
In the Heat of Conflict:
On the Synchronisation of Critical Sections

Stefan Reif, Timo Hönig, and Wolfgang Schröder-Preikschat

Department of Computer Science, Distributed Systems and Operating Systems

Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Appears in: Proceedings of the 20th International Symposium on Real-Time Distributed Computing (ISORC 2017)
Toronto, Canada, 16–18 May 2017

Abstract—Advances in semiconductor technology greatly ex-
tend the scope of special-purpose applications as multi-core
processors find the way into embedded systems. The increasing
number of processor cores makes it more important than ever
to have real-time operating systems process parallel threads in
the most efficient way. In doing so, they have to pursue multiple
(often conflicting) goals: namely being predictable as to time and
energy demand.

In shared-memory multi-core systems, contention at critical
sections makes it inevitable for the operating system to execute
competing threads with highly efficient synchronisation methods.
Related research has primarily focussed on timing aspects of
synchronisation methods, while the energy efficiency of the latter
is an unexplored field, yet.

In this paper, we implement and evaluate five distinct syn-
chronisation methods and analyse their run-time characteristics
(i.e., time, energy) in-depth. We evaluate the overall demand at
application level, and empirically prove that contention increases
the energy demand significantly even when competing processes
are temporarily suspended. Furthermore, the evaluation reveals
that choosing the right synchronisation method can decrease
the energy demand by more than a factor of 5. We come to
the conclusion that it is mandatory to consider the effects of
process synchronisation for energy analysis and energy-efficiency
optimisations.

I. INTRODUCTION

Energy is an exceedingly valuable computing resource, both
in economical and ecological respect. Everything counts in
large amounts! This is especially true for embedded systems,
which are so ubiquitous today and yet virtually imperceptible
[1]. As a matter of fact, billions of processors of existing
diversity [2] need to be continuously powered. Energy use as
little as a µJ in a small scale easily accumulates to an order of
magnitude of megawatts in a large scale when considering the
bulk freight of end devices. The Internet of Things (IoT) is one
of the finest examples of such a scenario: from 6.4 billion IoT
units in 2016, the number of connected devices is forecasted
with 20.8 billion units in 2020. 1 Albeit each individual unit
consumes little amounts of energy, only, the accumulated
energy demand of all IoT devices is several times the energy
demand of data processing centres or supercomputers, already
today—such as the 17.6 MW spent by the Tihane-2 [3].

A significant share of those IoT devices is assigned to
embedded systems, while a great many of which have to
operate under real-time constraints. The hardware trend leads

1www.gartner.com/newsroom/id/3165317

towards multi-core processors even for small individual de-
vices, embedded systems are no exception. Real parallelism
not only intensifies the already existing problem of non-
deterministic operation, but it also amplifies interference with
real-time scheduling decisions due to more difficult synchro-
nisation methods needed to ensure consistent operation in
the data as well as time domain. A fact that is not only
limited to event-triggered systems but addresses time-triggered
systems equally. As energy more and more plays a key role
also for real-time embedded multi-core systems, it should
also become an important factor when it comes to making
scheduling decisions. In addition to ensuring that a process
meets its timing deadline, energy-aware process schedulers
also consider whether or not there is enough energy available
in the system for the process to complete execution [4].

A key problem in forthcoming many-core processor designs
is their inherent power limitation just to avoid overheating
or even blowing of circuitry (dark silicon [5]). Constructive
means as to the structuring of non-sequential programs are
required to prevent hotspots, in the truest sense of the word,
that would be caused by concurrent processes in the moment
of accessing shared data structures or resources, respectively.
Here, contention under processes forced to synchronise ac-
cording to program instructions provoke thermal stress of
the hardware. CPU throttling would be the consequence,
which results in lower speed, risks deadline miss and, thus,
affects the real-time behaviour of the whole system. Especially
the processor cores that settle the contending processes are
battered. It may be assumed that the thermal characteristic of
such a hotspot depends, at least, on the degree of contention,
the synchronisation principle (i.e., blocking or non-blocking),
the respective synchronisation protocol, and the “hunger for
energy” as well as frequency and interval of the atomic
machine instructions to be executed, likewise.

Contribution of the paper is the investigation and analysis of
the energy consumption of protocols used for the synchronisa-
tion of critical sections. Purpose is to figure out pros and cons
of conventional and unconventional concepts (i.e., Pthread
mutex and ticket lock on the one hand and so-called “guarded
section” [6] on the other hand) for enforced sequential exe-
cution of single program sections in terms of energy balance
and, thus, thermal characteristic. The measurements presented
show that contention is the crucial point, which stands or falls
with the structure of the respective non-sequential program

http://www.gartner.com/newsroom/id/3165317

and the scope of application and use case. We also show
that there is no panacea in the attempt of decreasing energy
consumption other than providing a bunch of solutions that
are each specialised to a certain level of contention. Key point
then is to select from a family of dedicated programs [7] the
most suitable variant as a function of the actual degree of
contention.

The remainder of the paper is structured as follows: Sec-
tion 2 gives some background information on the synchroni-
sation methods that were evaluated and compared with each
other. Focal point thereby are guarded sections, a means
of synchronisation of usual critical sections without mutual
exclusion of concurrent processes. Section 3 goes into im-
plementation aspects, presents the evaluation, and analyses
the measuring results. Section 4 discusses related work in
the context of energy-aware system software and Section 5
concludes the paper.

II. BACKGROUND

Object of inquiry is blocking synchronisation of critical
sections compared to serialised execution of guarded sections.
Common to both approaches is that concurrent processes will
“be constructed in such a way, that at any moment at most one
of [them] is engaged in its [particular] section” (acc. [8, p. 11])
in order to prevent a race condition. Consequence of such a
construction is the sequential execution of a specified program
section. The difference is how this sequential execution is
achieved: by means of mutual exclusion of concurrent pro-
cesses, on the one hand, or successive processing of concurrent
requests, on the other hand. Guarded sections follow the latter
model, they never entail mutual exclusion of processes. This is
in contrast to blocking synchronisation, widely used in terms
of a ticket lock or MCS lock, respectively, [9] or a Pthread
mutex [10].

In contrast to common multilateral synchronisation based on
mutual exclusion, guarded sections [6] do not force contending
processes to block. Instead, each process encapsulates guarded
sections in closures, and submits them to the guard. Using
the guard protocols, contending threads elect a control thread
that sequentially executes all requests. Due the potentially
asynchronous execution of guarded sections, the control thread
has to signal availability of results in case of data dependencies
using, for instance, a future [11] variable. Since the guard
protocols are wait-free, they are particularly suited for time-
critical systems.

None of these explicit synchronisation techniques is free of
charge. Cost factors are the actual implementation, the pro-
gramming language, the compiler, and finally the instruction
set architecture (ISA) of the underlying processor. Just to give
a feeling: using GCC 4.2.12, the number of instructions in
the absence of contention is 6 for a ticket lock [9, p. 27],
12 for a guarded section [6], 17 for a mutex [10, p. 106],
likewise excluding the respective subroutine call but relying on
atomic read-modify-write operations; for various fast mutual

2gcc -O3 -static -m32 -fomit-frame-pointer, x86

exclusion algorithms that only use atomic read-write opera-
tions, it is 9 for Merritt’s [12], 12 for Michael’s [13], and
15 for Lamport’s [14] solution. The lower contention, the
more relevant becomes this shortest path (i.e., the minimum
number of instructions) for performance as well as energy
efficiency. But it also means that the shortest path of a
critical/guarded section should be reasonably longer in order to
lose unnecessary synchronisation overhead in the “background
noise” of the actual functional code of that particular section.

The other extreme is the longest path through the entry
protocol, which also refers to a key property of algorithms for
mutual exclusion as far as liveness is concerned. Namely, every
waiting process is eventually granted access to the critical
section (starvation freedom), if and only if the longest path
is finite. This property particularly holds for guarded sections.
There, processes that contend for running a guarded section
proceed not only non-blocking, but even wait-free [15]. In
consequence, they cannot starve. This is an important aspect
when energy—but also timing—assessments are made (refer
to Sec. III). Without trying to get ahead of the result, but
executing less instructions often lowers the energy consump-
tion or heat dissipation. This property is strengthened as the
processing model of a guarded section also facilitates strong
process locality, namely as to the process that controls the
particular guarded section.

III. IMPLEMENTATION AND EVALUATION

Synchronisation is a means for the coordination of co-
operation and communication of interacting processes, thus
concurrent processes that access common variables or share
resources. For the methods investigated as to energy demand
in the following, synchronisation applies to critical sections
in a wider sense and operates blocking or non-blocking on
a process. The difference is in the entry protocol, which
either delays (blocking) or detours (non-blocking) processes
arriving at such a section. In any case, however, the instruction
sequence building this section is guaranteed to be executed
as a whole one at a time. Thus, sequential execution of a
specific program section is common denominator, but achieved
in different ways and tainted with different non-functional
properties (i.e., performance, energy demand).

In the study, blocking characteristic comes with Pthread
mutex [10] and an own variant of a ticket lock [9], while
non-blocking characteristic is given with guarded sections [6].
Blocking may be a passive or an active measure of the
particular process to await admission to the critical section.
If passive, the current process changes to “blocked” state by
instructing the scheduler to release control of the processor,
allowing it to enter a sleep state. If active, the current process
remains in “running” state (busy waiting).

A. Synchronisation Methods

Pthread mutex (q.v. Fig. 2 and 3, PM) is included in the
evaluation for its widespread use. This method causes the
current process to wait passively until its turn to enter the
critical section that is synchronised by the respective mutex.

1: procedure TICKET PASSIVE LOCK(lock)
2: t← FAA(lock.ticket, 1)
3: loop
4: PREPARE() . be sensitive to wake-up call
5: if lock.cur = t then
6: UNDO PREPARE() . ignore wake-up call
7: return
8: end if
9: SLEEP() . await wake-up call

10: end loop
11: end procedure
12: procedure TICKET PASSIVE UNLOCK(lock)
13: FAA(lock.cur, 1)
14: NOTIFY() . wake up all sensitive threads
15: end procedure

Fig. 1: Passive-mode (i.e., sleeping) ticket lock.

Ticket locks come in passive and active mode. If the critical
section is vacant and in the absence of contention, the current
process follows a beeline in both variants to occupy that
section. Thereby, the shortest path of the passive-mode variant
(i.e., 11 instructions, x86) is longer than the one of the active-
mode variant (6 instructions): there is no need for the latter
to interact with the scheduler (cf. Fig. 1). When catching
an occupied critical section, the current process waits either
passively or actively, depending on the ticket-lock variant used.
Ticket-lock passive (TLP) mode resembles a sleeping lock:
the process asks the scheduler for immediate release of the
processor. In contrast, ticket-lock active (TLA) means a raw
lock. In particular, the process performs busy waiting on the
appearance of its ticket number.

Fig. 1 sketches a TLP variant. The code sets a sensitivity
flag stored in a thread-local variable to indicate (PREPARE)
that a processor core is possibly going to sleep, before
actually checking the sleeping condition. In sleep state, a
wakeup signal (i.e., inter-processor interrupt, IPI) is needed
to resume normal processor-core operation. The notification
routine (NOTIFY) first checks for sensitivity in order to avoid
sending a spurious IPI. In the case where the executions
of lock and unlock overlap, marking a core as sensitive
before checking the waiting condition can cause unnecessary
notifications, but prevents the lost-wakeup problem. In the case
where waiting is not required, the process clears the sensitivity
flag (UNDO PREPARE) and continues.

Similar to ticket locks, guarded sections also come in
passive and active mode. However, in this case, the particular
mode does not address the entry protocol of a critical section
synchronised in this vein: by concept, processes do not block
at entrance to a guarded section. Rather, the mode applies to
the protocol to synchronise on the event of the assignment of
a value to a future variable.

Implementation of a guard raises the question of internal
synchronisation. As threads are free to call guard functions
concurrently, they have to ensure consistency of the internal

state, such as an occupation indicator, and the job queue.
The original concept [6] uses a wait-free solution, which
has relatively complex entry, exit, and thread notification
protocols. Additionally, we compare this solution against a cut-
down version, which uses locks for protection of internal guard
data structures: the lock does not protect the guarded section of
the application, but critical sections inside guard protocols. In
particular, the sequencer (i.e., control process) does not hold
this lock while running a guarded section, and thus allows
other processes to enqueue jobs in parallel. Most importantly,
the lock-based entry protocol does not force conflicting threads
to wait until the sequencer finishes a guarded section. For
the application, the internal synchronisation method is entirely
transparent in functional terms.

As variation of the internal guard synchronisation spans
a large diversity of guard implementations, the evaluation
narrows down to two representative versions. First, the GWP
variant implements the entry and exit protocol in the original
wait-free manner, and uses passive-mode futures. Second, the
GTA alternative uses active-mode ticket locks for internal
synchronisation of these protocols and active-mode futures
for signalling. In our experiments, other guard variants show
similar properties. In summary, the presented synchronisation
methods allow distinction not only between guards and mu-
texes, but also between active and passive waiting operations.

B. Energy Measurement Procedure

A general problem of energy evaluation of concurrent
threads is the intrinsic unpredictability of thread overlapping
and interaction patterns. In particular, inter-thread dependen-
cies occur at mechanisms for mutual exclusion. However,
interacting threads mutually influence their run-time behaviour
and, consequently, energy demand. For instance, execution
time and energy demand of a lock-acquire function depend on
the lock state—if the lock is free, a lock-acquire function needs
only little time and energy. However, if the lock is occupied,
resource usage depends on the waiting time, and thus, on
other threads. Hence, concurrent threads mutually influence
their energy and performance characteristics. In consequence,
the naive approach to evaluate the energy demand of code
fragments is not applicable to interacting parallel control
flows. In summary, concurrency obfuscates the origins of
energy issues—only imprecise information about activities
on concurrent threads is available, but they influence energy
consumption.

To mitigate this energy attribution problem, we measure the
energy demand at coarse granularity. First, the energy mea-
surement encompasses all cores. Second, every measurement
includes multiple critical sections to abstract from specific
overlapping patterns. Thus, the evaluation combines all threads
and inter-thread effects.

C. Experimental Setup

The experiments were executed on an Intel Xeon proces-
sor (Intel Xeon E3-1245v3) that fulfils both prerequisites for
our experiments. First, the processor provides four cores (with

two hardware threads each) running at 3.4 GHz. The processor
thus allows parallel execution of eight application threads.
Second, the processor offers a built-in mechanism for energy
evaluation through the RAPL [16] interface. Monitoring the
package domain, RAPL measures the energy consumption of
all cores, caches, and the memory controller, but it excludes
irrelevant off-chip components (e.g. network interfaces). On
top of this platform, a Linux environment provides a reliable
tool-chain for energy and execution time evaluation. For
performance measurement, Linux evaluates the elapsed wall-
clock time of an entire application execution; in parallel,
RAPL evaluates the energy demand.

Most importantly, we want to compare experimental results
at different degrees of contention, and different synchroni-
sation methods, in order to identify the influence on the
energy demand of the application. In consequence, experiment
results need to be comparable despite different parameters.
We therefore evaluate a micro-benchmark application where
we can freely manipulate the degree of contention and the
synchronisation method. Lozi et al. have experimentally ex-
amined the proportion between critical sections and the overall
application execution time [17], for popular applications and
benchmarks. Similarly, we define the degree of contention C
as the relative amount of time that the application spends in
the critical or guarded section, excluding waiting times:

C =
tcritical

tcritical + tnon-critical
(1)

This definition of contention determines the micro-
benchmark design. We control the contention and, conse-
quently, the probability that synchronisation requests conflict
at run-time, by the duration of critical and interjacent sections.
In particular, the benchmarking application consists of equiva-
lent threads, which each executes a loop that contains a critical
and a non-critical section. Both sections are made of time-
controllable lag elements. Hence, the benchmark application
structure allows experimental manipulation to the degree of
contention, and thus provides information how conflict for
shared resources affects energy consumption. The number of
threads is thereby fixed to eight, matching the number of
processor cores. In consequence, the total amount of work
performed by the application remains constant, despite vari-
ation of the contention and the synchronisation method, and
thus allows comparison of evaluation results. Our experiments
focus on the range of 20 % to 80 % contention. This range
balances the degree of contention in contemporary applica-
tions [17] and the trend that, in future many-core systems, the
conflict for shared resources is expected to increase [18].

D. Total Energy Demand

In the first experiment, the measurement covers a full
application execution, where each application thread executes
1,000 critical and non-critical code sections in a loop. The plot
in Fig. 2a depicts the measured energy demand of the entire
application, and Fig. 2b visualises the execution time. Fig. 2c
depicts the energy-delay-product (EDP) [19]. All three plots

0

1,000

2,000

3,000

20% 40% 60% 80%

C

(c) EDP (Js)

0
2
4
6
8

10
12
14
16
18
20

20% 40% 60% 80%

(b) Time (s)

0

100

200

300

20% 40% 60% 80%

(a) Energy (J)

guard ticket active (GTA)

guard waitfree passive (GWP)

pthread mutex (PM)

ticket lock active (TLA)

ticket lock passive (TLP)

Fig. 2: Energy consumption, execution time, and energy-
delay-product of an application, depending on the synchro-
nisation method and the degree of contention.

show the arithmetic mean of 100 repetitions, along with the
minimum and maximum of all observed values. The horizontal
axis groups data by the degree of contention, as defined in (1).
The following paragraphs analyse the evaluation results.

1) Active vs. Passive Waiting: Comparing the energy de-
mand of the synchronisation methods shows that waiting
passively reduces the energy consumption significantly. The
only exception is GWP at low contention: the method is

relatively inefficient in this situation due to its complex wait-
free protocols. However, when increasing contention, GWP is
the most energy efficient synchronisation method, because the
control process switches between guarded sections efficiently
without inter-core communication. In general, synchronisation
methods that wait actively have a relatively high energy
demand, at all levels of contention. For instance, TLA locks
require 49 %3 more energy than TLP at 20 % contention.
Similarly, the active-mode GTA requires 41 % more energy
than the GWP alternative, which lets processor cores sleep in
the case of contention. In summary, waiting actively increases
the energy demand by nearly 50 %.

2) Guards vs. Locks: When comparing active guards (GTA)
to locks (TLA), the latter only needs less energy in the
case of low contention. In numbers, GTA needs 30 % more
energy than TLA at 20 % contention. At high contention, the
effect reverses, so TLA consumes more energy than GTA. For
instance, at 60 % contention, TLA needs 22 % more energy
than GTA. Similarly, passive-mode guards (GWP) are the most
energy efficient synchronisation method at high contention.
In summary, guards are generally more energy efficient than
locks at high contention.

3) Performance: Regarding execution time, passively wait-
ing locks and mutexes are relatively slow. In contrast, active-
mode locks (TLA), and both guard variants, are faster. At 20 %
contention, TLP and PM need 30 % and 25 %, respectively,
more time than TLA. These performance results are in line
with previous research of the run-time performance of syn-
chronisation methods [10].

When contention is 60 %, TLP is 153 % slower than the
actively waiting counterpart, TLA. However, the passive locks
consume less energy. In numbers, TLA needs 101 % more
energy than TLP. In summary, waiting actively is faster, but
waiting passively consumes less energy.

4) Energy to Performance Trade-off: In order to evalu-
ate the energy-to-performance trade-off, we use the EDP as
metric. The EDP represents energy efficiency by combining
execution time and energy consumption. It tolerates a non-
optimal energy consumption, as long as it is justified by a
corresponding performance gain. Fig. 2c shows the EDP for
all evaluated synchronisation methods at different contention
levels.

Evaluation of the EDP shows that GWP is the most ef-
ficient synchronisation method at high contention. At 60 %
contention, this synchronisation method has a relatively low
energy demand and is also fast. In consequence, the EDP of
TLA is 163 % higher, compared to GWP. Similarly, the EDP of
PM is 243 % above. This result shows that energy efficiency
does not contradict high performance, but finding an efficient
synchronisation method depends on the use case.

In this evaluation, the execution time differences dominate
the energy differences between synchronisation methods. In
consequence, waiting actively can be more efficient than

3Comparison of experiment result data always references the difference, in
relation to the smaller value. For instance, comparing 20 J to 21 J yields an
increment of 5%.

passive waiting with respect to the EDP. For instance, the EDP
of TLP is 25 % higher, compared to TLA, at 60 % contention.
Regarding guarded sections, however, the EDP of the passive
variant (GWP) is better than its actively waiting counterpart
(GTA), because both have similar execution time, and the
passive version consumes less energy. In summary, waiting
actively can be reasonable, if the performance gain outweighs
the energy overhead. However, guards have a better EDP than
all evaluated locks, except for low contention.

E. Isolated Application Energy Demand

In a second experiment, we have taken into account that the
system consumes energy even in idle state. For instance, the
hardware, Linux kernel threads, and system daemon processes
consume a certain amount of energy even when no application
runs. Motivated by systems that run in non-stop mode, we re-
evaluate the micro-benchmark application, using a different
perspective. In this scenario, we use the energy demand of
an idle system as baseline, and evaluate the energy difference
caused by the application execution.

In order to compute the application energy overhead, we
evaluate the energy demand of idleness. This idle energy
resembles the static energy demand [20], but it also takes
system processes into account. For experimental evaluation
of the energy demand of doing nothing, RAPL measures
the energy consumption of an application that sleeps using
nanosleep. The results of this experiment show a linear
relation between the sleeping time and the corresponding
energy demand, with a relatively small constant offset. This
proportionality matches the expectation that an idle system
consumes a constant wattage. A least squares approximation
of 1,000 measurement iterations yields the following linear
formula:

Eidle(t) = 5.28 W · t+ 0.60 J (2)

Using this relation, we reconsider the results of the experi-
ment in Section III-D. We insert the observed execution time
into (2) and thus calculate the amount of energy consumed by
the hardware and the operating system. Fig. 3a depicts both the
overall energy consumption of the application and, as the lower
blank part of each bar, the corresponding idle energy demand.
Fig. 3b shows the energy overhead of the application, which is
the difference between the overall application energy, and the
idle energy. This particular energy difference is caused by the
application execution and therefore in focus of the discussion
below. Fig. 3c displays the product of the energy overhead
and the application execution time. The following paragraphs
discuss the results in detail.

1) Active vs. Passive Waiting: Isolating the application
energy overhead decouples energy demand from execution
time. In the evaluation in Section III-D, the power consump-
tion of idleness penalises slow synchronisation methods. In
contrast, excluding the idle energy demand rewards the usage
of low-power sleeping modes regardless of their performance
implications. Consequently, synchronisation methods that wait

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

20% 40% 60% 80%

C

(c) EODP (Js)

0

100

200

300

20% 40% 60% 80%

(b) ∆ Energy (J)

0

100

200

300

20% 40% 60% 80%

(a) Energy (J)

guard ticket active (GTA)

guard waitfree passive (GWP)

pthread mutex (PM)

ticket lock active (TLA)

ticket lock passive (TLP)

Fig. 3: Reconsidering the application energy overhead, taking
the energy demand of idleness into account.

actively cause a higher energy overhead than passive alterna-
tives. For instance, the actively waiting GTA consumes 128 %
more energy than PM at 20 % contention. When increasing
the degree of contention, the energy differences between
synchronisation methods grow. At 80 %, TLA demand 195 %
more energy than GWP. In summary, waiting actively is highly
inefficient regarding the application energy overhead.

Similar to the evaluation in Section III-D, contention has a
negative effect on the energy consumption. More precisely,

a comparison of different contention levels, while leaving
the synchronisation method constant, shows that the energy
overhead grows when contention increases. For instance, the
energy demand of PM grows by 10 %, between 20 % and
80 % contention. Alternatively, the energy demand of TLP
increases by 17 %. However, both of these factors appear to
be only a minor effect, considering that the energy overhead
of TLA and GTA increases by 150 % and 330 %, respectively.
In summary, contention increases the energy overhead in all
evaluated scenarios.

2) Mutexes vs. Guards: Regardless of the contention, mu-
tual exclusion has the lowest energy overhead, if waiting
passively. Namely, PM and TLP show the highest efficiency
amongst all evaluated synchronisation methods. For instance,
active TLA consume 74 % more energy than their passively
waiting counterpart at 20 % contention. At 80 % contention,
the energy overhead difference is even 538 %. Thus, passively
waiting locks are much more efficient than their competitors.

3) Energy to Performance Trade-off: To combine perfor-
mance and energy demand, we multiply the energy overhead
with the execution time. The resulting energy-overhead-delay-
product (EODP) resembles the EDP, but it excludes the idle
energy consumption. Fig. 3c displays the results for all five
evaluated synchronisation methods at different degrees of con-
tention. Regarding the EODP, waiting actively is less efficient
than waiting passively, in all observed cases. For instance, the
EODP of TLA is 86 % above their passive counterpart at 40 %
contention. Similarly, GTA have a 79 % higher EODP than the
alternative GWP.

While the passive-mode mutex and lock (PM and TLP) have
the lowest energy overhead of all evaluated synchronisation
methods, regardless of the degree of contention, they do not
have the lowest EODP. More precisely, their EODP suffers
from the relatively high execution time. In the experiments,
their execution time is 242 %, or 244 %, above the GWP
variant, at 80 % contention. In consequence, the product of
energy overhead and execution time is therefore not optimal
for passive-mode locks. In numbers, the EODP of PM is 48 %
above GWP, and the EODP of TLP is 59 % higher. However,
TLA has the highest EODP. In the evaluation, the EODP of
TLA is 292 % higher than GWP, at 80 % contention. Thus,
choosing the correct synchronisation method can increase
energy efficiency drastically.

Similar to other energy efficiency metrics, the degree of
contention is vital for the EODP. For GWP, increasing the
degree of contention from 20 % to 80 % increases the EODP
by 346 %. In the same scenario, the EODP of PM and TLP
grow by 917 % and 938 %, respectively. For TLA, the EODP
even grows by 1, 823 %. Even though higher contention im-
plies longer execution time for our setup, because longer code
sections are serialised, the EODP increase is over-proportional.
In summary, all evaluated synchronisation methods become
either much slower, or energy hungry, in the case of conflict.
Therefore, reducing the degree of contention is crucial for
energy optimisation.

F. Analysis

The evaluation results show that energy optimisation of
critical sections is a complex challenge, where a multitude
of factors have to be considered. For instance, guards tend to
be more energy efficient than similar mutex-based synchroni-
sation methods at high contention. Similarly, synchronisation
methods that wait actively consume more energy than their
passive counterparts. However, none of these statements holds
for all evaluated situations. Since the energy demand of syn-
chronisation is significant, but complex to predict, we propose
adaption of existing tool-chains for energy-aware software
development [21] to parallel applications. Then, optimising
synchronisation for energy can be automatised and hence assist
the programmer to optimise multi-threaded applications.

As a general result, contention is an enemy of energy
efficiency. In the experiments, decreasing the degree of con-
tention reliably reduces the energy demand of the application.
Therefore, energy-aware application design should focus on
reducing contention for shared resources. Furthermore, the
results imply that energy analysis tools depend on an accurate
prediction of waiting times.

In the experiments, synchronisation methods that wait ac-
tively consume relatively much energy, especially at high
contention. Both of the TLA and GTA synchronisation methods
require considerably more energy than their passively waiting
counterparts. For instance, an application using TLA consumes
49 % more energy, compared to using TLP, at 20 % contention.
Meanwhile, the execution time shows only minor differences
in this scenario. However, waiting actively can be energy
efficient, when the performance gain justifies the energy costs.
Such a system can profit from energy savings by shutting down
the hardware early (race-to-halt [22]).

When taking into account that the system needs energy even
in idle state, the energy differences between synchronisation
methods increase. While passively waiting locks, guards and
mutexes have a relatively low energy overhead, compared to an
idle system, waiting actively is inefficient. For instance, TLA
consumes 195 % more energy than GWP at 80 % contention.
Similarly, passive waiting is generally more efficient than
active waiting when regarding the EODP.

Contrary to our expectations, increasing the degree of con-
tention leads to a higher energy demand even for synchronisa-
tion methods that wait passively. Despite no application code is
executed while waiting passively, sleeping causes a measurable
energy consumption. For instance, PM consumes 10 % more
energy when increasing the contention from 20 % to 80 %. In
consequence, passive waiting is not energy neutral, and energy
analysis tools must consider sleeping times. Elimination of this
energy overhead would generally require the operating system
to utilise hardware sleep states more efficiently.

As a bottom line of our results, energy evaluation of parallel
applications has to consider concurrency aspects. Only an
analysis that includes the effect of contention can provide
reliable results. In the experiments, contention increases the
energy overhead by up to 330 %, and the EODP increases

by up to 1, 823 %. Thus, the degree of conflict for shared
resources is a crucial aspect for energy consumption analysis
and optimisation.

IV. RELATED WORK

Improving the energy efficiency of system software has been
subject of research works ranging from energy-aware synchro-
nisation techniques [23], [24] over run-time optimisations [25],
[26] to constructive measures which, for example, provide
analysis tools [4], [21] that help programmers to lower the
energy-demand of systems. The shared objective among the
work related to the research presented in this paper are to
better interlock software and hardware mechanisms with the
common goal to reduce unnecessary frictional losses which are
responsible for the dissipation of energy. Especially the advent
of multi-core processors has introduced new opportunities
and challenges to reduce the energy footprint of computing
systems.

Moreshet et al. compare the energy efficiency of transac-
tional memory with the use of traditional spin-locks [23].
The work shows that transactional memory outperforms tradi-
tional locking (i.e., spin locks) with regards to performance
and energy in cases of low contention. If the degree of
contention rises, however, transactional memory requires an
increasing amount of transactions which occurs at the expense
of energy demand. The authors conclude their work that
neither of the explored approaches has been designed with
a focus on energy consumption. To mitigate the negative
effects (i.e., increased energy demand in the case of high
contention), Kim et al. propose the hardware extension C-
Lock [24]. C-Lock combines transactional memory techniques
with traditional locking mechanisms and detects memory-
access conflicts to shared data by analysing the addresses of
memory-access operations. In case of conflict, C-Lock stops
a subset of the competing processor cores and reduces their
energy demand by clock-gating the cores for the time of the
conflict. In absence of conflicts, C-Lock achieves a degree of
parallel execution which is comparable to systems which use
transactional memory, only.

To increase the energy efficiency at run-time, Nishtala et
al. explore an energy-aware thread-to-core assignment policy
for heterogeneous multi-core processors [25]. The proposed
strategy incorporates memory and performance demands of
individual threads and creates predictions about the prospec-
tive thread behaviour from empirically monitoring thread
demands (i.e., by means of performance counters). On basis
of the predictions, co-located threads (so-called co-runners)
are being selected for future thread-to-core assignments. The
assignment algorithm attempts to spread contention for shared
resources uniformly across the available processor cores and
aims to optimize energy efficiency. Santinelli et al. [26]
explore energy-aware scheduling techniques for embedded
systems by exploiting energy-saving features at hardware-level
such as dynamic voltage and frequency scaling (DVFS) and
dynamic power modes (DPM). The authors propose an on-line
energy-aware scheduling algorithm which schedules task and

messages under real-time constraints. Aligned to timing con-
straints, the on-line scheduler calculates and enforces optimal
processor speeds (controlled by DVFS) and sleep durations
(controlled by DPM) to minimise the energy demand of the
system at run-time.

Constructive measures address the design of energy efficient
system software. Program analysis approaches [4], [21] deter-
mine the energy demand of programs and help programmers
to identify and resolve energy faults. In practice, such energy-
aware programming methods need to be tightly coupled with
tool-chains [27] in order to effectively help programmers at
designing energy-efficient system software.

Our research results (cf. Section III) suggests that the
design of system-software components (i.e., synchronisation
methods) need to be accompanied by appropriate constructive
measures. Only the combination of different optimisation
approaches (i.e., system design, run-time support, and tool
infrastructure) makes it possible to reduce the energy of
computing systems by the highest possible extent.

V. CONCLUSION

Synchronisation of interacting processes has a huge influ-
ence on the energy demand of applications. The presented
empirical study showed that misconception in the use of
a synchronisation method for critical sections increases the
energy demand by up to 538 %. Well established methods
such as the Pthread mutex or a ticket lock scale poorly when
regarding execution time and energy consumption. Measures
for “obviation of congestion” as introduced with guarded
sections using passive-mode future variables outperform ticket
locks at high contention.

Emphasis of the examination in this paper was on the
synchronisation of critical sections, that is, on procedures
that ensure sequential execution of a specified sequence of
instructions. Functional identical but structural disparate rep-
resentations of the respective program sections in terms of non-
blocking synchronisation were not considered. However, this
topic will be addressed by future work, along with an evalua-
tion of already existing real-world applications, including hard
and firm real-time requirements. Furthermore, emerging multi-
core platforms for embedded systems will not only increase
the relevance of energy-aware parallel programs, but also give
the opportunity to diversify our experiments. The long term
goal are infrastructure operations that aim at proactive energy-
aware programming particularly of non-sequential software.

The idea is to have energy-aware non-sequential real-time
systems that prescribe parallel processes which are subjected
to different synchronisation protocols dependent on the actual
degree of contention. Thus, blocking and non-blocking syn-
chronisation changes on the fly just as the respective method of
the individual synchronisation category. As there is no panacea
in the attempt of decreasing energy consumption other than
providing a family of programs that are each specialised to a
certain level of contention, issue will be to dynamically switch
to the most suitable variant as a function of the actual degree
of contention.

APPENDIX
GUARDED SECTIONS

At a bigger picture, in this model a process creates a closure
for each “critical section” and encapsulates it in a job, that is,
a unit of work that is scheduled and executed by a so-called
sequencer. To request execution of that section, a process
attaches the corresponding job to the guard.

To ensure sequential execution, the guard protocols guar-
antee that, at any time, at most one process can act as
a sequencer. When a sequencer is already processing jobs,
concurrent processes consequently fail to occupy the guard.
These processes advance without blocking, while the se-
quencer executes their jobs asynchronously. In case a process
depends on the computation result or state change caused by
a guarded section, the sequencer provides a promise [28] and
delivers the result of the corresponding job in the future [11].
In such a situation, the bypassing process commits conditional
synchronisation: if necessary, it delays (i.e., blocks) until the
sequencer indicates the availability of the promised event.

In order to give a rough picture of the “background noise”
coming with guarded sections, the entry and exit protocols are
briefly sketched at this point (Fig. 4). In contrast to the original
[6], an improved version of these protocols is presented. The
original version contains a race condition. As a potential
consequence of this, a guard state can be left behind that
pretends to execute pending guarded sections by some process
(i.e., the sequencer) although no such process actually is in
charge of it and never can be. In Fig. 4, the race condition is
resolved by recording each attempt to enter a guarded section.

1: function VOUCH(guard, order)
2: ENQUEUE(guard.list, order)
3: if FAA(guard.load, 1) = 0 then . become sequencer
4: return DEQUEUE(guard.list)
5: else
6: return 0 . indicate bypassing
7: end if
8: end function
9: function CLEAR(guard)

10: if FAA(guard.load,−1) > 1 then . remain sequencer
11: return DEQUEUE(guard.list)
12: else
13: return 0 . indicate leaving
14: end if
15: end function

Fig. 4: Guarded section entry and exit protocol.

The entry protocol (VOUCH) authorises a process to become
the sequencer of particular guarded section (guard). This
sequencer is the single thread of control at a given point in
time that is allowed to execute pending requests (order) to
pass through such a section. The exit protocol (CLEAR), on
the other hand, defers to that thread of control the execution of
the next passing request, if any. This very thread then decides

1: procedure CRITICAL MX(entity, input)
2: ACQUIRE(entity.mutex)
3: /* needed sequential execution of
4: some task that must process
5: some input controlled by entity */
6: RELEASE(entity.mutex)
7: end procedure

1: procedure CRITICAL GS(entity, input)
2: request← ORDER(input)
3: if job← VOUCH(entity.guard, request) then
4: repeat
5: /* needed sequential execution of
6: some task that must process
7: some input controlled by entity */
8: until (job← CLEAR(entity.guard)) = 0
9: end if

10: end procedure

Fig. 5: Sequential execution using plain critical sections (left) and guarded sections (right).

in a self-contained manner and depending on its own potential
to either process the request (if there is enough slack time) or
hand it over to a spare sequencer (otherwise).

Pending passing requests are kept on a wait-free synchro-
nised queue. In contrast to [6], which relies on a queue with
a restricted utilisation profile, the implementation used in the
experiments is based on an all-purpose wait-free queue [29]
for an even-handed comparison with the Pthread mutex and
ticket lock variants.

For comparison with conventional critical sections, assume
some operation with reference to a complex control or in-
formation structure, referred to as entity, as shown left in
Fig. 5. The usual “synchronisation brackets” are represented
by ACQUIRE and RELEASE, namely to make a request for and
to quit mutual exclusion.

The actual entity parameter of this operation identifies the
mutex or lock, respectively, variable used in the entry and exit
protocols. In order to restrict potential parallelism as short as
possible, synchronisation variables are used on a per-entity
basis. The “bracketed” statements left in Fig. 5 surround the
actual functional part within the critical operation. In case of
contention at the critical section, that is, while the section is
occupied by some process (holder), any contending process
will be blocked upon request (ACQUIRE) to enter.

Synchronisation of the same functional code but, this time,
using guarded sections is shown right in Fig. 5. Here, the “syn-
chronisation brackets” are implemented using the language
constructs if, repeat, and until for the control function and
ORDER, VOUCH, and CLEAR for order management. The job
for a guarded section is created using ORDER. By means of
VOUCH, a process (i) registers a job and (ii) asks to occupy
the guard, that is, operate the sequencer. If VOUCH succeeds,
the current process becomes the sequencer and takes care for
the successive execution of pending jobs. When a sequencer is
already associated with the guard, VOUCH fails and the current
process bypasses the guarded section. The bypassing process
is also called requestor. In case of contention at the guarded
section, that is, while the section is occupied by some process
(sequencer), any contending process (requestor) will be never
blocked upon request (VOUCH) to enter.

At end of a guarded section, the sequencer checks for
pending jobs by using CLEAR. If there is at least one more

job outstanding, CLEAR succeeds and the sequencer repeats
itself, that is, loops through the guarded section using another
parameter setting. The guarded section remains occupied until
CLEAR fails, which indicates that either no more jobs are
awaiting execution on the guard or the maximum allowable
load for the particular sequencer is exhausted. In this case,
the sequencer marks the guard as unoccupied and continues
its control flow, that is, relinquishes sequencer functionality,
or hands over further job processing to some other sequencer,
respectively. The actual variant [7] depends on the guard-
family member used.

An alternative setting of a guarded section, which then leads
to a process behavior that is more strict to a conventional
critical section, is shown in Fig. 6. This pattern uses the

1: procedure CRITICAL GS STRICT(entity, input)
2: request← ORDER(input)
3: if job← VOUCH(entity.guard, request) then
4: repeat
5: /* needed sequential execution of
6: some task that must process
7: some input controlled by entity */
8: PROVE(job.tobe) . cause signal
9: until (job← CLEAR(entity.guard)) = 0

10: else
11: EXACT(request.tobe) . await signal
12: end if
13: end procedure

Fig. 6: Sequential execution using signalling guarded sections.

primitives PROVE and EXACT for logical synchronisation of
the requestor with the sequencer. By calling EXACT, the
requestor awaits completion of its order to be executed by the
sequencer. The latter applies PROVE inside the guarded section
to signal completion of the order. These two primitives manage
the “future variable” (tobe) that communicates computation
results from the sequencer to the requestor. The sequencer
never blocks in the course of PROVE execution, that is, while
assigning a value to tobe. Contrariwise, EXACT delays the
requestor if and only if the future variable has not yet been
assigned a value from the sequencer. The requestor thus
may ensure that problem-specific dependencies to the guarded

section are fulfilled. In case of contention at the guarded
section, that is, while the section is occupied by some process
(sequencer), any contending process (requestor) will never be
blocked upon request (VOUCH) to enter, but can be blocked
on retrieval (EXACT) of the processing status of an order.

Essentially, multilateral synchronisation (mutual exclusion)
of concurrent processes at a conventional critical section is
mapped to unilateral (conditional) synchronisation of a (data,
causally) dependent process that proceeds to some extent
parallel to a guarded section. In contrast to mutual exclusion,
process delay becomes effective only if the data-delivery event
on which the respective process depends is still pending, even
in case of contention for running a guarded section.

As a matter of fact, the bypassing process (requestor) of a
guarded section gets the opportunity for latency hiding, that is,
doing meaningful work over the time needed by the sequencer
to produce a value and, as the case may be, never blocks in the
attempt to consume this very value. In contrast, when using
mutual exclusion to synchronise critical sections, contending
processes do not have such an option. Then, processes either
actively or passively exercise useless work while awaiting
admission, depending on the entry protocol (i.e., ACQUIRE).
If the entry protocol of a conventionally synchronised critical
section triggers a process switch when a waiting condition has
been detected, then the “system” indeed may proceed in doing
meaningful work, but not the individual process that competes
with fellow sufferers for access to that section. All this never
happens with a guarded section.

ACKNOWLEDGEMENTS

This work is supported by the German Research Foundation
(DFG) under grants no. SCHR 603/8-2, SCHR 603/13-1,
603/15-1, and the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR89, Project C1).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 94–104, September 1991.

[2] D. Tennenhouse, “Proactive computing,” Communications of the ACM,
vol. 43, no. 5, pp. 43–50, May 2000.

[3] X. Liao, L. Xiao, C. Yang, and Y. Lu, “MilkyWay-2 supercomputer:
System and application,” Frontiers of Computer Science, vol. 8, no. 3,
pp. 345–356, June 2014.

[4] P. Wägemann, T. Distler, T. Hönig, H. Janker, R. Kapitza, and
W. Schröder-Preikschat, “Worst-case energy consumption analysis for
energy-constrained embedded systems,” in Proceedings of the 27th
Euromicro Conference on Real-Time Systems (ECRTS ’15). IEEE, 2015,
pp. 105–114.

[5] H. Esmaeilzadeh, E. R. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th International Symposium on Computer Architecture
(ISCA ’11), R. Iyer, Q. Yang, and A. González, Eds. ACM, 2011, pp.
365–376.

[6] G. Drescher and W. Schröder-Preikschat, “Guarded sections: Structuring
aid for wait-free synchronisation,” in Proceedings of the 18th Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC ’15). IEEE, 2015, pp. 280–283.

[7] D. L. Parnas, “On the design and development of program families,”
IEEE Transactions on Software Engineering, vol. SE-2, no. 1, pp. 1–9,
March 1976.

[8] E. W. Dijkstra, “Cooperating sequential processes,” http://www.cs.
utexas.edu/users/EWD/ewd01xx/EWD123.PDF, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands, Tech. Rep. EWD-123, 1965.

[9] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Transactions
on Computer Systems, vol. 9, no. 1, pp. 21–65, February 1991.

[10] B. Lewis and D. J. Berg, PThreads Primer: A Guide to Multithreaded
Programming. SunSoft Press, 1996.

[11] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection
of processes,” in Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages. ACM, 1977, pp. 55–59.

[12] M. Merritt and G. Taubenfeld, “Speeding Lamport’s fast mutual exlusion
algorithm,” Information Processing Letters, vol. 45, pp. 137–142, March
1993.

[13] M. M. Michael and M. L. Scott, “Fast mutual exclusion, even with
contention,” University of Rochester, Computer Science, Tech. Rep. 460,
June 1993.

[14] L. Lamport, “A fast mutual exclusion algorithm,” ACM Transactions on
Computer Systems, vol. 5, no. 1, pp. 1–11, May 1987.

[15] M. P. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 13, no. 1, pp. 123–149, January
1991.

[16] Intel Architecture Software Developer’s Manual, Intel Corporation, Santa
Clara, California, USA, 2016.

[17] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote core
locking: Migrating critical-section execution to improve the performance
of multithreaded applications,” in Proceedings of the 2012 USENIX
Annual Technical Conference (ATC ’12). USENIX, 2012, pp. 65–76.

[18] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang,
“Corey: An operating system for many cores,” in Proceedings of the
8th Conference on Operating Systems Design and Implementation (OSDI
’08). USENIX, 2008, pp. 43–57.

[19] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital
design,” in Proceedings of the 1994 Symposium Low Power Electronics.
IEEE, 1994, pp. 8–11.

[20] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu,
M. J. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s
law meets static power,” IEEE Computer, vol. 36, no. 12, pp. 68–75,
December 2003.

[21] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat, “SEEP:
Exploiting symbolic execution for energy-aware programming,” ACM
SIGOPS Operating Systems Review, vol. 45, no. 3, pp. 58–62, December
2011.

[22] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, “Koala:
A platform for OS-level power management,” in Proceedings of the 4th
European Conference on Computer Systems (EuroSys ’09). ACM, 2009,
pp. 289–302.

[23] T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy-aware microprocessor
synchronization: Transactional memory vs. locks,” in Proceedings of the
4th Workshop on Memory Performance Issues (WMPI ’06). IEEE, 2006,
pp. 1–7.

[24] S. H. Kim, S. H. Lee, M. Jun, B. Lee, W. W. Ro, E.-Y. Chung, and J.-
L. Gaudiot, “Energy efficient synchronization for embedded multicore
systems,” IEEE Transactions on Computers, vol. 63, no. 8, pp. 1962–
1974, August 2014.

[25] R. Nishtala, D. Mossé, and V. Petrucci, “Energy-aware thread co-
location in heterogeneous multicore processors,” in Proceedings of the
11th International Conference on Embedded Software (EMSOFT ’13).
ACM/IEEE, 2013, pp. 1–9.

[26] L. Santinelli, M. Marinoni, F. Prosperi, F. Esposito, G. Franchino,
and G. Buttazzo, “Energy-aware packet and task co-scheduling for
embedded systems,” in Proceedings of the 10th International Conference
on Embedded Software (EMSOFT ’10). ACM/IEEE, 2010, pp. 279–
288.

[27] T. Hönig, H. Janker, O. Mihelic, C. Eibel, R. Kapitza, and W. Schröder-
Preikschat, “Proactive energy-aware programming with PEEK,” in Pro-
ceedings of the 2014 Conference on Timely Results in Operating Systems
(TRIOS ’14). USENIX, 2014, pp. 1–14.

[28] D. P. Friedman and D. S. Wise, “The impact of applicative programming
on multiprocessing,” in Proceedings of the International Conference on
Parallel Processing (ICPP ’76). IEEE, 1976, pp. 263–272.

[29] A. Kogan and E. Petrank, “Wait-free queues with multiple enqueuers and
dequeuers,” in Proceedings of the 2011 Annual Symposium on Principles
and Practice of Parallel Programming (PPoPP ’11). ACM, 2011, pp.
223–233.

http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

	Introduction
	Background
	Implementation and Evaluation
	Synchronisation Methods
	Energy Measurement Procedure
	Experimental Setup
	Total Energy Demand
	Active vs. Passive Waiting
	Guards vs. Locks
	Performance
	Energy to Performance Trade-off

	Isolated Application Energy Demand
	Active vs. Passive Waiting
	Mutexes vs. Guards
	Energy to Performance Trade-off

	Analysis

	Related Work
	Conclusion
	Appendix: Guarded sections
	References

