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Abstract—When provided with more powerful or extra hard-
ware, state-of-the-art Byzantine fault-tolerant (BFT) agreement
protocols are unable to effectively exploit the additional comput-
ing resources: On the one hand, in settings with heterogeneous
servers existing protocols cannot fully utilize servers with higher
performance capabilities. On the other hand, using more servers
than the minimum number of replicas required for Byzantine
fault tolerance in general does not lead to improved throughput
and latency, but instead actually degrades performance.

In this paper, we address these problems with OMADA, a
BFT protocol that is able to benefit from additional hardware
resources. To achieve this property while still providing strong
consistency, OMADA first parallelizes agreement into multiple
groups and then executes the requests handled by different
groups in a deterministic order. By varying the number of
requests to be ordered between groups as well as the number
of groups that a replica participates in between servers, OMADA
offers the possibility to individually adjust the resource usage per
server. Moreover, the fact that not all replicas need to take part
in every group enables the protocol to exploit additional servers.
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I. INTRODUCTION

Applying the concept of Byzantine fault-tolerant (BFT)
state-machine replication [1], it is possible to build reliable
systems that continue to correctly provide their services even
if some of their replicas fail in arbitrary ways. This includes
failure scenarios caused by hardware problems as well as
(potentially malicious) misbehavior of software components.
In order to guarantee consistency in such systems, replicas
execute client requests only after the requests have been com-
mitted by a BFT agreement protocol, which is responsible for
establishing a global total order on all requests. In particular,
the agreement protocol ensures that the determined order of
requests remains stable in the presence of replica failures.

In general, BFT agreement protocols require a minimum of
3f +1 replicas in order to tolerate up to f faulty replicas [2].
Although the number of participants in a BFT agreement
protocol can be larger than 3f+1, many BFT systems opt for
exactly this many replicas [1], [3], [4], [5], [6], [7], [8]. This
is mainly due the fact that the internal architectures of most
state-of-the-art BFT agreement protocols do not allow them
to exploit additional replicas. In contrast, with all replicas in
the system participating in the ordering of all client requests,
additional replicas usually come at the cost of an increased
computational and network overhead, and consequently de-
grade performance without offering any notable advantages.

To prevent the agreement protocol from becoming the
bottleneck of the entire BFT system, research efforts in recent

years aimed at increasing the throughput of BFT agreement
while keeping the number of replicas at a minimum [7], [8].
However, these approaches are based on the assumption that
all replicas run on homogeneous servers, that is, servers with
equal or at least similar performance capabilities. Unfortu-
nately, it is not always possible to operate a BFT system
under such conditions. Especially in cloud deployments, the
performance capabilities of different virtual machines can vary
significantly even if they are of the same instance type [9]. This
is usually a consequence of virtual machines in the cloud data
center being run on heterogeneous physical servers, making it
very difficult for cloud providers to offer identical computing
resources across virtual machines. As a result, it is basically
impossible for a cloud user to ensure the homogeneity of
virtualized servers when deploying a BFT system in the cloud.

To address the problems discussed above, in this paper
we present OMADA, a protocol that enables BFT systems to
exploit computing resources existing protocols are not able to
utilize: additional agreement replicas as well as spare capac-
ities on fast servers. OMADA achieves this by parallelizing
agreement into multiple heterogeneous groups and varying
the agreement workload between them. This approach allows
OMADA to individually adjust the ordering responsibilities
of replicas to the particular performance capabilities of their
servers. For example, a replica on a more powerful server
can participate in more than one group and/or groups that are
responsible for ordering a large fraction of requests, whereas
a replica on a less powerful server might only be part of a
single group handling a small portion of the workload.

Although in this paper we primarily focus on heterogeneity
introduced by the servers hosting the replicas of a BFT system,
we expect our approach to also be beneficial for scenarios
in which variations between replicas are the result of other
sources of heterogeneity. For example, using heterogeneous
replica implementations in order to minimize the probability
of common mode failures [3], [10], [11] in general also causes
replicas to advance at different speeds, consequently having a
similar effect as servers with different capabilities.

In summary, this paper makes three contributions: (1) It
presents OMADA, a BFT protocol that is able to benefit from
additional agreement replicas. (2) It details how OMADA can
exploit heterogeneous servers with different performance ca-
pabilities. (3) It evaluates OMADA in a heterogeneous setting.
In the remainder of this paper, Section II identifies limitations
of existing protocols, Section III presents our approach to ad-
dress these issues with OMADA, Section IV evaluates OMADA,
Section V discusses related work, and Section VI concludes.
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II. BACKGROUND AND PROBLEM STATEMENT

Below, we give an overview of BFT systems and analyze
the scalability and resource usage of state-of-the-art protocols.

A. Background

In general, BFT systems based on state-machine replica-
tion [1], [3], [4], [5], [6], [7], [8] require n ≥ 3f+1 replicas to
tolerate up to f faulty replicas. As shown in Figure 1, replicas
ensure consistency by first running a protocol to agree on a
client request before executing the request. For this purpose,
one of the replicas acts as leader while all others participate
as followers. If the leader becomes faulty, replicas initiate a
view change to reassign the leader role to a different replica.

Having received a request from a client, the leader assigns
a unique sequence number to the request and then starts
the agreement process consisting of two rounds of all-to-all
communication between replicas: In the first round, which
consists of two phases (i.e., pre-prepare and prepare), replicas
ensure that they consider the same request proposal by the
leader. After that, the second round (i.e., the commit phase)
is responsible for finalizing the assignment of the sequence
number to the particular request. In both cases, a replica com-
pletes a round once it has collected a quorum of size dn+f+1
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of matching messages. The quorum size guarantees that each
possible pair of quorums intersects in at least f + 1 arbitrary
replicas, and therefore in at least one correct replica.

Requests for which the agreement process has completed on
a replica are executed in the order of their sequence numbers.
A client accepts the result to its request after having obtained
f+1 matching replies from different replicas as this guarantees
that at least one of the replies was sent by a correct replica.

In order to prevent a faulty replica from impersonating a
correct replica, correct replicas authenticate each message,
usually using a MAC authenticator, that is, a vector of message
authentication codes [1]. Each MAC in the vector is calculated
using a secret only known to the sender and a particular
receiver and cannot be verified by a third party, thus requiring
an authenticator to contain an individual MAC for each
intended recipient of the message. As a result, both the size of
a MAC authenticator and the computational cost of creating
it are proportional to the number of message recipients.

B. Problem Statement

Building on the basic approach presented in Section II-A,
in recent years different works have proposed architectural
changes and protocol refinements, for example, to improve re-
silience [5] or reduce replication costs [12], [13], [14]. Below,
we focus on two problems that so far remain unsolved: The
ability of a BFT system to scale with the number of agreement
replicas as well as the efficient use of heterogeneous servers.
Lack of Scalability. For applications for which the com-
putational cost of executing a client request is comparably
small (e.g., coordination services [15]), the agreement stage
of a BFT system usually becomes the decisive factor limiting
performance. Unfortunately, introducing additional agreement
replicas to solve this issue is not an option in existing BFT
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Figure 1. Basic BFT system architecture relying on state-machine replication.

systems. This has mainly two reasons: First, due to the fact
that as discussed in Section II-A the quorum size depends on
the total number of replicas, adding replicas leads to larger
quorums and consequently requires more messages. Second,
when the number of intended recipients increases, creating
MAC authenticators for the messages exchanged between
replicas becomes more costly and the messages become larger.
Inefficient Use of Heterogeneous Servers. With all replicas
participating in both the agreement and the execution of all
client requests, the replicas in a BFT system usually consume
a similar amount of processing resources. Some protocols
even deliberately minimize potential imbalances caused by the
additional responsibilities of a leader by rotating the leader
role among replicas [4], [7]. While a balanced resource usage
is beneficial if replicas run on servers that have the same
performance capabilities, it prevents existing BFT systems
from fully utilizing the available resources if replicas are
executed on heterogeneous servers. Due to progress depending
on a quorum of replicas, in such environments the performance
of the agreement stage is limited by the dn+f+1
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server, leaving resources on more powerful machines unused.
Summary. In order to be able to benefit from additional
agreement replicas, a scalable BFT protocol must ensure
consistency without involving all replicas in all message
exchanges. Furthermore, to exploit heterogeneous servers such
a protocol must provide means to distribute load depending on
the specific performance capabilities of each server.

III. OMADA

In this section, we present details of OMADA, focusing on
how the BFT protocol is able to exploit additional replicas as
well as spare capacities on heterogeneous servers.

A. Architecture
As illustrated in Figure 2, to use additional servers OMADA

parallelizes agreement into multiple groups, each consisting of
3f + 1 agreement replicas. For the same reason, OMADA in
addition also separates agreement from execution [12] relying
on 2f + 1 execution replicas; that is, requests not necessarily
need to be processed by the same replicas by which they have
been ordered. As a result, replicas in OMADA may assume
three different roles that are associated with different respon-
sibilities: coordinating an agreement group (leader), assisting
in a group (follower), and executing requests (executor).



To support heterogeneous servers, a replica in OMADA can
participate in more than one agreement group and furthermore
assume multiple roles. This approach allows OMADA to tailor
the responsibilities of each replica to the individual perfor-
mance capabilities of its server. While a replica on a powerful
server, for example, may be part of several agreement groups
and also act as executor, a replica on a slow server might only
contribute to request ordering in a single agreement group.

Despite relying on multiple agreement groups that operate
independently of each other, OMADA is nevertheless able to
establish a total order on all client requests. To achieve this,
OMADA splits the sequence-number space into partitions of
equal size and statically maps one partition to each agreement
group. In particular an agreement group g is responsible for
assigning the sequence numbers Sg = {k · |G|+ g|k ∈ N} by
running separate instances of the PBFT [1] protocol; G denotes
the set of all agreement groups. This approach of parallelizing
agreement into multiple groups has the key advantage that
the messages required for ordering a request only need to be
exchanged between replicas of the respective agreement group,
not between all agreement replicas in the entire system.

Knowledge about the number, composition, and sequence-
number partitions of agreement groups, as well as the infor-
mation which replicas act as executors, is static and available
throughout the system. This, for example, allows a client to
randomly select a group at start up which from then on will
be responsible for handling all of the client’s requests.

B. Scalable Ordering Based on Multiple Agreement Groups

In the following, we first present the basic OMADA protocol
and then discuss specifics of OMADA including the coor-
dination of agreement groups, executor checkpointing, fault
handling, as well as optimizations. We use 〈m〉αi,R to denote
a message m that has multiple recipients and is therefore
authenticated with a MAC vector containing MACs between
the sender i and each recipient j in the setR. Besides, 〈m〉µi,j

represents a message that is exchanged between sender i and
a single recipient j and authenticated with a single MAC.
Basic Protocol. To use the replicated application, a client c
sends a 〈REQUEST, c, o, t〉αc,A message to the leader of its
agreement group. As the request will only be verified by
members of this group, the authenticator of this message is
limited to MACs for the group’s agreement replicas A. Apart
from the command to execute o, the request also contains a
client-local timestamp t that is incremented by the client on
each operation. As agreement replicas store the timestamp tc
of the latest committed request of each client, the timestamp t
allows them to detect and consequently ignore old requests.

Having received the request, the leader verifies that the
message is authentic and then starts a new PBFT protocol
instance to assign a unique sequence number s to the request;
s is chosen as the lowest of the agreement group’s unused
sequence numbers (see Section III-A). Once the request is
committed (i.e., at least 2f + 1 agreement replicas have both
verified the authenticity of the client request and confirmed the
assignment of the sequence number), each agreement replica a
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Figure 2. Overview of the OMADA architecture relying on multiple, possibly
overlapping, agreement groups. To invoke an operation at the application, a
client (1) sends a request to one of the agreement groups, which then (2) orders
the request using PBFT and (3) forwards it to a set of executors. Having
processed the request, (4) the executors return their results to the client.

sends an 〈EXECUTE, v, s, q, a〉αa,E message to all executors E .
In addition to the client request q, this message also comprises
the information in which view v the request has committed on
the local replica. This knowledge is later used to determine the
replica the client should contact for a subsequent request.

An executor only accepts an EXECUTE if the message is
authentic and its sender i is indeed an agreement replica of
the group responsible for assigning sequence number s. Before
executing the corresponding request, an executor first waits
until having obtained f+1 matching EXECUTEs from different
agreement replicas, as this proves that at least one correct
replica has committed the request. As the same request may be
committed in different views on different replicas, an executor
ignores the view information when comparing EXECUTEs.

Although EXECUTEs potentially arrive in a nondeterministic
pattern, executors process requests in the order of their se-
quence numbers, leaving no gaps between sequence numbers.
Similar to agreement replicas, executors manage a times-
tamp tc for each client, which is the timestamp of the latest re-
quest of a client c the executor has processed. To prevent mul-
tiple invocations of the same request, the execution of a request
from a client c with a timestamp t ≤ tc consists of a no-op.

Having processed a request, an executor e sends the result r
in a 〈REPLY, c, t, e, r, v〉µe,c message to the client c ; v repre-
sents the current view of the group that ordered the request and
is used to update the client’s leader information. To suppress
the effects of faulty replicas, an executor selects v to be the
f+1 highest view it has learned from replicas of the group. A
client accepts a result after having received f+1 REPLYs with
matching r from different executors as this guarantees that at
least one of the messages originates from a correct executor.
Coordination of Agreement Groups. Agreement groups in
OMADA operate independently of each other and therefore
possibly advance at different speeds. As a result, one group
may for example already have committed a request for se-
quence number s while another group has not yet reached
sequence number s − 1. To ensure liveness in such cases,
OMADA allows groups to detect that they have fallen behind
by receiving notifications from executors when requests with
higher sequence numbers become ready for processing.



Having detected a gap in the sequence of executable re-
quests, an executor e broadcasts a 〈FLUSH, s, sexec, e〉αe,Z
message to all agreement replicas Z in the system notifying
them about s, the highest sequence number for which the
executor has collected f +1 matching EXECUTEs, and sexec,
the sequence number of the last request it has executed. The
broadcast is repeated periodically until the gap is closed.
By combining the information contained in FLUSHes from
different executors, agreement replicas are able to reliably
determine the overall system progress. For this purpose, each
replica calculates sprogress to be the f + 1 highest sequence
number s the replica has learned from different executors.

Based on a comparison of sprogress with the latest sequence
number sg for which the agreement process has been started,
replicas of an agreement group g can determine whether their
group has fallen behind in relation to other groups. If this is
the case, the leader of a group starts new PBFT instances for
all of the group’s sequence numbers between sg and sprogress,
proposing either a client request (if available) or a no-op. Con-
sequently, the sequence-number gap that temporarily prevents
executors from processing further requests will eventually be
closed, enabling the overall system to make progress again.

To ensure liveness in the presence of a faulty leader, the
followers of a group monitor the leader’s behavior. If the leader
fails to start the required instances within a certain period of
time, the followers initiate a view change to replace the leader.
Apart from that, to tolerate message losses agreement replicas
retransmit EXECUTEs for sequence numbers higher than sexec
when receiving repeated FLUSH messages from an executor.
Executor Checkpoints. With EXECUTEs not necessarily
arriving in the order of their sequence numbers, executors may
need to buffer them. To guarantee a bounded buffer size, an ex-
ecutor uses a sliding window of size W = 2 ∗ cpinterval [16]
and only stores EXECUTEs with numbers between slow
and slow + W . To advance the window, in intervals of
cpinterval each executor e creates and stores a checkpoint cp
of the application state, the latest client timestamps, and the
latest reply it has sent to each client. Furthermore, the executor
broadcasts a 〈CHECKPOINT, s,D(cp), e〉αe,Z∪E message to
all agreement replicas and executors; s is the sequence number
of the latest request the executor has processed prior to the
snapshot and D(cp) denotes a hash of the checkpoint.

When an executor receives f + 1 matching CHECKPOINTs
from different executors for a sequence number s > slow,
the checkpoint becomes stable. At this point, the executor
sets the start of its local window to sequence number s and
discards all EXECUTEs and checkpoints before s− cpinterval.
If an executor has fallen behind, advancing the window can
result in client requests being skipped. To ensure a consistent
application state in such scenarios, an executor first obtains a
full checkpoint with matching sequence number and hash from
another executor before continuing to process further requests.

Besides guaranteeing execution-stage progress, CHECK-
POINTs also enable agreement groups to perform garbage
collection of internal messages. For this purpose, an agreement
replica notifies its local PBFT node about stable checkpoints.

Fault Handling. OMADA is able to tolerate up to f faulty
replicas per agreement group and a maximum of f faulty ex-
ecutors. In heterogeneous settings where some replicas assume
multiple roles, the failure of a replica can affect more than
one component. Relying on PBFT for request ordering has
the key advantage that for many fault scenarios, OMADA does
not need to provide additional mechanisms, as they are already
handled by the agreement protocol. In particular, this applies
to situations in which the leader of an agreement group fails
to live up to its responsibilities and is consequently replaced
as the result of a view change requested by its followers.

If a client issues a request but does not get a result within a
predefined period of time, the client sends the request to both
all replicas of its agreement group as well as all executors. This
way, agreement replicas learn about the problem and if nec-
essary can initiate a view change or retransmit the EXECUTE
for a committed request to handle cases in which previous
messages to executors have been lost due to network problems.
On the other hand, executors resend the corresponding reply
(if available) when receiving a request directly from a client.
Optimizations. OMADA supports common BFT-system opti-
mizations [1] such as payload hashes and batching (i.e., order-
ing multiple requests in the same PBFT instance); if batching
is applied, clients use the individual batch sizes of agreement
groups as relative weights when randomly selecting a group.
In addition, there is room for OMADA-specific optimizations
if a replica assumes more than one role: First, messages to
multiple receivers (e.g., FLUSHes) need to be sent only once
to each server. Second, if the same replica acts both as an
agreement replica as well as an executor, a request becomes
ready for processing as soon as it has been committed locally;
the executor does not have to wait for an external proof in
the form of f + 1 matching EXECUTEs. As a result, it is
sufficient for agreement replicas to only send EXECUTEs to
those executors whose replicas are not part of the same group.

C. Supporting Heterogeneous Servers

To effectively exploit the resources available in heteroge-
neous settings, OMADA statically tailors the responsibilities
of each replica to the individual performance capabilities of
its server before startup. In the following, we describe the
systematic approach to determine the assignment of roles
to replicas we use for this purpose: First, we assess the
performance capabilities of each server. Next, we estimate how
many resources to reserve for the agreement stage compared
with the execution stage. Then, we rely on an integer linear
program to determine the number of agreement groups as well
as the mapping of roles to replicas. Finally, in the last step we
define an individual batch size for each agreement group.
Assessing the Performance Capabilities of Servers. Prior to
being able to assign replica roles, we first need to identify the
differences in performance between the servers involved. To
achieve this, on each server, we execute a small benchmark
that measures the number of MACs the server can calculate per
second. This empirical approach has two key advantages: First,
it assesses the individual performance capability of a server



based on the operation that is the dominant factor with regard
to OMADA’s overall computing-resource usage. Second, the
approach also provides reliable results in situations in which
the actual performance of a server differs from the targeted
performance, as it is often the case in cloud environments [9].

As our assignment algorithm operates with relative perfor-
mance values, we translate the measured performance numbers
into performance points reflecting the differences between
servers, beginning with 10 points for the slowest server.
To illustrate this step, Figure 3 shows an example for a
heterogeneous setting with five servers in which the two fast
servers are able to perform 50 % more MAC calculations per
second than the three slow servers. Consequently, we assign
15 and 10 points to the fast and slow servers, respectively.

Relative Costs for Agreement and Execution. To estimate
the relative amount of resources OMADA needs to reserve
for agreement and execution, we compare the number of
MACs each stage computes per client request during normal-
case operation. Ordering requests in batches of size b, an
agreement replica must perform 1+ 12f+1

b MAC calculations
per request: 1 for verifying the authenticity of the request, 10f

b

for ordering it with PBFT, and 2f+1
b for sending EXECUTEs to

the executors. In contrast, an executor only calculates f+1
b +1

MACs per request: f+1
b for verifying the EXECUTEs and 1 for

authenticating the reply to the client. For f = 1 and a typical
batching factor of b = 10, this means that participating in
all agreement groups requires about twice as many computing
resources as assuming the role of an executor (e.g., 10 versus 5
performance points for Server 1 in the example in Figure 3). A
similar ratio applies in the optimized case where an agreement
group does not need to send EXECUTE messages due to one
of its members being collocated with an executor.

Assignment of Roles to Replicas. Having determined the in-
dividual capabilities of servers as well as the relative costs for
agreement and execution, we can derive the mapping of roles
to replicas. As common methods such as greedy or knapsack
algorithms are either unable to always find optimal solutions
or to limit the number of groups, we formulate the problem
of mapping roles to replicas as an integer linear program [17],
as shown in Figure 3. In a nutshell, this approach allows us to
automatically examine all possible distributions of agreement
groups with 3f + 1 replicas across the servers available in
order to find a configuration that maximizes performance.
By specifying a number of constraints, we ensure that the
selected configuration provides certain properties: First, the
configuration allocates an identical amount of resources to
all members of the same group to ensure that performance
remains stable across view changes (see Figure 3, the sum
in Line 7–8). Second, it respects the individual performance
limits of each server (Line 7–8). Third, it places executors
on the 2f + 1 most powerful servers, thereby increasing the
number of agreement groups that are able to benefit from
collocation with an executor (Line 8–9). Fourth, it does not
make use of more than a predefined number of agreement
groups to keep the coordination overhead low (Lines 10–11).
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Figure 3. Integer linear program for assigning roles to replicas. To account
for efficiency gains achieved by collocating an agreement replica with an
executor, the program weights agreement groups using a cost factor cfg that
reflects an empirically determined cost increase of 15 % per separate executor.

Obeying these constraints, the integer linear program as-
signs individual performance points to each group in the set
of possible group-to-server mappings. Based on this result, we
can compile the final OMADA configuration by including all
groups that received at least one performance point. Further-
more, with each group id representing a particular group-to-
server mapping, the result also directly contains the placement
of groups. In case the integer linear program produces multiple
solutions, we select the solution with the lowest number of
groups and the smallest relative performance-point differences
between groups to minimize the coordination overhead.
Selection of Batch Sizes. To implement performance dif-
ferences between agreement groups, we define the batch size
for each group individually. For a group g, we calculate the
batch size by multiplying its performance points with a cost
factor cfg (see Figure 3) and normalize the result such that the
weakest group uses a batch size of 10. For the configuration
in Figure 3, this for example leads to normalized and rounded
batch sizes of 5 ∗ 1→ 12 and 5 ∗ 1

1+1∗0.15 → 10 for Group 1
and 2, respectively, which reflects the fact that the executor on
Server 3 does not have a collocated replica of Group 2. Less
powerful groups process fewer requests to be able to keep up
with the more powerful groups. This is necessary as all groups
have to handle the same amount of sequence numbers.

IV. EVALUATION

In this section, we evaluate OMADA based on a coordination
service that relies on our protocol for fault tolerance and
comprises a similar interface as ZooKeeper [15]. Coordination
services are key building blocks of today’s data-center infras-
tructures as they allow processes of distributed applications to
cooperate, for example, by reliably exchanging small chunks
of data. As a consequence of being essential for the well-
functioning of other applications, it is crucial for coordination
services to provide resilience against a wide spectrum of faults.



A. Environment

To evaluate OMADA in comparison to existing approaches,
we enable our current prototype implementation to also apply
other protocols for replication. Using this prototype, we repeat
all our experiments with the following settings, all of which
are configured to be able to tolerate one Byzantine fault:
• BFT-4 makes use of the minimum number of replicas

required for Byzantine fault tolerance (i.e., four replicas)
and thereby represents the typical setting found in most
state-of-the-art BFT systems. To order client requests, the
BFT-4 implementation executes the PBFT protocol [1].

• BFT-5 and BFT-6 are variants of BFT-4 with five and six
replicas, respectively, each running on a dedicated server.
These settings allow us to study the effects of introducing
additional resources into a traditional BFT system.

• OMADA relies on our novel BFT protocol presented in
Section III and is distributed across up to six servers.

In order to be able to investigate the influence of heterogeneity,
we conduct our experiments using two different settings of
servers with non-uniform performance capabilities, as illus-
trated in Figure 4. In this context, we distinguish between two
categories of machines: fast servers and slow servers; the dif-
ference in performance achieved varies between experiments
and will therefore be explained in later sections. All servers use
Ubuntu 14.04 LTS as operating system along with OpenJDK
7u121 and are connected via switched Gigabit Ethernet.

For each experiment, we vary the number of clients writing
data to the coordination service in chunks of typical sizes
of 128 bytes. Besides, we have also conducted experiments
evaluating read operations, but we omit these results due to
limited space and because they offer similar insights as the
write results. To generate the workloads, we execute the clients
on a separate server and distribute them across the available
agreement groups in a way so that more powerful groups
handle more clients. During an experiment, each client runs in
a closed loop, that is, it only sends a new request after having
obtained a stable reply for its previous one. Each data point
presented in the following represents the average over 5 runs.
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Figure 4. System configurations for the two heterogeneous settings used in
the evaluation comprising 5 servers (top) and 6 servers (bottom), respectively.
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Figure 5. Results for the heterogeneous setting with 2 fast and 3 slow servers.

B. Exploiting Additional Computing Resources

Our first heterogeneous setting comprises two fast and
three slow servers (see Figures 4a–4c). The fast servers
are equipped with Intel Xeon E5645 CPUs (2.4 GHz) and
32 GB RAM, whereas the slow servers have Intel Xeon E5520
CPUs (1.6 GHz) and 8 GB RAM. Based on the rate of MAC
calculations per second, a slow server in this setting achieves
about two thirds of the performance of a fast server. For this
environment, OMADA’s group assignment procedure creates
the configuration we already used as example to explain
the procedure in Section III-C. It comprises two agreement
groups with batch sizes of 12 and 10, respectively. For a fair
comparison, we configure BFT-4 and BFT-5 to use a batch
size of 11, which is the average batch size of the two OMADA
groups. To examine the effects of the optimization, we conduct
all experiments with both batching disabled and enabled.

Figure 5 presents the measured latency and throughput for
this experiment. All three systems achieve low latency until
reaching saturation, at which point latency rises quickly. In
general, the latency of BFT-5 is higher than that of BFT-4. This
is caused by the larger quorum sizes and thus the additional
messages that are necessary to include the fifth server, as
well as the larger MAC authenticators which grow in size
and require an additional MAC calculation. Compared with
BFT-4, the latency of OMADA is slightly higher which can be
attributed to the increased coordination overhead necessary to
manage the two agreement groups. However, unlike BFT-4,
OMADA is able to sustain low latency at higher throughputs.

With regard to the maximum throughput achievable, our
results confirm the key advantage of the batching optimization,
which enables all three systems to provide a significantly
higher performance. Nevertheless, due to not being able to
benefit from the additional server, the maximum throughput of
BFT-5 is still about 8% lower than the maximum throughput
of BFT-4; without batching the difference is about 23%. In
contrast, OMADA exploits the additional computing resources
offered by the fifth server and therefore compared with BFT-4
achieves an increase in maximum throughput of 25% when
batching is disabled. With batching enabled, the improvement
over BFT-4 is almost 28%. This is mainly a result of the
reduced group-coordination overhead, which in this case only
has to be paid once per batch and no longer once per request.
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Figure 6. Results for OMADA with different group counts (5-server setting).

C. Assessing the Costs of Groups

In order to evaluate the group-coordination overhead in
OMADA in more detail, we use the same setup as in the
previous experiment but vary the number of agreement groups
by splitting each of the two existing groups shown in Figure 4c
into up to four smaller ones. This yields four configurations
comprising between two and eight agreement groups which in
the following are referred to as OMADA/2 to OMADA/8.

The results in Figure 6 show that the overhead for operating
additional agreement groups is small but measurable. With
agreement groups in OMADA being largely independent of
each other, having fewer groups has the advantage that it
becomes less likely that requests of one group need to wait
at an executor until requests with lower sequence numbers of
another group become ready for execution. As a consequence,
OMADA/2 with its two agreement groups provides lower
latency than OMADA/8 with eight agreement groups. A similar
effect as for latency can also be observed with regard to
throughput: The maximum throughput of OMADA/2 without
batching for example is about 6% higher than the maximum
throughput of OMADA/8; when batching is enabled, the dif-
ference between these two configurations is 11%. In summary,
the results of this experiment confirm our strategy of selecting
the configuration with the lowest number of agreement groups
in cases in which OMADA’s group assignment procedure pro-
poses multiple possible solutions (see Section III-C). Further-
more, our observations are also consistent with the intuition
that the price of an increased group-coordination overhead
should only be paid if a configuration with a higher number of
agreement groups is actually able to exploit further computing
resources, for example, in the form of additional servers.

D. Analyzing the Effects of Heterogeneity

For our third experiment, we use a heterogeneous environ-
ment that differs from the setting of the previous experiments,
which enables us to study the adaptability of OMADA. As
shown in Figures 4d–4f, the systems now have an additional
server at their disposal. Furthermore, by limiting the number of
MAC calculations a slow server is allowed to perform per sec-
ond, we create a scenario in which a slow server only achieves
a third of the performance of a fast server. In practice, such
performance differences between replicas can be the result
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Figure 7. Results for the heterogeneous setting with 2 fast and 4 slow servers.

of not only incorporating servers with different capabilities
but also relying on heterogeneous replica implementations to
minimize the probability of common mode failures. For this
purpose, the replicas of a system for example may make use
of different programming languages or operating systems in
order to reduce the fault dependency between them [18]. In
the heterogeneous environment of this experiment, OMADA
has three agreement groups that are distributed across servers
as shown in Figure 4f. As all groups use a batch size of 10
we select the same batch size for BFT-4 and BFT-6.

The results in Figure 7 show that as an effect of the reduced
amount of computing resources, the maximum throughputs
achieved in this experiment are lower than the maximum
throughputs in previous experiments. In particular, both BFT-4
and BFT-6 are unable to utilize most of the resources available
on the fast servers due to being limited by the slow servers.
With a decreased maximum throughput of 30% (without
batching) and 19% (with batching) compared with BFT-4,
BFT-6 performs significantly worse than its counterpart BFT-5
in Section IV-B, which confirms the system’s lack of scala-
bility. OMADA, on the other hand, not only benefits from the
additional servers but also utilizes a large part of the computing
resources on the fast servers by enabling their replicas to act as
executors and to furthermore participate in all three agreement
groups. This way, when batching is disabled OMADA achieves
a maximum throughput that is 53% higher than the maximum
throughput of BFT-4 for this experiment. As in previous
experiments, enabling the batching optimization has a positive
impact on both the overall maximum throughput and the
improvement over BFT-4, which in this experiment is 59%.

V. RELATED WORK

Yin et al. [12] proposed a BFT system architecture (in the
following referred to as SAfE) that separates agreement from
execution and comprises a dedicated cluster of replicas for
each of the two stages. OMADA builds on this idea by splitting
the responsibilities for ordering and executing requests into
different roles and allowing each replica to assume one or
more of these roles depending on its performance capabilities.
As a consequence, both SAfE and OMADA need to provide the
agreement stage with means to prove to the execution stage
that a request has been committed. In SAfE, the agreement



cluster for this purpose sends PBFT-internal messages to
the execution cluster, thereby (1) creating a close coupling
between both stages and (2) requiring agreement-protocol
messages to be authenticated with additional MACs in order
to be verifiable by the execution cluster. In contrast, OMADA
cleanly decouples the agreement protocol from the execution
protocol (i.e., the transmission of EXECUTEs) to keep the
authentication cost for agreement messages low. Furthermore,
OMADA saves further network and computing resources by
suppressing an agreement group’s EXECUTEs if an executor
is collocated with an agreement replica of the group.

UpRight [16] goes one step further than SAfE and, besides
agreement and execution, relies on a third stage that is
responsible for receiving and buffering client requests. Using
this stage, the system can forward large requests directly to
the execution while performing the agreement on their hashes,
thereby reducing the load on the agreement cluster at the
cost of increased latency. Similar to SAfE and PBFT, the
agreement stage of UpRight only comprises 3f + 1 replicas
and consequently is not able to benefit from additional servers.

Kapritsos and Junqueira [19] outlined a general approach
to partition the agreement workload in order to improve the
scalability of replicated systems. In particular, they presented
a crash-tolerant protocol that, similar to OMADA, is able to
assign different parts of the sequence-number space to differ-
ent replica groups. Having been designed to provide resilience
against crashes, unlike OMADA, the protocol however cannot
ensure liveness in environments in which replicas may fail in
arbitrary ways. Furthermore, their approach does not address
replicated systems that consist of heterogeneous servers.

The idea of using multiple replicas to independently order
requests that are then merged into a single ordered request
stream has been explored in various ways in the context of
crash fault tolerance. In the accelerated ring protocol devel-
oped by Babay and Amir [20] the replicas pass on a single
token after proposing several requests while compensating
for network latency. Aguilera and Strom [21] propose an
algorithm to deterministically merge multiple message streams
primarily based on the timestamps of individual messages.
Mencius [22], a crash-tolerant protocol for wide-area networks,
evenly partitions the sequence numbers across all replicas.

COP [7] and Sarek [8] parallelize the handling of agree-
ment-protocol instances within each replica of a BFT system in
order to effectively utilize multi-core servers. Focusing on the
internal structure of a replica, these approaches are orthogonal
to the replication scheme presented in this paper and could
therefore also be applied to increase performance in OMADA.

The few works that have investigated heterogeneity in the
context of BFT systems [3], [10] use heterogeneous execution-
stage implementations to reduce the probability that a single
fault causes multiple replica failures. OMADA, on the other
hand, deals with the consequences of heterogeneity at the
level of the entire system. This approach enables OMADA to
exploit performance capabilities that have remained unused
so far, following the principle that it is better to harness the
differences between replicas than to try to compensate them.

VI. CONCLUSION

OMADA is a BFT protocol that is able to use addi-
tional servers by partitioning the agreement stage into mul-
tiple largely independent groups. In environments comprising
servers with heterogeneous performance capabilities, OMADA
tailors the distribution of the agreement groups to the set of
servers available in order to exploit the individual performance
capabilities of each server. Our evaluation has shown that in
contrast to existing systems OMADA is able to benefit from
additional computing resources, and that our approach is par-
ticularly effective in heterogeneous settings with a significant
performance difference between fast and slow servers.
Acknowledgments: This work was partially supported by the German
Research Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).
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