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Abstract—Reliable and fine-grained cost-models are funda-
mental for real-time systems to statically predict worst-case
execution time (WCET) estimates of program code in or-
der to guarantee timeliness. Analogous considerations hold for
energy-constrained systems where worst-case energy consump-
tion (WCEC) values are mandatory to ensure meeting predefined
energy budgets. These cost models are generally unavailable for
commercial off-the-shelf (COTS) hardware platforms, although
static worst-case analysis tools require those models in order to
predict the WCET as well as the WCEC of program code.

To solve this problem, we present NEO, an end-to-end toolchain
to automate cost-model generation for both WCET and WCEC
analyses. NEO exploits automatically generated benchmarks,
which are input for 1) an instruction-level emulation and
2) automatically conducted execution-time and energy-consum-
ption measurements on the target platform. The gathered val-
ues (i.e., occurrences per instruction, execution-time and energy-
consumption per benchmark) are combined as mathematical
optimization problems. The solutions to the formulated problems,
which are designed to reveal the worst-case behavior, yield the
respective cost models. To statically determine upper bounds
of benchmarks, we integrated the cost models into the state-
of-the-art WCET analyzer PLATIN. Our evaluations on COTS
hardware reveal that our open-source, end-to-end toolchain NEO
yields accurate worst-case bounds.

I. INTRODUCTION & PROBLEM STATEMENT

Time and energy are prime resources for embedded com-
puting systems. On the one hand, embedded real-time systems
need to meet deadlines in order to operate accordingly to
specifications. On the other hand, today’s embedded systems
additionally have energy requirements that need to be satisfied.

It requires detailed knowledge on the runtime behavior of
the system software to implement efficient resource man-
agement for embedded systems. To analyze system software
components for their resource requirements, developers have
to carry out various analyses. This includes but is not limited
to exhaustive timing- and energy-consumption analyses. De-
termination of time and energy requirements of program code
therefore is an expensive and difficult task.

To facilitate the work required for the resource-requirements
analysis of system software, time and energy models are
commonly used to circumvent time-consuming measurements.
However, profound tooling support to generate time and en-
ergy models of embedded systems is yet missing.

Execution-Time Analysis. A challenging task for developing
real-time systems is the prediction of the worst-case execution
time (WCET) of programs. Data about the WCET of program
tasks is inevitable in such systems in order to guarantee the
schedulability of all program tasks, which means that no task
exceeds its deadline.

A widely used technique to determine execution bounds of
program code in real-time systems is the Implicit Path Enu-
meration Technique (IPET) [1]. Its core idea is the formulation
of an integer linear programming (ILP) problem from the
control-flow graph of the analyzed program. The solution of
the ILP yields the maximum possible flow through the graph,
which is an upper bound on execution frequencies of basic
blocks. For the low-level target-dependent hardware analysis,
the IPET requires accurate information on upper execution
times for each basic block, which needs to be provided by a
fine-grained (i.e., instruction-level) cost model.

Usually, documentation on the timing behavior of proces-

sors is not available for commercial off-the-shelf (COTS)
hardware platforms. However, even if an instruction-level ex-
ecution model is provided by the platform’s reference manual,
this documentation can be incorrect: Atanassov et al. [2]
have proven that documented execution times of instructions
may include underestimations and demonstrated that for an
embedded hardware platform.
Energy-Consumption Analysis. In analogy to WCET analy-
sis, worst-case energy consumption (WCEC) analysis of pro-
gram code, requires energy-cost models for static analyses in
order to guarantee the execution of programs within predefined
energy bounds [3]. This is especially crucial for energy-
constrained devices for the Internet of Things (IoT).

For these static WCEC analyses, techniques from the do-
main of real-time systems, such as the IPET, can be adapted.
However, a safe determination of WCEC estimates is not
possible from an existing WCET estimation by multiplying
the execution time with an average power consumption of
the system [4]. As a consequence, specialized cost models on
energy-consumption are inevitable to precisely predict worst-
case energy consumption of tasks.

Documentation on energy-consumption costs is even less
available than it is on the timing behavior of embedded target
platforms. This is also due to the fact that power consumption
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Fig. 1: NEO uses CSMITH to automatically generate benchmarks. The programs are executed on the target platform while
time and energy are measured by the MEASUREALOT tool. The binaries are simulated on the virtual machine FAUMACHINE
to gather the concretely executed instructions. These counters and the measurements are considered to solve the optimization
problem yielding time and energy models of the target platform. These models are used in the worst-case analyzer PLATIN.

is heavily influenced by the actual wiring of each component
in the system. The energy-consumption models depend on the
static power consumption of peripherals (i.e., sensors) and thus
demand for automated measurement-based cost modeling.

Time- and Energy-Model Generation. Exact time- and
energy-cost models are the fundamental basis for both static
WCET and WCEC analyses. Since manually determining
reliable time and energy models is labor-intensive and error-
prone, an approach to generate these numbers for time- and
energy-consumption analyses of target platforms is necessary.

To solve this problem, we propose the NEO toolchain to au-
tomatically generate instruction-level time and energy models
for embedded COTS processors where documentation on low-
level timing and energy-consumption details is missing. Our
approach requires no a priori knowledge on the energetic and
temporal behavior of the target platform. The key contributions
presented in this paper are fourfold:

1) We present an approach to create accurate instruction-
level execution-time and energy-consumption models
based on automatic benchmark generation exploiting
mathematical optimization methods.

2) We demonstrate the practical applicability of the gener-
ated models through an integration of the models into
the generic, open-source WCET-analysis tool PLATIN.

3) We present comprehensive evaluations of the generated
cost models as well as static worst-case analyses with
these models validating the entire toolchain.

4) We provide our toolchain and the modifications on
existing tools under an open-source license, which also
includes analyzed floating-point libraries.

The paper is organized as follows: In Section II, we present
the main approach to cost-model generation. We discuss dif-
ferent optimization methods in Section III. Section IV shows
how the automatically generated models are integrated into an
open-source WCET analyzer. We evaluate the entire toolchain
of NEO in Section V and discuss related work in Section VI.
Section VII concludes our work.

II. APPROACH

The core of our contribution is an approach that automati-
cally generates instruction-level time and energy models for a
specific hardware platform. Our targeted hardware platforms
are small microcontrollers, such as ARM Cortex-MO0+ [5],
which are widely used in the area of IoT. Compared to
platforms with several memory hierarchies, these architectures
expose only limited inter-instruction effects and represent a
basic processor model for WCET analysis [6]. Nevertheless,
we show in our evaluation that the approach also works when
using a small amount of cache memory (see Section V).

A. Basic Overview

In the current implementation of NEO, we use the following
chain of tools, which is shown in the overview in Figure 1.

1) CSMITH [7] is used to automatically generate a huge
number of different C benchmark programs. Executa-
bles are created from these benchmarks for the target
platform. Nevertheless, arbitrary benchmark generators
are usable to create input data (e.g., [8]).

2) These benchmarks are executed in the virtual machine
FAUMACHINE [9] in order to gather the concrete num-
ber of instruction executions.

3) All benchmarks are concretely executed on the target
platform while the execution time and energy consump-
tion is being measured. For precise time and energy
measurements, we utilize MEASUREALOT [10].

4) An optimization problem is now formulated using the
numbers of executed instructions, the execution times,
and energy consumptions. These formulations focus on
extracting the worst-case scenarios and eventually yield
the instruction-level time and energy model. We use the
GUROBI optimizer [11] to solve these problems.

5) To finally yield upper bounds on execution time and
energy consumption of arbitrary program code, the au-
tomatically generated cost models for execution time and
energy consumption are integrated into the open-source
static worst-case analysis tool PLATIN [12].



We point out that the used worst-case analysis (i.e., IPET)
is sound [1]. However, our utilized cost models may be
unsound, due to the measurement-based approach to determine
the models. Nevertheless, as our evaluation reveals, with our
models for the Cortex-M0O+, we are able to determine upper
bounds of program code (see Section V-B).

B. Instruction-Level Time & Energy Models

For each kind of instruction 7 of a given instruction set I a
value T'PI; (time per instruction ¢) must be measured giving
the time the instruction needs for execution. Execution time
predictions are obtained by counting the instructions to be
executed and multiplying these numbers by the TPI model.
Instead of using TPI; for runtime prediction directly, we
are able to use the number of clock cycles per instruction
(CPI;) and time per cycle (7T'C), which satisfy the equation
TPI, = CPI; - TC. Similar to that, a value FEPI; for
each instruction forming the energy model is needed for
energy-consumption prediction. The values TPI; and EPI;
are normally measured by writing micro-benchmark programs
for each instruction and measuring their runtime and energy
consumption [13], [14], [15]. As the runtime and energy
consumption of a machine instruction is a very tiny quantity, it
is impossible to measure it directly. Instead, the instruction has
to be executed many times and the measured value has to be
divided by the number of executions. However, executing the
same instruction multiple times without any jump instruction
in between is very uncommon in code generated by standard
compilers. Hence loops have to be written with the instruc-
tion under test in the loop bodies. Moreover, the instruction
forming the loop influences the measures. Therefore, it is very
time consuming and error prone to write such benchmarks as
this has to be carried out for each machine instruction and has
to be repeated for each architecture [16].

The core idea of NEO here is to just run an arbitrary given
set of (generated) benchmarks. The only requirement is that
the benchmarks can be executed on the architecture under test
in reasonable time. Hence it is possible to use existing standard
benchmarks written in high-level programming language. The
unique benefit of the NEO’s modeling approach is that these
benchmark are generated automatically.

Runtime and energy-consumption measurements are per-
formed when running the benchmarks on the target platform.
This gives us the runtime (7}3) and energy consumption (Fj)
of each benchmark b of the benchmark suite B. The number
of each type of executed instruction is counted by a virtual
machine, which is represented by IC' ;, the instruction count
for benchmark b and instruction 3.

Using all these numbers we set up the equation system

IC1, ICi, ICy,,\ [TPI, T
ICyy  ICss ICy, | | TPI, T,
ICm,l IC'm,Q IC'm,n TPI’VL Tm

whereas n is the number of instructions and m the number of
benchmarks. This equation system will be referred to as

IC-TPI =T. (1)

Regarding energy consumption, the corresponding equation
system is described as

IC - EPI = E. )

Unfortunately, the following two problems arise:

1) Runtime 7} and energy consumption Ej, are measured
on the target platform and therefore not exact.

2) The values of T'PI; and EPI; are usually not constant
when considering different benchmarks b € B. On stan-
dard commercially available hardware they vary with the
parameters of the instruction and with the state of the
processor (i.e., the contents of the cache in case of 1oad
and store operations).

Due to these two problems, there is most likely no feasible
solution to Equation (1) and Equation (2). In the following
section we present mathematical optimization methods dealing
with the problems mentioned above.

III. OPTIMIZATION METHODS

The subsequent sections describe the mathematical opti-
mization methods that eventually yield the time and energy
models (i.e., TPI; and EPI;).

A. Least Squares
Instead of solving Equation (1) directly in order to get a
time model TPI;, we set up the equation system
IC-TPI -T =e. 3)

The main objective of this section is to minimize the error
vector e, such that there is a feasible T'PI for Equation (3).
Additionally, each T'PI; must be positive. This is done by
solving the following Quadratic Program:

min Z (%) ’

beB
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el
TPI; e Ry, i€l
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Every error e, is counted relatively to its runtime 73, since
every benchmark b is treated equally. We also call attention
to the fact that some improvements concerning numerical
stability might be necessary to solve (QP) properly. For
instance, in our case dividing every equation in (QP) by T3,
while Ty, itself is given in nanoseconds, is necessary. Since this
is a Convex Quadratic Program, it can be solved very fast, for
example by the Interior-Point Method [17].

As mentioned before, it is possible that instructions consume
more/less time for execution due to different parameters. For
example, in a pipeline without branch prediction, conditional
jump instructions take more time if the condition is true and



program control flow is transferred to a different location in
the program memory. Similar to that, the time to execute
load/store instructions varies depending on the state of
the cache. Furthermore, the time to execute one instruction is
an integer multiple of the clock cycle time (7'C) of the CPU
under test. Accurate clock cycle timers are available in all
processors nowadays. Therefore, since a TPI; computed by
solving (QP) is not an integer multiple of T'C' in general, we
can round it down and up obtaining integer lower (T'PI; y,:r)
and upper (JLPI i,maz) bounds for TPI;. Now, prediction of
the runtime 7}, of any program p is done by

> ICyi - TPLiin <Tp <> ICph; TPLimar. (4
i€l icl
This approach is referred to as Least Squares FC (floor and
ceiling) in our evaluation (see Section V).

B. Least Sum Of Errors

As the energy consumption of an instruction ¢ varies with
different parameters or the state of the processor, a minimal
(EPI; min) and a maximal (EPI; ,q,) energy consumption
exists for every instruction ¢. In order to get such values, we
propose the following Linear Program

. €b,min €b,max
HJHI:E: Afii:* + “zﬁ;*
beB beB
st. Y ICy; - EPL; pin + €hmin = By, bE B,
i€l
Z ICb,i ' Epli,maa: — €b,max = Eb7 be B7
iel (LP)
EP]’L,W’LTL - EP]i,ma:v S 07 (S Ia
EPI; min, EPI; oz € Ry, €1,
€b,mins €b,mazr € H§+, be B,

which can be solved very fast, for example by the Simplex
Algorithm [18]. Again, every error is counted relatively to
its energy consumption F; allowing every benchmark b to
have an equal impact. With values calculated by solving (LP),
prediction of the energy consumption £, of any program p is
done as in (4). This method is referred to as Least Sum in the
evaluation section.

IV. INTEGRATING MODELS INTO PLATIN

The Portable LLVM Annotation and Timing toolkit [12],
[19] or short PLATIN, is a generic tooling framework for
WCET-aware compilation, which is fundamentally based on
the LLVM compiler infrastructure [20]. PLATIN was orig-
inally developed for the time-predictable hardware architec-
ture PATMOS [21]. The PLATIN toolkit is a comprehensive
framework for research on timing-analysis techniques and is
the fundamental basis of recent works in this area [8], [22].

In the following, we first describe the core concepts of
PLATIN and the approach of WCET-aware compilation (see
Section IV-A). Secondly, we describe how we extended
PLATIN and integrated the cost models in order to support the
ARMv6-M architecture for the Cortex-MO+ processor, which
we use in our evaluation (see Section IV-B).

A. Benefits of WCET-Aware Compilation

A major challenge when performing WCET-analyses is the
determination of the control-flow graph (CFG) with its flow
facts (e.g., loops and their bounds) on machine-code level.
This can be achieved by reconstructing the CFG from the
lowest abstraction level of machine code. A further approach
to this problem is to perform WCET-aware compilation where
flow facts are determined on higher abstraction level and
transformed during the lowering process as performed by
PLATIN. With this approach, PLATIN avoids the loss of
high-level information on program flow during compilation.

A further benefit is the analysis of flow facts on an in-
termediate representation (i.e., LLVM IR): PLATIN profits
from analyses available inside the highly optimizing LLVM
compiler framework. For example, LLVM uses sophisticated
scalar-evolution analyses [23] to infer costs for loop unrolling.
PLATIN reuses this information for loop bounds, which is
required to bound the flow in IPET-based WCET analyses. We
assume that the exploitation of flow facts drawn from LLVM’s
existing polyhedral optimizer POLLY [24] will yield further
reusable information for the purpose of refinement of the IPET
through additional constraints.

However, PLATIN is not limited to LLVM-based analyses.
The core of the toolkit is a file format called Program Metainfo
Language (PML), which is used to store all meta information
about the analyzed program. This generic way of expressing
flow facts enables PLATIN to profit from other external
analysis tools such as SWEET [25], which are then added
to the main PML file. In addition to that, the determination
of flow facts using the commercial aiT! WCET analyzer is
possible, using PLATIN’s ais2pml conversion functionality
from aiT’s flow-fact format (i.e., ais) to PML.

Besides flow facts such as loop bounds, PLATIN stores
a mapping between the intermediate representation and the
machine code of the program. This mapping enables relat-
ing IR code with machine code using control-flow relation
graphs (CFRGs) [26]. The construction of the CFRGs happens
during the lowering process of each backend and is conse-
quently target-dependent. In the following, we describe the
required changes we made in order to make PLATIN support
the ARMv6-M architecture.

B. Extending PLATIN

As PLATIN only supported the PATMOS architecture, we
now provide patches introducing support for the ARMv6-M
architecture of the NXP KL46Z board we use for our evalua-
tions (see Section V). The extension of PLATIN for ARM is
twofold: First, it requires a compiler capable of creating a PML
representation of the functions to analyze. Second, instruction
costs and memory models of the ARMv6-M architecture need
to be included in PLATIN. To differentiate our extension to
PLATIN, we describe our ARMv6-specific implementation as
PLATINARM ip the following.

"https://www.absint.com/ait/
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1) Adding the ARMv6 Architecture: PLATIN already pro-
vides extensions to the CLANG front end, leaving only adjust-
ments to the ARM backend to realize the export to the PML
representation during compilation. However, PLATIN comes
with a generic implementation of this export, which proved to
be highly reusable, requiring only minimal specialization.

Including the details of the ARMv6-M architecture into
PLATIN is accomplished by implementing an architecture
interface provided by PLATIN. Integrating the calculated
instruction cost models consists of annotating these costs to
the instruction names used by the ARM backend of the LLVM
compiler infrastructure. Due to these generic interfaces of
PLATIN for the tool itself and the handling of PML rep-
resentations in LLVM, porting PLATIN to a new architecture
requires minimal effort as already mentioned in [12].

2) Integrating Floating-Point Support: A drawback of
WCET-aware compilation is that target-specific details can
be added to the program representation during the backend’s
lowering process (i.e., the mapping from target-independent
LLVM assembly code to target-specific machine code). For
example, when the backend detects that the target platform
has no floating-point support, special libraries that emulate
floating-point operations in software are inserted into the code.
Such functions are necessary for the Cortex-MO0+ platform. To
solve this issue, we developed these target-specific libraries
and integrated them into PLATIN to support divisions and
floating-point arithmetic. Besides the NEO toolchain, we pro-
vide the flow facts and timings of these open-source libraries.

C. Applicability of NEO: Teaching Real-Time Systems

This adjustability of PLATIN with acceptable effort is also
useful in the context of teaching real-time systems and timing
analysis. The NEO toolchain makes it possible to practically
teach students about real-time analysis and WCET analysis
at extremely low costs on a COTS platform. Current WCET
analysis relies either on state-of-the-art static analyzers, which
usually are closed-source and come with expensive license
fees, or specialized hardware measurement tools.

In contrast, NEO provides similar capabilities completely
open-source and, with the hardware setup presented in this
paper, at the cost of no more than $20.00 per platform.
Our experiences with low-cost, well-documented evaluation
platforms reveal that motivation increases when students carry
out there assignments in class in a practical way?>.

As the hardware platform used in this paper is capable
of providing precise execution cycle counts, no additional
hardware (e.g., external oscilloscope) is needed. PLATIN’s
practical usability makes the presented NEO toolchain perfect
for experiencing WCET analysis. The validity of such an
approach has already been shown, as PLATIN was used in

teaching timing analysis for the PATMOS processor>.

2SPiCboard for the course Systems Programming in C:
https://wwwé.cs.fau.de/Lehre/WS15/V_SPIC/Board/

3http://ti.tuwien.ac.at/cps/teaching/courses/wcet

V. EVALUATION

This section presents evaluations demonstrating the ap-
plicability of our proposed toolchain. Specifically, we first
present the precision and reliability of our cost models (see
Section V-A). In Section V-B we show static analyses of a
benchmark suite for WCET analyses using PLATINARM,

A. Evaluation of Cost Models

The following section presents the setup for evaluating the
generated cost models (see Section V-Al) and discusses the
results (see Section V-A2). In Section V-A3, we compare
generated runtime models with available documentation.

1) Setup: At first, a benchmark suite was used to calculate
runtime and energy-consumption models as described before.
For checking the quality of the models, programs of another
benchmark suite were executed and measured. The programs
of the second benchmark suite were not used to calculate
or improve the runtime and/or energy-consumption models.
Instead, their measured runtime and energy consumptions
were compared to the predicted values determined by the first
benchmark suite.

All experiments below were executed on an NXP Freedom
KL46Z board. The board provides an ARM Cortex-M0O+ pro-
cessor containing several I/O ports, 256 KB of flash memory,
and 32 KB of SRAM. The KLL46Z board was setup to run the
execution pipeline at 48 MHz and the bus speed was 24 MHz.
In our evaluation setup, the instruction and data cache (4-way,
4-set program flash memory cache with size of 64 B) were
switched on. Although, our current target platform is widely
used for low-power electronics (e.g., IoT) and has reduced
complexity regarding inter-instruction effects (i.e., caching
and pipelining behavior), PLATIN offers the possibility to
further refine hardware-specific analyses. However, this is only
possible when such low-level details are documented.

The MALARDALEN benchmarks [27] are commonly used
to evaluate timing-analysis approaches [28], [29]. We used
31 of these benchmarks to validate the accuracy of NEO.
Four benchmarks were not considered due to insufficient
RAM/ROM on the development board.

We generated 5,000 benchmarks through the CSMITH C-
code generator (version 2.1.0). CSMITH was configured with
incrementing seed numbers starting with the number 1. We
used the compilers GCC (4_8-2014q3) and CLANG (3.5.0-
libc_2.13) and three different optimization options (00, O2,
03) to compile these programs. This results in 30,000 executa-
bles (5,000 - 2 - 3). In fact only 21,984 results were considered
because some of the benchmarks timed out during measure-
ments. These generated benchmark programs were executed
to get the numbers of executed instructions (ICj ;) and to
measure their runtime (73) and energy consumption (Ep). The
resulting measurements were used to calculate the TP/ and
EPI model as presented before.

The runtime and energy measurements are conducted using
our own measurement device, the MEASUREALOT [10]. It
offers a high temporal resolution of 6ns and an integrating
energy-measurement approach with a resolution of 55 nJ. This
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[Instruction Class [ Instructions

addsub | adds/subs rA, rB, #imm
addsubsp | add/sub sp, #imm
alu|and/eor/1sl/.../mvn rA, rB
branchcond |beg/bne/.../ble off
branchuncond [b off
extend | sxtb/sxth/uxtb/uxth rA, rB
hireg | add/cmp/mov/bx rA, rB
immediate |mov/cmp/add/sub rA, #imm
inst32 | bl addr
lea|add rA, [pc/sp, #imm]
memimmediate | 1dr/str rA, [rB, #imm]
memmultiple | stm/stmia/stmea rA!, rlist
mempcrel | 1dr rA, [pc, #imm]
memreg | ldr/str rA, [rB, rC]
memsprel | 1dr/str rA, [sp, #imm]
pushpop | push/pop rlist
shift| 1s1/1sr/asr rA, rB, #imm

TABLE 1: Instruction classes for the ARMv6-M architecture

is in contrast to typical measurement methods, which sample
the drawn current in fixed intervals using an analog-to-digital
converter (ADC). Activities between the sampling intervals
cannot be captured and therefore are lost. Depending on
the performance of the ADC and the clock frequency of
the microcontroller under test, the accuracy of measurements
without an integrating method may therefore be significantly
compromised. MEASUREALOT also offers good integration
into existing build systems and a high degree of automation.
This is important for NEO, as thousands of measurements have
to be conducted to build a model. However, our approach is
not limited to MEASUREALOT, as any other measurement
device with sufficient precision and automation capabilities
can be used. Due to the high degree of automation, our device
is able to measure all programs autonomously within one day.

For the approach presented in this paper, it is essen-
tial to know the exact number of executed instructions per
benchmarks. For this task within our evaluations we used
the virtual machine FAUMACHINE [9]. FAUMACHINE was
mainly developed to be able to preform fault injection into
x86-systems. The simulation of FAUMACHINE is fast due
to the built-in just-in-time compiler. Hence even huge fault
injection campaigns are executed within reasonable time.

Due to the clean structure of the simulator — which is needed
for correct fault injection, isolation, etc. — implementing new
components is straightforward to accomplish. Thus, we mod-
eled the NXP board in only a couple of hours. Note that we
did not add any timing and/or energy consumption details. The
model is therefore only able to simulate the CPU according
to the instruction set architecture. Instrumenting the simulator
to count instruction classes was done within a few minutes.

The simulator running on a standard of-the-shelf computer
is able to simulate the NXP development board in real time.
That is, executing all the benchmarks of the CSMITH and
MALARDALEN benchmark suite took about one day as each
of the benchmarks terminates within a few seconds. No human
interaction was necessary.

Instructions counted were grouped into the classes shown
in Table I according to the ARMv6-M Architecture Reference
Manual [30]. Each group consists of instructions with the same
encoding scheme and same addressing modes.

For solving the optimization problems, we utilize the solver
GUROBI [11]. These calculations only take a few minutes for
the time and energy model on an Intel Core i7 (8 cores, 8 GB
RAM), which proves NEO’s performance.

2) Results and Discussion: The diagrams (see Figure 2 and
Figure 3) below show how well the runtime/energy consump-
tions of each of the benchmark programs are predicted by
the methods presented above. The x-axis shows the difference
between the real and the predicted values in percentage. On
the y-axis the percentage of benchmarks with lower or equal
differences (the distribution of the differences) is given. For
example, in more than 50 % of all benchmarks, the runtime is
overestimated by less than 40 % (see Figure 2).

Runtime: Table II shows the runtime model computed by
the Least Squares FC method introduced before. The left two
columns give the minimum/maximum execution time of the
instructions in nanoseconds while the right two columns show
the same information in clock cycles.

Instruction | min  max  min max

Class | [ns] [ns] [ticks] [ticks]

addsub [20.8 41.7
addsubsp | 0.0 20.8

alu |20.8
branchconditional | 0.0
branchunconditional | 20.8
extend | 20.8

hireg [ 20.8

immediate | 20.8
inst32|62.5

lea| 0.0
memimmediate [41.7
memmultiple | 62.5
mempcrel |41.7
memreg | 0.0
memsprel | 41.7
pushpop [83.3 104.2
shift|20.8 41.7

[}
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TABLE II: Runtime model for instruction classes
Some of the entries in the tables above are 0. This is
explained as follows, when considering the standard structure
of subroutines for ARM processors:

foo:
push {..., 1r} ; save registers
sub sp, #... ; reserve space for vars
add sp, #... ; free space
pop {..., pc} ; restore and return
main:
bl foo ; call subroutine

Because these instructions are always executed together, it
is impossible to distinguish which of the instructions needs
how much time and energy for execution just by measuring
the overall runtime and energy consumption. Therefore, any
mathematical method has degrees of freedom when assigning
runtime and energy values for these instruction classes.

Additionally, instructions of the addsubsp, lea, and
memreg classes are the least used instruction. In fact, less
than 2% of all instructions are instructions of these classes.
Hence it is difficult to determine their impact on the overall
runtime of a benchmark using our approach.

The diagram of Figure 2 shows that the Least Squares FC
method is able to generate runtime models, which is used to
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Fig. 2: Runtime Results: The figure shows the deviations of
execution-time predictions of the MALARDALEN benchmark
suite.

[ Method [ Lower | Upper Errors |
[Leust Squares FC[ —28.0+ 7.8 [ +37.0 + 11.8[0.0% /0.0% ]

TABLE III: Mean & standard deviation of runtime predictions
of the MALARDALEN benchmark suite.

precisely predict the runtime of other programs: All predicted
lower/upper runtime bounds of the MALARDALEN bench-
marks are correct. The results are summarized by Table III. For
the lower and upper bound the arithmetic mean p and standard
deviation o of the predictions are given by the notation p+o.
Using the lower and upper bounds obtained by the Least
Squares FC method, the predictions of the runtime have an
average underestimation of -28.0% with an standard deviation
of 7.8% and an average overestimation of +37.0% with an
standard deviation of 11.8 %. We consider these values as
practical in light of the fact that all predictions are correct.
Energy Consumption: The computed instruction-level
energy-consumption model is shown by Table IV.

Instruction | min max

Class | [nJ] [n]]

addsub| 0.3 0.6

addsubsp | 0.0 0.0

alu| 0.6 0.6
branchconditional | 0.4 0.7
branchunconditional | 0.5 0.5
extend| 0.5 0.5

hireg| 0.4 0.6

immediate | 0.3 0.7

inst32| 2.3 23

lea| 0.0 0.0
memimmediate | 1.0 1.1
memmultiple | 1.2 1.2
mempcrel | 0.7 2.1
memreg | 1.1 1.1
memsprel | 1.1 1.6
pushpop | 2.5 2.5

shift| 0.6 0.6

TABLE IV: Energy model for instruction classes

The results presented in Figure 3 are summarized by Ta-
ble V. It outlines the quality of the predictions. Unfortunately,
since our approach for energy-consumption predictions is not
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Fig. 3: Energy-Consumption Results: The figure shows
the deviations of energy-consumption predictions of the
MALARDALEN benchmark suite.

[ Method [ Lower |  Upper Errors |
[Least Sum|[—16.0 £ 7.8| +10.2 £ 7.6|0.7% /82% |

TABLE V: Mean & standard deviation of energy-consumption
predictions of the MALARDALEN benchmark suite.

as conservative as in terms of runtime predictions not all
predictions are correct.

Using lower and upper bounds obtained by the Least Sum
method, the predictions of the energy consumption have an
average underestimation of -16.0% with an standard deviation
of 7.8 % and an average overestimation of +10.2 % with
an standard deviation of 7.6 %. Therefore, regarding energy-
consumption predictions our approach is highly accurate. On
the downside, not all predictions are correct. However, we
point out that these mispredictions are reasonable small.

Instruction | NEO ARM Delta
Class

addsub

addsubsp

alu
branchconditional
branchunconditional
extend

hireg

immediate

inst32

lea

memimmediate
memmultiple
mempcrel

memreg

memsprel

pushpop

shift
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TABLE VI: Automatically generated cost models are close
to the documented cycle costs using the upper bounds of the
Least Squares FC model. N describes the number of registers.

3) NEO’s Models vs. CPU Documentation: Documentation
of cycle counts of instructions is rare or might be erro-
neous [2]. However, for the ARMv6-M architecture used in our
evaluation, documentation on execution times is provided by



the reference manual [30]. Unfortunately, the instruction-level
timing model from the manual is limited to the assumption of a
system with zero wait states. Furthermore, the memory hierar-
chy including caches is not part of the core and extended by the
licensee of the CPU (i.e., NXP) and also not documented on a
cycle-accurate level. Consequently, to use the timing informa-
tion for this evaluations, we performed NEO’s automated cost-
model generation for a system running on 24 MHz (i.e., CPU
and memory both using the same clock) and disabled caches
to imitate a system with zero wait states (when accessing
memory). The results are summarized in Table VI. The left
column depicts the automatically generated runtime model
using the upper bounds of the Least Squares FC method on
24 MHz. The column in the middle lists the cycles gathered
by the documentation and the right column the error delta
between both models. The rather pessimistic Least Squares
FC model generated by NEO yields for about 47 % of the
instructions the exact timing costs. In around 41 % cases, the
model is one cycle too pessimistic. Consequently, 88 % of the
instruction classes are automatically modeled in a safe way.

The instruction classes memmultiple and pushpop
(12 % of the total number of classes) must be treated with
special attention: The related instructions perform operations
on a variable number of arguments. For example for the push
instruction from the pushpop class, a number of registers
up to N = 9 can be given. The cycle cost for push for
pushing registers onto the stack is documented as 1 + N.
Consequently, the instruction consumes up to 10 cycles in
the theoretical worst case. However, looking at the generated
assembly code of the 30,000 executables produced by CLANG
and GCC we used as input set, it turns out that code for
pushing registers uses in 99.85% one to four registers (in
detail: 49.12% one, 15.57% two, 17.75% three, 17.41 %
four registers). Only in 0.15% of the push instructions,
five registers are used. Code using six registers or more is
never generated. As already mentioned in Section V-A2, for
instructions that have a negligible impact on the overall costs,
since they occur very rarely, our approach is unlikely to yield
an upper bound for their costs. Reconsidering the example
with the push instruction, for 99.85 % of the instructions with
N < 4, using the cycle cost of five represents an upper bound,
what we consider as practical for automated measurement-
based cost-model generation without knowledge of low-level
details and documentation about the target hardware.

B. Evaluation of PLATIN*®M

Our worst-case analysis using PLATI is currently
reduced to WCET analysis. Integrating the energy cost models
is straightforward to accomplish since the energy-cost models
revealed to be practical as discussed above (see Section V-A2).
Our WCET evaluations compare execution traces on the target
platform with static predictions. In contrast to the energy-
consumption analyses, this setup does not require an external
measurement device, since internal CPU timers can be used.

To evaluate the applicability and precision of the entire
NEO toolchain, we used the novel suite for benchmarking

NARM

WCET analysis TACLEBENCH [31]. The suite comprises
several challenging programs from the MALARDALEN WCET
benchmarks, several other benchmarks suites (e.g., MiBench),
and further application code. One main advantage of using
TACLEBENCH for WCET-analysis benchmarking is the sep-
aration of initialization and main workload function. That is,
a main entry point for benchmarks is stated as annotations in
the code from which the analysis starts.

WCET Analyses with PLATINARM: In order to evaluate
PLATINARM ' \e gathered a trace for each benchmark by
measuring the cycles of the main workload function on the ac-
tual hardware platform. For the execution-time measurements,
we use the internal timers of the Cortex-MO+ platform, which
are able to capture execution times on a cycle-accurate level.
This setup requires no additional external hardware for mea-
surements and is therefore also ideal for practically teaching
WCET analysis (see Section IV-C). As baseline for the static
analysis, we use the execution time from a simple trace of
the program, considering the input data that is compiled into
the self-contained benchmarks of TACLEBENCH. Note that
the predefined input data does not necessarily trigger the path
with longest runtime and, as a consequence, the measurement
usually represents an under-estimation of the actual WCET.
The comparisons of execution traces and statically determined
WCET values are summarized in Figure 4. The static analysis
starts at the main workload function and the start/stop of the
measurement is inserted before/after this function.

From the 53 benchmarks of TACLEBENCH (current version
1.9), we are able to evaluate 36 benchmarks: RAM overflows
occur inside the processor for 10 benchmarks and thus no
trace-based measurement is possible. The remaining 7 bench-
marks are not analyzable since they contain recursions, which
cannot be handled by PLATIN currently. Nevertheless, we
argue, in compliance with the Misra-C standard [32], that
the usage of recursions should be avoided in safety-critical
real-time systems. Floating-point arithmetic is required for 9
benchmarks, which can be analyzed due the floating-point
support we added to PLATIN (see Section IV-B2).

The main observation we draw from the benchmarks is that
all traces are upper bounded by the WCET values yielded
from PLATINARM  For benchmark with less complex flow
facts, such as loops with constant bounds and no conditionals
inside the bodies (e.g., rijndael_enc: 38 %), or small
input sizes (e.g., binarysearch: 23 %), the estimations are
considered as precise. In summary, the over-estimations range
from 23 % up to the pessimistic values of 35,557 % (i.e., £ft).
The geometric mean of the normalized values of over estima-
tion is 208 % (i.e., an over-estimation factor of around 3). The
over-estimations are due to three problems:

1) The utilized model (i.e., Least Squares FC-Upper) leads
to the most pessimistic, but most reliable execution-
time predictions (up to a maximum error of 61 %
with no erroneous too optimistic mispredictions, see
Section V-A2), compared to the rather precise modeling
technique Least Sum.
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Fig. 4: The comparison (on logarithmic scale) of static WCET analysis (left bar) using the generated models with the
execution trace (right bar) demonstrates that PLATINARM is able to yield upper bounds for TACLEBENCH suite.

2) The annotations provided by the TACLEBENCH suite
are pessimistic upper bounds without considering con-
text-sensitive flow information. This means, in case of
fft a conditional statement inside a loop over the input
array is entered less than half times of the input size.
However, the computations are considered in each case
of the IPET analysis.

The execution trace, which is used as baseline for the
WCET analysis, considers an arbitrary input-data set that
does not necessarily trigger the target-specific worst-case
execution time. In general, this worst-case input-data set
is unknown for existing benchmark programs [8].

3)

From a theoretical point of view, input data might exist that
leads to a higher execution time. However, practically, larger
input data leads to more pessimistic assumptions. In our evalu-
ations, we observed that programs with no input (i.e., cover,
matrixl) resulted in tolerable over-estimations (i.e., 25 %,
67 %). In these benchmarks the execution times from the trace-
based analysis are a reliable substitute for the actual WCET.
We consider the toolchain and the acceptable degree of over-
estimation as practical for many real-time systems.

Gathering Flow Facts: TACLEBENCH is equipped with
annotation of all loop bounds and recursion depths using
#pragma directives. Per default, PLATIN utilizes these
source-code annotations for bound loops forwarded by an
extended CLANG C frontend, which stores the result to the
main PML file. However, exploiting LLVM’s scalar-evolution
analyses [23], PLATIN also manages to infer required flow-
facts for flow restriction of the IPET. To evaluate the effec-
tiveness of this mechanism, we removed all manually stated
annotations and observed that PLATIN is able to precisely
reveal all essential flow facts for 9 benchmarks, which is about
17 % of entire TACLEBENCH. We assume that enhancing our
setup with the usage of flow facts gathered by SWEET [25],
which is already supported by PLATIN, advances our setup
towards completely automatic WCET analyses.

VI. RELATED WORK

To our knowledge, NEO is the first approach to automat-
ically generate time and energy models based on bench-
mark generators and several distinct optimization methods.
Our approach is different to other approaches that rely on
smaller benchmark suites [33] or manually written micro-
benchmarks [13], [14], [15] of single instructions or instruction
pairs being executed in loops. NEO does not require knowledge
about such instruction-level benchmarks, which, for example,
contain non-trivial jump instructions. In contrast to other
approaches, NEO relies on automatic benchmark generation
and mathematical optimization techniques.

Tiwari et al. presented the power analysis of a micro-
controller in [13]. The authors extracted an instruction-level
power model without prior knowledge on the low-level imple-
mentation of the RISC processor. The presented experiments
were carried out manually by current measurements during the
execution of micro-benchmarks in infinite loops.

Chang et al. evaluated the energy consumption of a 32-bit
processor (i.e., ARM7TDMI) in [14] and revealed that the
hamming distance of the processed data between each CPU
cycle impacts the energy demand of operations. The integra-
tion of data dependences into the model generation process
is considered future work of our approach, which is possible
through tailoring our benchmark-generation process [8].

Lee et al. derived instruction-level power models by using
empirical and statistical methods (regression analysis) [16].
Their work is limited to arithmetic operations on data. Further-
more, their approach requires manually tailored benchmarks.

Shao et al. performed an energy characterization of a many-
core processor (i.e., Intel Xeon Phi) in [15] and correspond-
ingly built an energy model for the processor. This approach
requires manually generating micro-benchmarks of instruction
pairs, which were considered for measurements in a loop. In
contrast to this approach, NEO is not restricted to arithmetic
operations, since characterizing the time and energy demand of
branch instruction is inherently possible through the automated
approach of benchmark generation.



Static WCET analyzers, such as Chronos [34], SWEET [25],
Heptane [35], or Otawa [36] need to solve the challenge to
reconstruct flow facts from an already compiled executable.
In contrast to these analyzers, PLATIN profits from the
transformation of high-level flow facts through the WCET-
aware compilation integrated in the LLVM infrastructure.

The benefits of WCET-aware compilation were introduced
by the WCET-aware C Compiler (WCC) [37]. WCC is also
able to maintain and profit from high level flow facts through-
out the compilation process. Similar to PLATIN’s approach,
WCC maintains flow facts in a target-independent format
along with their mappings to machine code.

VII. CONCLUSION

Creating reliable time and energy models for embedded
systems is an inherently difficult task due to the lack of
documentation. In this paper, we presented an optimization-
based approach for generating instruction-level time and en-
ergy models covering all types of instructions by exploiting
automated benchmark generation. Our approach achieves fine-
grained cost models without a priori knowledge on the ener-
getic and temporal behavior of the target platform.

To demonstrate the practical applicability of our approach,
we integrated the generated models into the existing WCET
analyzer PLATIN. Our evaluation on an embedded target
platform reveals that the entire NEO toolchain is able to predict
worst-case bounds for state-of-the art WCET benchmarks.

Since the entire NEO toolchain and PLATIN WCET
toolkit [19] is build upon the widely-used clang/LLVM frame-
work, we believe that this setup can be easily adapted and
enhanced in the future. The code of the NEO toolchain, our
modifications of existing tools, and our analyzed floating-point
and division libraries is available under an open-source license.

https://gitlab.cs.fau.de/neo
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