
Effectiveness of Software-Based Hardening
for Radiation-Induced Soft Errors in

Real-Time Operating Systems

Thiago Santini1, Christoph Borchert2, Christian Dietrich3, Horst Schirmeier2,
Martin Hoffmann3, Olaf Spinczyk2, Daniel Lohmann3, Flávio Rech Wagner4,

and Paolo Rech4

1 University of Tübingen, Tübingen, Germany
2 Technische Universität Dortmund, Dortmund, Germany

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
4 Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Abstract. For decades, radiation-induced failures have been a known
issue for aero-space systems, in which redundancy mechanisms are em-
ployed as a protection method. Due to the shrinking of structures and
operating voltages, these failures are increasingly becoming an issue even
for terrestrial applications. Unfortunately, redundancy increases costs,
area usage, and power consumption, which can hinder its utilization in
cost- and power-sensitive safety-critical applications, such as automotive.
To overcome this limitation, multiple software-based approaches have
been proposed, which assume the existence of an underlying error-free
operating system. In this paper, we investigate the radiation reliability
of two dependability-oriented real-time operating systems, namely, the
popular eCos operating system hardened through aspect-oriented pro-
gramming methods, and dOSEK, an embedded kernel designed from
the ground up having reliability as a major concern. Both operating
systems were evaluated through extensive neutron-beam testings on a
28nm ARM-based state-of-the-art system-on-chip, and their fault toler-
ance mechanisms reached reductions in the overall cross-sections relative
to their baselines up to 91 percent and 74 percent, respectively.

1 Introduction

Commercial-Off-The-Shelf (COTS) systems have become a valid alternative to
specific radiation-hardened devices in safety-critical applications, like biomed-
ical implantable devices, automotive control systems, and aircraft or satellite
stabilizer and control circuitry. For instance, the spacecraft onboard computer
in NASA’s PhoneSat nano-satellite is built around COTS smartphones running
the Android operating system [9]. The main reason for preferring a COTS device
is that hardened devices are typically very expensive, as they require unique
circuit design and lithography to meet the reliability requirements, and the
produced volumes are very low. On the contrary, COTS components are low
cost, flexible, and provide fast time-to-market as well as low power consumption.



2

Nonetheless, when reliability is a major concern, the use of general-purpose
devices must be carefully evaluated. As technology scales down, CMOS devices
are becoming more susceptible to soft errors induced by ionizing particles; in fact,
nowadays radiation-induced failures are a concern not only in radiation-harsh
environments, such as the space, but also in milder environments, such as at sea
level. High-energy neutrons generated by the interaction of cosmic rays with the
terrestrial atmosphere may in fact have enough energy to corrupt data stored in
SRAM memories or to affect logic computations [2]. This is especially relevant in
cost-sensitive domains, such as the automotive sector. Here, efficiency in terms of
per-unit-prices is a key criterion, so full hardware redundancy can be prohibitively
expensive. One of the proposed approaches to circumvent these limitations in a
cost-effective and flexible way is through software-implemented fault tolerance,
such as software-based redundant multi-threading [28] and process-level redun-
dancy [25]. These approaches assume a fault-free underlying operating system.
However, an operating system (OS) must keep several data structures containing
critical data and pointers, such as device and file descriptors, memory information,
and process list, which are very likely to lead to a device functional interruption
if corrupted [8], thus making OSs particularly sensitive.

In this context, two approaches have been recently proposed in order to estab-
lish a reliable underlying operating system for real-time embedded computing: 1)
a version of the popular eCos operating system hardened through aspect-oriented
programming methods [4], and 2) dOSEK, an embedded kernel designed from the
ground up with reliability as first-class design goal [12]. These approaches have
been evaluated through ISA-level fault injection with the FAIL* [23] framework
based on an IA-32 platform emulator and assuming a single-bit fault model over
the entire fault space of the architectural view from the software’s perspective (i.e.,
in the main memory as well as instruction pointer, general-purpose, stack, and
flags registers). In this work, we expand on these evaluations through extensive
neutron-beam testing on a 28 nm ARM-based state-of-the-art system-on-chip.
Our main contributions are: 1) Cross-section data to help the device charac-
terization. These data complement the information provided by sources that
investigate the selected device’s radiation sensitivity, such as its bit [19,15], cache
memories [20], and general purpose operating systems [22] cross-sections. 2) A
realistic evaluation of the radiation-reliability of the proposed OS mitigation
approaches. Our experimental evaluation uses the ARM architecture, which is
very common on the actual targets in the embedded domain. We provide expected
Failure In Time (FIT) values in Section 4.3.

2 Background

2.1 eCos and Software-Implemented Fault Tolerance

For this study, we chose the off-the-shelf operating system eCos [16] as a typi-
cal representative for embedded real-time operating systems. eCos (embedded
Configurable operating system), as the name suggests, offers configurability at



3

compile time of various system components, such as file systems and network-
ing, resulting in roughly one million lines of C/C++ code. To apply software-
implemented fault-tolerance to such an enormous code base, we chose two generic
error-detection and error-correction mechanisms with transparent compiler sup-
port – a manual implementation in C/C++ would be infeasible. 1 Generic
Object Protection (GOP): The principle of GOP [5,3] is to introduce redun-
dancy into the program data structures to implement an error-correcting code. In
this study, we use a Hamming code [10], since it can be efficiently implemented
in software by bit-slicing [24]. The implementation processes 32 bits in parallel,
which allows for correction of multi-bit errors, in particular, all burst errors up to
32 bits. At program run time, the Hamming code gets verified before an instance
of a data structure (C++ object) is used. Then, after object usage and potential
data modification, the Hamming code gets updated. The object-oriented software
structure of the eCos kernel restricts data access to member functions of a data
structure. Thus, it suffices to carry out checks before member-function calls and
to update the Hamming code after the member function has returned. GOP is
implemented by means of Aspect-Oriented Programming [14], which allows for a
completely modular implementation separated from the eCos source code. The
AspectC++ [27] compiler automatically inserts the protection rules at compile
time. 2 Stack Checksum: The second fault-tolerance mechanism applied to
eCos is a 32-bit checksum for stack memory. When the eCos kernel preempts a
thread of control, or when a thread blocks while waiting for a semaphore, a check-
sum covering the thread’s occupied stack memory is attached to the thread. When
the thread is eventually resumed, the checksum gets verified. Thus, errors cor-
rupting the stack memory while a thread is inactive are detected. Please note that
extending this mechanism to error correction is straightforward by implementing
a Hamming code similar to the GOP. Finally, the Stack Checksum mechanism
is also implemented as a generic module in AspectC++, which instruments the
eCos-kernel source code with minimal effort from the programmer.

2.2 dOSEK – A Soft-Error Resilient OS

As our second system, we chose dOSEK [12], a framework for generating de-
pendable real-time kernels. The first-class design objective during the system
development was resilience against soft-errors. In previous (exhaustive) fault-
injection campaigns, the usage of dOSEK reduced the rate of undetected failures
by multiple orders of magnitude.

dOSEK adheres to the OSEK-OS [18] specification, a standardized kernel
Application Programing Interface (API) developed by the automotive industry.
OSEK systems are specified declaratively: the number and configuration of
threads, alarms, interrupts, resources, and events is known at compile time.
dOSEK, following the tradition of OSEK system generators, exploits this static
application knowledge to foster dependability. Furthermore, two basic design
principles were also applied: removal of unnecessary indirections and integration
of active dependability measures.



4

Like eCos, dOSEK provides static configurability at compile time. We used
three configuration sets of dependability measures in our test setup. 1 Baseline:
All system objects are allocated statically; pointer indirection is avoided wherever
possible; the kernel is activated through a supervisor call, but executed only
with user privileges; inside the kernel, function calls are avoided by massive
inlining. 2 Encoded: On top of the baseline, specialized data protection is
applied: checksums for thread contexts, parity bits for saved stack pointers, and
dual-modular redundancy (DMR) for counters. For the scheduler, ANB encoding
was applied, an active measure that protects data flow as well as the control flow. 3
Asserts: On top of the baseline, application-specific protection mechanisms were
added. By system-wide static analysis, knowledge about the dynamic behavior of
the application-kernel interaction was extracted and run-time assertions to check
for compliance were injected.5

3 Experimental Methodology

In this work, we have opted to perform an evaluation of the proposed approaches
through accelerated radiation testing. Radiation testing does not restrain faults
to a single part of the chip, whereas fault injection can be performed only on
a selection of user-accessible resources for those devices, like COTS, for which
an Register Transfer Level (RTL) description is not usually available. Moreover,
although simulators and emulators allow a more controlled fault injection, they
are always an oversimplification of the physical reality and, thus, cannot replace
radiation tests for Radiation Hardness Assurance (RHA) testing [11].

3.1 Device Under Test

The Device Under Test (DUT) is the Xilinx ZynqTM-7000 AP System-on-Chip
(SoC) implemented in a 28 nm CMOS technology. The DUT disposes of two
ARM R©CortexTM-A9 cores with a maximum frequency of 667MHz. Each core
has 32KiB Level 1 4-way set-associative instruction and data caches, and they
share a 512KiB 8-way set-associative Level 2 cache [7]. During tests, only a single
core (CPU0 ) was used. Parity checking was disabled for both cache levels to allow
the assessment of the investigated approaches in the absence of hardware-based
protection mechanisms. It is paramount to note that only the SoC chip was
irradiated (i.e., the external DRAM chips were not irradiated). Both OSs were
tested under heavy load, and the amount of threads and resources employed was
selected as to fill up the cache memories in order to maximize attack surface.

5 The Baseline and the Encoded variants are based on and discussed in more detail
in [12], whereas the static application analysis and the system-state assertions are
based on and detailed in [6].



5

3.2 eCos Configuration and Benchmarks

We used a port of eCos 3.0 for the aforementioned Zynq6 hardware platform and
selected a minimal configuration of eCos without unneeded device drivers. In
addition, we ignored spurious device interrupts. To reduce corruption of program
instructions, we disabled the instruction caching at the L2 cache (only allowing
L2 data caching), and the L1 instruction cache was regularly invalidated before
interrupt processing. For the evaluation of the OS under heavy load, we selected
two benchmarks, both supporting a parameterizable number of threads, selected
as to fill up the caches, from the kernel-test suite bundled with eCos itself:
bin_sem2 (BS) implements a classical synchronization problem known as
Dining Philosophers. We configured 400 threads (philosophers) that use 400 forks
(i.e., Cyg_Binary_Semaphore objects) for mutual exclusion (eating with two forks).
Once a philosopher acquires both neighboring forks, it checks by an assertion
that neighboring philosophers are not in the eating state. After a pseudo-random
delay, the philosopher releases both forks and tries again for 25,000 iterations.
timeslice2 (TS) verifies that the per-thread time-slice distribution works
under preemption. We configured 800 low-priority threads that continuously
increment a per-thread counter, and a single high-priority thread is scheduled at
regular intervals to preempt the other threads. The benchmark finishes after a
predetermined period of time, such that each low-priority thread should have
received two time slices. Finally, an assertion tests whether all threads have run.

These benchmarks were evaluated with two eCos variants: a baseline variant
with no protection mechanisms, and a variant hardened through the methods
described in section 2.1. bin_sem2 has a baseline run time of 1.98 seconds,
whereas the hardened variant has a run time of 2.08 seconds (an overhead of
4.745%). timeslice2 has a baseline run time of 1.6 seconds, whereas the hardened
variant has a run time of 1.65 seconds (an overhead of 2.932%).

3.3 dOSEK Configuration and Benchmark

We ported the dOSEK system generator to the ARM platform used on the
Zynq hardware while preserving dOSEK’s basic design principles. To ease the
comparison with the eCos benchmark, we did not use the MMU to provide spatial
isolation between the OSEK threads. Privilege isolation was used to execute
kernel and application in user mode; only kernel entry and thread dispatching
were executed with supervisor privileges.

As benchmark, we generated an application compliant with the OSEK BCC1
conformance class, consisting of 250 threads organized in 125 pairs. The test case
was designed to particularly fill up the cache, which is hit by the neutron beam,
with OS state. Each thread pair has a lower-priority non-preemptable thread
(L-thread) and a high-priority thread (H-thread). We configured 250 alarms
connected to 250 OSEK counter objects; 125 counters are driven by a hardware
timer and activate the L-thread. The other 125 counters are incremented by

6 https://github.com/antmicro/ecos-mars-zx3/

https://github.com/antmicro/ecos-mars-zx3/


6

the L-threads and activate the associated H-thread on alarm expiration. The
periods and phases for the alarms were shuffled once by a pseudo-random number
generator. Besides the pair coupling, we also added (pseudo-randomly) cross-
dependencies between pairs: a L-thread activates the H-thread of another pair;
a H-thread chains its execution to another pair’s L-thread; a L-thread waits
actively for another H-thread to set a global variable. In total, 42 such cross
dependencies were introduced.

During execution, each thread queries its associated alarm value, applies some
calculation to it, and hashes the result and its thread ID onto a global CRC32
checksum. The hash update operation is protected by an OSEK non-preemptable
critical section. After 1500 hash updates, the application asserts that the resulting
hash equals to a golden value calculated at compilation time. Both, checksum
storage and hash update counter are protected with triple-modular redundancy.

The exactly same application was evaluated with the three variants of dOSEK
described in section 2.2, namely, Baseline, Encoded, and Asserts. All variants
exhibited a similar run time (≈ 3.42 s). Since the kernel run time is orders of
magnitude smaller than the application run and idle time, the incurred run-time
penalties of the additional protection measures can be considered negligible.

3.4 Experimental Setup

Radiation experiments were performed at Los Alamos National Laboratory
(LANL) in the Los Alamos Neutron Science Center (LANSCE) Irradiation of
Chips and Electronics House II, called ICE House II. The ICE House II beam
line provides a white neutron source that emulates the energy spectrum of
the atmospheric neutron flux. The available neutron flux was approximately
1×106 n/(cm2s) for energies above 10MeV. The beam was focused on a spot with
a diameter of two inches, which provided uniform irradiation of the SoC, without
directly affecting nearby board power control circuitry and DRAM chips.It is
worth noting that, even if the flux of neutrons at ICE House II is several orders
of magnitude higher than the natural one at sea level (which is estimated to be
about 13 n/(cm2h) [13]), the test was tuned to make negligible the probability of
having more than one neutron generating a failure in one single code execution
(estimated through the method described in [21] to be no higher than 1.38×10−5

errors/execution). This allows the scaling of experimental data in the natural
radioactive environment without introducing artificial behaviors.

To reduce the uncertainty of the experimental results, four DUTs were irradi-
ated in parallel.The four boards with the same hardware revision were aligned
with the beam, placed at 62, 64, 66.5, and 68.5 inches from the source, respectively.
A flux de-rating factor was calculated for each board to take beam degradation
due to the distance from the source into account. To minimize the statistical
error and to avoid experimental results biased on the selected board and distance
de-rating factor, the benchmarks were executed alternatively in all four devices.
In total, the boards received a fluence of 9.87×1011 n/cm2, thus receiving the
radiation equivalent to 8.67×106 years of exposure in the natural environment at
sea level. It is worth noticing that hardened variants received more beam time



7

than baseline ones. Since these systems are intrinsically less prone to errors, they
require longer testing times to achieve a statically significant amount of observed
errors.

A test manager application was responsible for collecting and time-stamping
incoming logs from the boards through UART connections. The test manager
application also served as a watchdog, responsible for detecting otherwise irrecov-
erable failure situations and rebooting the boards through an Ethernet controlled
switch. Whenever such situations happened, they were time-stamped and logged.
Irrecoverable situations are considered when the board exceeds a time-out much
larger than the application execution time without sending successful execution
logs.

4 Experimental Results

We report our results as cross-sections. The cross-section σ is the most widely
used metric to evaluate a device radiation sensitivity and is evaluated by dividing
the amount of observed errors by the particle fluence (n/cm2) received by the
device. By definition, the cross-section, expressed in cm2, is the device sensitive
area – that is, the area that generates a failure if hit by an impinging particle [2].
Values are shown with relative intervals to account for the failure rate estimation
error (95% CI) and neutron count uncertainty.

The outcome of each application run was classified as benign or malign. Benign
executions are those in which the expected output was produced, or an error was
detected before it could lead to a Silent Data Corruption (SDC) or Functional
Interruption (FI). Malign executions are those in which a SDC was produced (e.g.,
one of the assertions described in sections 3.2 and 3.3 failed, garbage was found
in the output) or a FI occurred (e.g., the board rebooted by itself, no correct
output was produced before the test manager watchdog ran out). Each malign
execution was accounted as a single error when calculating cross-sections and
only if the preceding execution was benign. For the remainder of this paper, we
will use the term very rare to refer to events that had less than three occurrences
observed per benchmark; we consider their probability to be negligible and, since
we cannot draw any additional statistically significant conclusion about these
events, refrain from further discussing them. Events with zero occurrences are
explicitly shown through a cross-section of 0.

4.1 eCos

As shown in Fig. 1a, the hardening resulted in a reduction in the overall cross-
section by a factor of at least 55% (upper TSHardened relative to the lower
TSBaseline) up to 91% (lower BSHardened relative to the upper BSBaseline).

Table 1 details the possible outcomes for each benchmark run, and the overall
cross-section is broken down into its contributors in Fig. 1b. The occurrences
of rst and scorr were very rare. From the remaining (and major) cross-section
contributors, it is clear that in all cases tout occurrences are fairly more probable



8

than fail ones. In other words, a system hang (the system stops producing any
output) was more common than an SDC. These hangs likely originate from illegal
memory accesses and jumps; invalid data accesses can leave the system in a
corrupt state, and deviant instruction accesses (e.g., stemming from corrupted
return addresses in the stack) can lead to the execution of arbitrary code, both
likely to stop the system from producing an output in a timely manner. Moreover,
both the eCos kernel and the application run in supervisor mode [16], which can
exacerbate this effect since invalid accesses from the application do not cause the
OS to terminate the application.

The hardening had similar effects in both applications: fail became a very
rare event, whereas tout occurrences were significantly reduced. Unfortunately, it
is not possible to establish one-to-one relationships between the employed fault-
tolerance mechanisms and the malign events reduction due to the Architectural
Vulnerability Factor (AVF) [17]; in other words, there are errors that are corrected
by the employed mechanisms that would not influence the system in an observable
way. In fact, the cross-section for correction/detection events (≈ 1.2× 10−8 for
both hardened benchmarks) is much larger than those of malign events for
the baseline versions. Nonetheless, we break down the relative activations for
these mechanisms in Fig. 4.1. This figure suggests that stack data are the
largest attack surface for the BS benchmark, in contrast to the TS benchmark,
in which eCos class members data seem to present the largest attack surface.
Furthermore, it is worth noting that the d-trp cross-section for both benchmarks
(BSBaseline = 9.45×10−10 and TSBaseline = 1.01×10−9) were diminished with
the employment of the hardening mechanisms (BSHardened = 2.66×10−10 and
TSHardened = 1.42×10−10), showing a replacement of generic hardware traps
by more specific detection mechanisms, which could be more easily corrected if
possible and desired.

Table 1. Possible outcomes for the
eCos benchmarks

Baseline Hardened Description

ok X X Successful run
okcor - X GOP corrected

d-gop - Detect GOP (uncor-
rectable)

d-stk - Detect Wrong stack
checksum

d-trp Detect Detect Hardware trap

fail SDC SDC Application asser-
tion failed

scorr SDC SDC Serial corrupted
rst FI FI Board rebooted

tout FI FI Timeout without
output

 0

 20

 40

 60

 80

 100

d-stk okcor d-gop d-trp d-stk okcor d-gop d-trp

A
ct

iv
a
ti

o
n
 R

a
te

 (
%

)

BS TS

61.06

25.72

11.09

2.14

27.65

54.90

16.27

1.19

Fig. 2. Relative activations for the de-
tection/correction mechanisms for the
hardened benchmarks versions.



9

0

5.0x10-10

1.0x10-09

1.5x10-09

2.0x10-09

BSBaseline BSHardened TSBaseline TSHardened

C
ro

ss
-S

e
ct

io
n
 (

cm
2
)

(a)

1.0x10-11

1.0x10-10

1.0x10-09

BSBaseline BSHardened TSBaseline TSHardened

C
ro

ss
-S

e
ct

io
n
 (

cm
2
)

0 0 0

fail scorr tout rst

(b)

Fig. 1. Overall cross-sections for the bin_sem2 (BS) and timeslice2 (TS) benchmarks
(a) as well as their comprehensive cross-section list (b); note the y-semilog scale on (b).

4.2 dOSEK

In Fig. 3a, the overall cross-section of the observed errors is shown for all three
variants. The application-specific assertions reduce the cross-section by at least
0.93% (upper Asserts relative to lower Baseline) up to 64% (lower Asserts relative
to upper Baseline); the kernel encoding by at least 28% up to 74%.

Each application run was classified into one of the categories from Table 2.
Fail, scorr, rst, and tout are counted as errors and contribute to the overall
cross-section, which is broken down in Fig. 3b. The results for dOSEK are similar
to eCos: Occurrences of scorr were very rare, and rst events did not occur. A
hanging system was more likely than a failing one, whereas Asserts and Encoded
significantly reduced these tout events. The actual fail cross-section was reduced
at least by 33% (Asserts) up to 92% (Encoded).

It is noteworthy that in both variants the detection was mainly driven by
a single measure: the detection for the Assert variant (σ = 8.57 × 10−10) is
dominated by the introduced assertions (76%). For the Encoded variant, detection
(σ = 1.32× 10−9) stems mainly from the ANB-encoded scheduler (68%). Both
observations are in accordance with the simulated fault-injection experiments.

4.3 FIT Figures

As mentioned in Subsection 3.4, due to the characteristics of our neutron source
and failure rate, it is possible to scale our experimental results to Earth’s natural
environment. Table 3 reports the worst-case FIT figures at sea level given the
measured cross-sections, expressed as errors per billion hours of device operation.
These values represent a reference for evaluating if the tested device meets the
reliability requirement of a project based on the environment of operation and



10

0

5.0x10-10

1.0x10-09

1.5x10-09

2.0x10-09

Baseline Asserts Encoded

C
ro

ss
-S

e
ct

io
n
 (

cm
2
)

(a)

1.0x10-11

1.0x10-10

1.0x10-09

Baseline Asserts Encoded

C
ro

ss
-S

e
ct

io
n
 (

cm
2
)

0 0 0

fail scorr tout rst

(b)

Fig. 3. Overall cross-sections for the three dOSEK variants (a) as well as their
comprehensive cross-section list (b); note the y-semilog scale on (b).

the relevant functional safety standard (e.g., ISO 26262 [1]).

Table 2. Possible outcomes for the
dOSEK variants.

Baseline Encoded Asserts Description

ok X X X Successful run

d-xor - Detect - Thread context
checksum

d-dmr - Detect - Counters DMR

d-anb - Detect - Scheduler ANB
encoding

d-par - Detect - Saved stack
pointer parity

d-sta - - Detect dOSEK asser-
tion failed

d-log Detect Detect Detect Impossible con-
trol flow

d-trp Detect Detect Detect Hardware trap

d-unk Detect Detect Detect Spurious fault
detection hook

fail SDC SDC SDC Application as-
sertion failed

scorr SDC SDC SDC Serial corrupted
rst FI FI FI Board rebooted

tout FI FI FI Timeout with-
out output

Table 3. FIT at sea level for en-
ergies higher than 10MeV (Flux
≈ 13 n/(cm2h) [13]).

OS Variant FIT

Baseline / bin_sem2 26.65
Hardened / bin_sem2 5.53
Baseline / timeslice2 17.68

eCos

Hardened / timeslice2 5.01
Baseline 20.02
Asserts 12.40dOSEK
Encoded 8.98

5 Final Remarks

In this paper, we evaluated the radiation reliability of two dependability-oriented
real-time operating systems and the efficacy of their fault-tolerance mechanisms.
Both investigated approaches (eCos and dOSEK) exhibited a significant reduction
in the overall cross-section (up to 91 percent and 74 percent relative to the baseline
variants, respectively), attesting for the capabilities of the investigated fault-
tolerance mechanisms for usage at an environment with similar neutron flux to



11

the terrestrial one. In fact, the baseline versions would limit the Safety Integrity
Level (SIL) of the Equipment Under Control (EUC) in continuous operation
mode at sea level to IEC61508 SIL 3 – i.e., within (10−7, 10−8] failures per
hour [26]. In contrast, the hardened eCos variant and dOSEK Encoded variant
would mitigate enough faults as to allow the EUC to attain SIL 4 (i.e., within
(10−8, 10−9] failures per hour), the highest SIL7. It is worth noticing that we
cannot directly compare the results for eCos to those of dOSEK because the
evaluation is highly dependent on the application. In retrospect, it would have
been more advantageous to have used exactly the same application to evaluate
both operating systems. Nonetheless, the evaluated applications are conceptually
similar (in the sense that they stress-test the kernel scheduling, preemption, and
timer functionalities), and the investigated approaches exhibited failure rates in
the same order of magnitude. Furthermore, due to massive function inlining to
avoid run time indirections, the code size of dOSEK is two orders of magnitude
higher than that of eCos, and it is worth noticing that the protection mechanisms
applied to harden eCos are generic and can be applied to other object-oriented
C++ programs easily.

As future work, we plan to extend the FAIL* framework to evaluate the
systems here evaluated through fault injection campaigns. The intention of this
future work is threefold: 1) to corroborate FAIL* and the accelerated radiation
tests, 2) to better comprehend the way in which these OSs fail and help developing
further fault tolerance mechanisms, and 3) to provide an open framework to
evaluate the reliability of ARM-based processors.

References

1. ISO/DIS 26262. Tech. rep. (2011)
2. Baumann, R.: Soft errors in advanced computer systems. IEEE Design & Test of

Computers 22(3) (2005)
3. Borchert, C., Spinczyk, O.: Hardening an L4 microkernel against soft errors by

aspect-oriented programming and whole-program analysis. In: Proc. of the 8th
Workshop on Programming Languages and Operating Systems. ACM (2015)

4. Borchert, C., et al.: Generative software-based memory error detection and correc-
tion for operating system data structures. In: Dependable Systems and Networks
(DSN), 2013 43rd Annual IEEE/IFIP Int. Conf. on. pp. 1–12. IEEE (2013)

5. Borchert, C., et al.: Generic soft-error detection and correction for concurrent data
structures. IEEE Trans. on Dependable and Secure Computing PP(99) (2015)

6. Dietrich, C., et al.: Cross-kernel control-flow-graph analysis for event-driven real-
time systems. In: Proc. of the Conf. on Languages, Compilers and Tools for Em-
bedded Systems (LCTES ’15). ACM (Jun 2015)

7. Digilent: Zedboard data sheet overview (2014), http://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

7 It is important to notice that this is based solely on the estimated failure rate figures
and assuming all failures could lead to dangerous consequences; no hazard and risk
assessment was carried out, nor was the software tested for coverage; we do not claim
the EUC to achieve these SILs.

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf


12

8. Gu, W., et al.: Characterization of Linux kernel behavior under errors. In: Int. Conf.
on Dependable Systems and Networks (DSN). IEEE (2003)

9. Guillen Salas, A., et al.: PhoneSat in-flight experience results. In: Proc. of the Small
Satellites and Services Symp. (May 2014)

10. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Journal 29(2), 147–160 (1950)

11. Herrera-Alzu, I.e.a.: System design framework and methodology for Xilinx Virtex
FPGA configuration scrubbers. IEEE Trans. on Nucl. Sci. 61(1), 619–629 (2014)

12. Hoffmann, M., et al.: dOSEK: The design and implementation of a dependability-
oriented static embedded kernel. In: Proc. of the 21st Real-Time and Embedded
Technology and Applications (RTAS ’15). pp. 259–270. IEEE (Apr 2015)

13. JEDEC Solid State Technology Association: JESD89-3A: Test Method for
Beam Accelerated Soft Error Rate (Nov 2007), http://www.jedec.org/
standards-documents/docs/jesd-89-3a

14. Kiczales, G., et al.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
11th European Conf. on Object-Oriented Programming (ECOOP ’97). LNCS, vol.
1241, pp. 220–242. Springer (Jun 1997)

15. Lesea, A., et al.: Soft error study of ARM SoC at 28 nanometers. Proc. of the IEEE
Workshop on Silicon Errors in Logic - System Effects, 2014 (2014)

16. Massa, A.: Embedded Software Development with eCos. Prentice Hall Professional
Technical Reference (2002)

17. Mukherjee, S.S., et al.: A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In: Proc. of the 36th
annual IEEE/ACM Int. Symp. on Microarchitecture. IEEE (2003)

18. OSEK/VDX Group: Operating system specification 2.2.3. Tech. rep. (Feb 2005),
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29

19. Quinn, H., et al.: Single-event effects in low-cost, low-power microprocessors. In:
Radiation Effects Data Workshop (REDW), 2014 IEEE. pp. 1–9 (July 2014)

20. Santini, T., et al.: Reducing embedded software radiation-induced failures through
cache memories. In: Test Symp. (ETS), 2014 19th European. pp. 1–6. IEEE (2014)

21. Santini, T., et al.: Beyond cross-section: Spatio-temporal reliability analysis. ACM
Trans. Embed. Comput. Syst. 15(1), 3:1–3:16 (Dec 2015)

22. Santini, T., et al.: Exploiting cache conflicts to reduce radiation sensitivity of
operating systems on embedded systems. In: Proc. of the Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems. pp. 49–58. CASES, IEEE (2015)

23. Schirmeier, H., et al.: FAIL*: An open and versatile fault-injection framework for
the assessment of software-implemented hardware fault tolerance. In: Proc. of the
11th European Dependable Computing Conf. pp. 245–255. IEEE (Sep 2015)

24. Shirvani, P.P., et al.: Software-implemented EDAC protection against SEUs. IEEE
Trans. on Reliability 49(3), 273–284 (Sep 2000)

25. Shye, A., et al.: PLR: A software approach to transient fault tolerance for multicore
architectures. IEEE Trans. on Dependable and Secure Computing (2009)

26. Smith, D.J., Simpson, K.G.: SAFETY CRITICAL SYSTEMS HANDBOOK: a
straightfoward guide to functional safety, IEC 61508 and related standards, including
process IEC 61511 and machinery IEC 62061 and ISO 13849. Elsevier (2010)

27. Spinczyk, O., Lohmann, D.: The design and implementation of AspectC++.
Knowledge-Based Systems, Special Issue on Techniques to Produce Intelligent
Secure Software 20(7), 636–651 (2007)

28. Wang, C., et al.: Compiler-managed software-based redundant multi-threading
for transient fault detection. In: Proc. of the Int. Symp. on Code Generation and
Optimization. pp. 244–258. CGO ’07, IEEE (2007)

http://www.jedec.org/standards-documents/docs/jesd-89-3a
http://www.jedec.org/standards-documents/docs/jesd-89-3a
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

	 Effectiveness of Software-Based Hardening for Radiation-Induced Soft Errors in Real-Time Operating Systems 
	Introduction
	Background
	eCos and Software-Implemented Fault Tolerance
	dOSEK – A Soft-Error Resilient OS 

	Experimental Methodology
	Device Under Test
	eCos Configuration and Benchmarks
	dOSEK Configuration and Benchmark
	Experimental Setup

	Experimental Results
	eCos
	dOSEK
	FIT Figures

	Final Remarks


