 485 765 716 766 733 764 785
#3: Aborted Comp. 799 56 340 60 425 55 738

#4: Signal Gathering 771 5626 6286 1168
#5: Flight Control 771 9279 10 057 2261
#6: Remote Control 771 9768 10 541 790

execution and during the processing of (generated or user-
defined) ISRs. Since dOSEK generates a customized kernel,
we have to calculate the latency for every benchmark according
to Section IV-D.

In Table I, we show the maximal latency interrupt blocks
delay an ISR. Since all (#4-#6) benchmarks are included in
one system image, their detection latency is equal; this also
applies to the first three micro benchmarks.

The large latency for (#3) can be explained by the execution
pattern described in Section IV-D: At most, it takes Td→s =
527 instructions from disabling interrupts to a context switch,
and Ts→e = 272 instructions afterwards. Combined, the latency
is larger than the longest continuous code path without a context
switch (Td→e = 625).

C. Worst-Case Response Time

In columns 2–4 of Table I, we compare the manually
accumulated WCRTs to the results of SysWCET for each
benchmark. Furthermore, we execute the systems in a simulator
and give the longest processing time we could observe as an
under-approximation.

For the accumulated WCRT analysis, we used the following
information about the benchmarks: thread priority, minimal
IATs, and the activates relation between threads. We use
platin [27] to calculate function WCETs and combine them
manually into a WCRT according to the given information [4].

Executing all benchmarks and counting the instructions in
the PATMOS simulator pasim measured the longest observed
processing time. Since the construction of a worst-case event
sequence for system-level benchmarks is hard, the observed
processing time is only an under-approximation.

For the micro benchmarks, we see nearly no difference
for the accumulated and the SysWCET approach, since these
scenarios include no complex thread–RTOS interactions that
are exploitable by SysWCET. Nevertheless, the full automation
and the whole-system view of our approach reduces the risk
of missing out code and under-approximating the WCRT.

The TMR (#1) benchmark also reveals the exact same WCRT
in both analysis methods. In both cases, the calculated WCRT
is 14.73 percent larger than the observed time.

For the alarm benchmark (#2), both analyses assume 8 timer
interruptions. Our 1017 instructions tighter WCRT arises from

TABLE II: IPET Complexity and Run Time

STG IPET Problem

ABBs States Vars Constr. Run Time

Activate w/o Disp. 3 3 146 264 96ms
Activate w/ Disp. 6 6 271 487 105ms
Terminate w/ Disp. 6 6 266 478 131ms
Wait & Wakeup. 6 6 232 416 124ms
Interrupt w/ Sched. 3 12 155 290 99ms

#1: TMR 9 9 248 458 94ms
#2: Alarm 5 13 319 594 232ms
#3: Aborted Comp. 9 35 601 1088 295ms

#4: Signal Gathering 33 9506 16 269 30 432 14.72 s
#5: Flight Control 55 7690 16 528 30 666 161.56 s
#6: Remote Control 63 4608 12 987 26 849 92.57 s

the alarm handling. The SysWCET toolchain automatically
takes the alarm and timer periodicities from the RTOS con-
figuration into account and thereby visits the alarm-expire
path within the kernel only on every third timer interrupt.
Furthermore, if we subtract the computation (99.26%), which
is needed to set up the benchmark structure, the SysWCET
bound is 15.15 percent tighter.

In the aborted-computation benchmark (#3), our approach
reveals the correct control flow: After the computation finishes
and before completion is signaled (between line 6 and 7
in Listing 3), the interrupt aborts the computation thread.
Therefore, not only the wakeup() has to be taken into account,
but also the interrupt-activation overhead. Again, without the
computation WCET (line 6), we get a 84.89 percent tighter
WCRT for application-structure code.

The tighter WCRT bounds for the I4Copter benchmarks (#4-
#6) arise from the interaction of application and the operating
system. Depending on the application’s control-flow, different
syscalls are issued that influence the scheduling and make
ABBs, which include syscalls themselves, reachable or unreach-
able. Compared to the accumulated WCRT, we find a better
bound in all three benchmarks (−10.5%,−7.74%,−7.33%).
Since the actual worst-case event sequence is hard to trigger,
the discrepancy between calculated and observed response time
is larger for this benchmark class.

D. Analysis Complexity

In Table II, we give an overview on the complexity of our
benchmark scenarios and the SysWCET analysis. The number
of ABBs that are referenced from the STG denote their static
structural size, while the number of STG states accounts for
the dynamic structural size that arises from the interaction of
application, RTOS, and environment. In all cases, there were
at most 25 percent more STG transitions than states.

Both, static and dynamic size affects the number of variables
and constraints required to express the problem as an IPET.
The large number of states for the (#4-#6) benchmarks arises
from the indeterminism introduced by interrupt sources, which
can trigger in each computation block.

For the run-time measurements, we ran the SysWCET
analysis on a 16-core Intel E5-2690 machine with a processor
speed of 2.90GHz. As ILP solver, we utilized the industrial-

strength gurobi solver and measured its run time. After we
had initially very diverse run times ranging from a few minutes
to several hours, we changed the MIPFocus configuration, as
suggested by gurobi manual to 1. This switch influences the
weight gurobi puts on its different solving heuristics.

VII. RELATED WORK

Traditional analysis approaches to compute worst-case
response times [4, 5, 6] usually treat the impact of the operating
system as constant overhead, which is pessimistically added
in a deferred step to each thread’s WCET.

In contrast to approaches such as the real-time calculus [38]
or the SymTA/S approach [16], SysWCET allows handling
events in a context-sensitive way. That is, as shown in the
evaluation of context-sensitive alarms (see Section VI), the
flow-sensitive knowledge allows for a reduction in pessimism
of the worst-case response time.

The usage of DAG-based task models [34] and their
connection to OpenMP [40] have recently gained attention for
real-time scheduling. DAG-based task models explicitly express
dependencies between tasks in analogy to the SysWCET ap-
proach. However, in contrast to our approach, these approaches
do not consider the influence of external interrupts within the
same problem formulation.

To our knowledge, the SysWCET approach first solves the
problem of whole-system response-time analysis by providing
a common ILP formulation of multiple threads, ISRs, and their
scheduling across the RTOS. However, there has been much
effort on analyzing the WCET of operating systems [24] in
order to provide end-to-end response times:

Blackham et al. proposed a context-aware WCET analysis of
the seL4 microkernel [10]. From the WCET between interrupt-
enabled preemption points, they could give an upper bound
for the interrupt-detection latency of seL4.

Lv et al. presented a WCET analysis of the µC/OS-II real-
time kernel [23]. In their work, they analyzed the WCET of
each syscall, which is then added to the respective thread’s
execution time. A similar approach to determine worst-case
response time of tasks by analyzing the RTEMS operating
systems was presented by Colin and Puaut [12].

However, decoupling the analyses of application and RTOS
code can lead to significant over-estimations. In contrast to
all this existing work, SysWCET respects application logic, as
well as the scheduling semantics (i.e., priority of threads, lock
protocols) in order to compute WCRTs of whole applications.

Schneider also stated that RTOSs cannot be analyzed without
considering the application and vice versa [32]. He suggested a
semi-automatic approach to combine schedulability and WCET
analysis of applications running on top of OSEK [31]. His
framework consists of a multi-stage process, where interfering
threads are iteratively added to the response time of the threads.

In contrast, our approach avoids the separate consideration
of preemption costs in order to provide a higher degree of
integration by a single, context-sensitive representation of all
program flows in the whole real-time system.

In the model-checking community, Waszniowski and Han-
zalek [41] described OSEK systems and the application logic

with timed automata and proved properties like deadlock
freedom and upper bounds for the WCRT. Although their
WCRT analysis considers the application’s microstructure
and the RTOS semantics, again, their approach is two-tiered
and needs WCET information about each basic block in the
system. Furthermore, the inner structure of the RTOS is lost in
abstraction. However, their approach could be combined with
SysWCET to derive further system-wide flow facts regarding
interrupt occurrences.

VIII. DISCUSSION & FUTURE WORK

SysWCET provides an integrated view on RTOS, scheduling,
and application code, and, thereby, exposes unique possibilities
and benefits for end-to-end analyses in real-time system (RTS).
However, on the other side, there are also several limitations.
Both shall be discussed in the following.

A. Integration of More Complex Hardware Models

As pointed out in Section II, our current implementation
assumes a (sufficiently) time-predictable architecture, such as
an ARM Cortex M0+. We do not yet consider inter-instruction
effects (e.g., pipelining) or caching behavior across threads, as
the focus of this work is on RTOS-induced pessimism in WCRT
analysis. However, in general the SysWCET approach provides
a coherent view on possible execution paths of a system. We
assume that this path-sensitive knowledge can be combined
with analyses of more complex hardware platforms and improve
their results regarding both inter-thread dependencies and cache-
related preemption delays [11, 37].

1) Inter-thread Dependencies: Flow-sensitive analyses fol-
low the rationale that the longer the execution history the
more information is available to determine and refine analysis
results [22]. Since the STG captures all possible execution paths
throughout the system in a context-sensitive way, including
preemptions and thread dependencies, it is ideal as fundamental
representation for RTOS- and scheduling-aware flow analyses.
For example, since all instructions are covered by the STG,
pipeline analyses across threads become more precise.

2) Cache-related Preemption Delays: The STG maintains
all potential transitions from threads to preempting interrupts.
This information is essential to give bounds on the delay related
to the preemption (i.e., cache-related preemption delay, CRPD).
Additionally, the information about memory blocks accessed
inside the preempting thread allows refining the CRPD [11].
Knowledge about preempted and preempting tasks as well as
their used instruction and data memory blocks is inherent to
the STG. We believe that the usage of the STG is promising
for further research on whole-system timing analyses.

B. Possible Limitations

The SysWCET toolchain provides developers with an auto-
mated means to analyze the WCRT between any two points
in the control flows of an OSEK-based RTS – even across
threads, ISRs, and resources using the PCP. Consequently,
many infeasible system execution paths (c.f. Section IV-A)
are detected to tighten the WCRT. Nevertheless, the resulting

STG may still contain paths that become infeasible due to
thread-local control-flow decisions. However, existing data-
flow sensitive path-refinement techniques [8, 9, 19] are directly
applicable to the STG to enhance the WCRT analysis. This is
a topic of further research.

Our approach reaches its limits if the analyzed path transi-
tions through a sleep state (i.e., wait for an interrupt signal).
Since such sleep states are equivalent to an idle loop with an
unknown number of executions within the kernel, the IPET
becomes unbounded. To restrict such unboundedness, analysis
results of precedence constraints [4] (e.g., expiration of timer
alarm) can be attributed to our IPET problem formulation as
additional constraints. To overcome this, we would need to
model the maximal IAT of each interrupt source. However,
we cannot derive a minimal interrupt frequency from TWCRT

as easily as the maximal interrupt frequency: Only the time
before the IRQ accounts for the maximal IAT, but IPETs
describe execution frequencies and not execution paths. A
pessimistic over-approximation is possible, if we restrict the
idle time with the maximal IAT. However, we share this
limitation with the compositional approach and, moreover,
believe that such idle scenarios typically do not occur in safety-
critical paths. SysWCET’s demands on RTOS semantics and
application structure (see Section II) may restrict a broader
applicability of our approach: In essence, the automatic STG
extraction currently works only for fixed-priority systems where
all application–OS interaction (i.e., syscalls) is explicit, that is,
does not occur via (nontrivial) function pointers. For real-time
systems with an earliest deadline first scheduler, or any other
scheduler that performs dynamic priority assignments, we are
probably not able to construct a (reasonably sized) STG, as
the explicit enumeration of all system states and transitions
(cf. Section III-B) will become intractable.

However, fixed-priority scheduling is prescribed by all
relevant industry standards, including OSEK/AUTOSAR [26,
7], ARINC 653 [2], µITRON [36], and POSIX.4, so in many
areas this restriction is not a fundamental limit. The same
holds for the static application structure, as syscalls are explicit
in real-world applications and the use of function pointers is
discouraged anyway in MISRA-C [25].

C. Scalability

With eleven threads, three alarms, and one ISR the I4Copter
benchmark is relatively small, but systems of that size are not
uncommon in some domains, such as automotive. Nevertheless,
especially for systems with many interrupt sources, the size of
the resulting STG may become intractable, as in theory each
interrupt request forks the STG in every computation block.
Our explicit enumeration may lead to an exponential number
of STG states. We see three directions to improve on this
issue: (1) more expressive STG semantics, (2) more system
information, and (3) merging of similar STG states.

Currently, we use an explicitly enumerated STG where each
edge expresses that one transition is possible. If we enrich
the expressive power of such transitions to include testing and

setting of state variables, we should be able to reduce the
number of states significantly without sacrificing precision.

Furthermore, in real-time systems, interrupts are rarely totally
unpredictable: In practice, we already constrain their occurrence
by minimal inter-arrival times, control-flow dependent precondi-
tions (e.g., the send-buffer-empty interrupt cannot occur before
send()) and other flow facts. If we provide more of these
facts to the analysis, more interrupt paths can be eradicated
already during the STG construction.

Another approach to tackle the size problem would be to
deal in analysis precision for run time: Many states in the
STG execute the same ABB. If we merge such states into a
single one, we also get a whole-system view on the possible
control flows, which is known as the global control-flow graph
(GCFG) [14]. However, the GCFG restricts the possible flows
less and, therefore, allows more infeasible paths. Nevertheless,
we could construct a hybrid between STG and GCFG by using
a more restricted merging predicate (e.g., merging all states
that have the same ready list and execute the same ABB) to
achieve a more suitable trade-off.

D. Influence of ABB Size

In Section III-A, we chose our computation ABBs to be
regions of maximal size. This choice reduces the number of
STG states and, therefore, fosters the analysis’ scalability. With
our basic processor model, this choice does not influence the
WCRT bound: in the worst case, a interrupt always occurs
after the last instruction of a computation region, regardless of
the number of ABBs that are used to partition it.

However, with more complex hardware models the ABB-
size choice might worsen the WCRT bound: As described
in Section IV-C3, we assume the worst preemption delay at
outgoing interrupt transitions, even if that situation occurs in
the middle of the ABB. In such cases, we account for the
complete ABB execution and its worst-case preemption delay.
One potential solution to this issue would be to split ABB
regions with high preemption delays.

E. Benefits of the Approach

Besides the WCRT analysis, the integrated IPET formulation
with cross-kernel flow facts lifts many other analyses on the
whole-system level. Locks become easy to analyze: They are
folded away in the process of STG construction according to the
semantics of the underlying lock protocol (cf. Section IV-A).

Another option is to instruct the solver to calculate the
minimum instead of the maximum objective, thereby we can get
lower bounds for best-case response times. For benchmark (#3),
the abort interrupt would trigger right before the control thread
goes to sleep and after the computation thread was activated.
In this case, the system executes at least 447 instructions.

On the mere control-flow level, we can express infeasible
paths and other flow facts that span over threads, ISRs, and
the kernel code. For an ABB that executes a syscall, the STG
references the exact kernel entry point. Hence, we do not
have to consider the longest path through the kernel, but can
handle every syscall site individually. Currently, we use only

information about the entry point and the structure of the STG.
In the future, we plan to derive further flow facts for the kernel
code from the detailed state information.

IX. CONCLUSION

With SysWCET, we presented the first integrated, non-
compositional WCRT analysis for fixed-priority, statically
configured real-time applications including the RTOS. We
use an operating-system state-transition graph to capture all
interaction between threads, ISRs, and the RTOS. This control-
flow sensitive information is encoded, together with information
about periodicity and minimal inter-arrival time of interrupts,
as an IPET problem and connected to IPET fragments of
application and kernel code. Our implementation based on the
dOSEK RTOS generator and the platin WCET analyzer
covers the complete feature set of OSEK ECC1, including
PCP-based locks, event-based thread synchronization, alarms,
and interrupts. It provides automated means to obtain tight
WCRTs between any two points in the real-time system. In
our evaluation with a real-world quadrocopter flight-control
application, we achieve up to 10.5 percent better WCRT bounds
than with the current state of the art.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and our shepherd
for their feedback and tremendous help to improve content and
style of this paper. This work has been supported by the German
Research Foundation (DFG) under grants no. LO 1719/1-3,
no. SCHR 603/9-2, no. SCHR 603/13-1, and the SFB/Transre-
gio 89 “Invasive Computing” (Project C1).

The source code of SysWCET is available at:
https://gitlab.cs.fau.de/syswcet

REFERENCES

[1] H. Almatary, N. Audsley, and A. Burns. “Reducing the Implementation
Overheads of IPCP and DFP”. In: RTSS ’15. 2015.

[2] AEEC. Avionics Application Software Standard Interface (ARINC
Specification 653-1). ARINC Inc, 2003.

[3] ARM Limited. Cortex-M0+ Technical Reference Manual. 2012.
[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.

“Applying new scheduling theory to static priority pre-emptive schedul-
ing”. In: Software Engineering Journal 8.5 (1993).

[5] N. Audsley, A. Burns, and A. J. Wellings. “Deadline monotonic
scheduling theory and application”. In: Control Engineering Practice
1.1 (1993).

[6] N. Audsley, K. Tindell, and A. Burns. “The end of the line for static
cyclic scheduling”. In: In Proceedings of the 5th Euromicro Workshop
on Real-Time Systems. 1993.

[7] AUTOSAR. Specification of Operating System (Version 5.1.0). Tech. rep.
Automotive Open System Architecture GbR, 2013.

[8] B. Blackham and G. Heiser. “Sequoll: A framework for model checking
binaries”. In: RTAS ’13. 2013.

[9] B. Blackham, M. Liffiton, and G. Heiser. “Trickle: Automated Infeasible
Path Detection Using All Minimal Unsatisfiable Subsets”. In: RTAS

’14. 2014.
[10] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G.

Heiser. “Timing analysis of a protected operating system kernel”. In:
RTSS ’11. 2011.

[11] C. Burguière, J. Reineke, and S. Altmeyer. “Cache-related preemption
delay computation for set-associative caches–pitfalls and solutions”. In:
OASIcs-OpenAccess Series in Informatics. Vol. 10. 2009.

[12] A. Colin and I. Puaut. “Worst-case execution time analysis of the
RTEMS real-time operating system”. In: ECRTS ’01. 2001.

[13] C. Dietrich, M. Hoffmann, and Lohmann D. “Global Optimization
of Fixed-Priority Real-Time Systems by RTOS-Aware Control-Flow
Analysis”. In: TECS 16 (2 2017).

[14] C. Dietrich, M. Hoffmann, and D. Lohmann. “Cross-Kernel Control-
Flow-Graph Analysis for Event-Driven Real-Time Systems”. In: LCTES

’15. 2015.
[15] Florian Franzmann, Tobias Klaus, Peter Ulbrich, Patrick Deinhardt,

Benjamin Steffes, Fabian Scheler, and Wolfgang Schröder-Preikschat.
“From Intent to Effect: Tool-Based Generation of Time-Triggered Real-
Time Systems on Multi-Core Processors”. In: ISORC ’16. 2016.

[16] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
“System level performance analysis – the SymTA/S approach”. In: IEE
Proceedings–Computers and Digital Techniques 152.2 (2005).

[17] M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann. “dOSEK:
The Design and Implementation of a Dependability-Oriented Static
Embedded Kernel”. In: RTAS ’15. 2015.

[18] B. Huber, D. Prokesch, and P. Puschner. “Combined WCET Analysis
of Bitcode and Machine Code Using Control-flow Relation Graphs”.
In: LCTES ’13. 2013.

[19] J. Knoop, L. Kovács, and J. Zwirchmayr. “WCET Squeezing: On-
demand Feasibility Refinement for Proven Precise WCET-bounds”. In:
RTNS ’13. 2013.

[20] C. Lattner and V. Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation”. In: CGO’04. 2004.

[21] Y.-T. S. Li and S. Malik. “Performance analysis of embedded software
using implicit path enumeration”. In: ACM SIGPLAN Notices. Vol. 30.
11. ACM. 1995.

[22] Y.-T. S. Li, S. Malik, and A. Wolfe. “Cache Modeling for Real-time
Software: Beyond Direct Mapped Instruction Caches”. In: RTSS ’96.
1996.

[23] M. Lv, N. Guan, Y. Zhang, R. Chen, Q. Deng, G. Yu, and W. Yi.
“WCET Analysis of the mC/OS-II Real-Time Kernel”. In: CSE ’09.
2009.

[24] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. “A survey of
WCET analysis of real-time operating systems”. In: ICESS ’09. 2009.

[25] Guidelines for the Use of the C Language in Critical Systems (MISRA-
C:2004). 2004.

[26] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29.
OSEK/VDX Group, 2005.

[27] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard.
“The T-CREST Approach of Compiler and WCET-Analysis Integration”.
In: SEUS ’13. 2013.

[28] P. Puschner and A. Schedl. “Computing Maximum Task Execution
Times: A Graph-Based Approach”. In: Real-Time Systems 13 (1997).

[29] C. Rochange. WCET Tool Challenge 2014. Talk held at WCET ’14.
2014.

[30] Fabian Scheler and Wolfgang Schröder-Preikschat. “The Real-Time
Systems Compiler: migrating event-triggered systems to time-triggered
systems”. In: SPE 41.12 (2011).

[31] J. Schneider. Combined schedulability and WCET analysis for real-time
operating systems. Shaker, 2003.

[32] J. Schneider. “Why you can’t analyze RTOSs without considering
applications and vice versa”. In: WCET ’02. 2002.

[33] M. Schoeberl et al. “T-CREST: Time-predictable multi-core architecture
for embedded systems”. In: JSA 61.9 (2015).

[34] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones. “Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions”. In: DATE ’16. 2016.

[35] SysWCET Project Repository. https://gitlab.cs.fau.de/syswcet. 2016.
[36] H. Takada and K. Sakamura. “µITRON for Small-Scale Embedded

Systems”. In: IEEE Micro 15.6 (1995).
[37] C. Tessler and N. Fisher. “BUNDLE: Real-Time Multi-Threaded

Scheduling to Reduce Cache Contention”. In: RTSS ’16. 2011.
[38] L. Thiele, S. Chakraborty, and M. Naedele. “Real-time calculus for

scheduling hard real-time systems”. In: ISCAS ’00. Vol. 4. IEEE. 2000.
[39] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-

Preikschat. “I4Copter: An Adaptable and Modular Quadrotor Platform”.
In: SAC ’11. 2011.

[40] R. Vargas, E. Quinones, and A. Marongiu. “OpenMP and timing
predictability: A possible union?” In: DATE ’15. 2015.

[41] L. Waszniowski and Z. Hanzalek. “Formal Verification of Multitasking
Applications Based on Timed Automata Model”. In: Real-Time Systems
38.1 (2008).

