
Benchmark Generation for Timing Analysis
Peter Wägemann, Tobias Distler, Christian Eichler, and Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nürnberg (FAU)

To appear in: Proceedings of the 23rd Real-Time Embedded Technology and Applications Symposium (RTAS 2017)
Pittsburgh, USA, 18–21 April 2017

Abstract—Being able to comprehensively evaluate the in-
dividual strengths and weaknesses of worst-case execution
time (WCET) analysis tools through benchmarking is essential
for improving their accuracy. Unfortunately, a lack of knowl-
edge about the detailed characteristics, actual complexities, and
internal structures of existing benchmarks often prevents fine-
grained assessments, and sometimes even results in misleading
conclusions. In this paper we present GENE, a tool that addresses
these problems by automatically generating WCET benchmarks
with known properties and predefined complexities. Due to the
WCETs of benchmarks created by GENE being available, this
approach for example makes it possible to precisely determine
the accuracy of a WCET analyzer. In addition, the fact that
GENE controls the program patterns of a benchmark enables
fine-grained evaluations of the particular abilities and deficiencies
of different WCET analyzers, as we demonstrate for aiT and
PLATIN using multiple hardware platforms.

I. INTRODUCTION

Knowledge about the timing behavior of scheduled tasks
in general, and their worst-case execution times (WCETs)
in particular, is essential for building dependable real-time
systems. However, precisely obtaining such information is
only straightforward under certain circumstances, for example,
when a task program has no input, therefore always follows
the same program path, and thus has a constant execution time
when starting with identical hardware state. In contrast, if the
execution time of a program varies between runs because of an
input-dependent control flow, determining the WCET becomes
significantly more difficult. The naive approach would be to
compute the maximum of the individual execution times as-
sociated with all possible inputs, which is usually not feasible
due to the huge amount of input values: For an input of n bits,
the program had to be executed 2n times.

To circumvent this problem, existing WCET tools [1], [2],
[3], [4], [5], [6] follow a different approach: they derive
the WCET from the program’s structure. That is, utilizing
knowledge about the execution times of instructions on a
given hardware platform, WCET tools analyze critical program
patterns such as conditional statements or loops in order to
gain information about the control flow, and eventually report
a value for the WCET. However, as a complete analysis
requires an enumeration of all possible program paths, which
due to their large number is in general infeasible [7], WCET
analyzers opt for less extensive analyses. As a result, for non-
trivial programs the WCET reported by analysis tools usually
exceeds the actual WCET; in our evaluation we observed
deviations of up to a mean factor of 4.01. This means that there
is potential for increasing the accuracy of WCET analyzers,
ideally closing the gap between reported and actual WCET.

The common practice to assess improvements in timing
analysis is to evaluate analyzers with WCET benchmark
suites [8], [9], [10], [11]. However, as we will discuss in
detail, this approach has several major drawbacks: First, due
to the fact that for many benchmark programs contained in
such suites the actual WCET is unknown and cannot be
easily determined, it is impossible to assess the accuracy of a
WCET analyzer (i.e., the factor between reported and actual
WCET) on an absolute scale. Second, a significant number
of available benchmarks is not resilient against compiler
optimizations and/or does not have an input-dependent control
flow. As a result, despite appearing to be of complex nature
at the source-code level, these benchmarks do not pose a
challenge to WCET analyzers performing their analysis on
optimized machine code. Third, as existing benchmarks are
often monolithic compositions of different program patterns, it
is difficult to evaluate the individual strengths and weaknesses
of a WCET analyzer. This, for example, makes it hard to
identify the program patterns for which the analysis techniques
of a particular analyzer could be improved.

In this paper, we address these problems with GENE1, a tool
that not only automatically generates WCET benchmarks with
known characteristics but in addition also provides information
about their properties, including for example the benchmarks’
WCETs. To achieve this, GENE constructs each benchmark
by relying on small program building blocks whose properties
are known and composing them in a way that allows the tool
to ensure that a predefined input value will lead to the WCET.
Using this worst-case input, GENE in a next step is then able
to determine the actual WCET of the benchmark by measuring
its execution time on the target hardware platform.

Besides knowing the properties of the generated programs,
constructing benchmarks from scratch has the main advantage
that GENE can both enforce an input-dependent control flow
and also fine-tune the complexity of the created programs. Fur-
thermore, the fact that GENE operates at a low level and relies
on program patterns that already resemble optimized machine
code hinders the structure and complexity of benchmarks from
being vulnerable to compiler optimizations.

In our evaluation, we show how to use GENE to reveal
the individual strengths and weaknesses of two state-of-the-art
WCET analyzers: the commercial tool aiT [1] and the open-
source tool PLATIN [2]. Furthermore, we describe how GENE
allowed us to detect a previously unknown bug that caused aiT
to report WCET values that are lower than the actual WCETs.

1The name GENE originates from the term “genie” and the idea of
Generating Evaluation sets.978-1-5090-5269-1/17/$31.00 c©2017 IEEE

In summary, this paper makes the following contributions:
• It presents GENE, a generator for WCET benchmarks

with known properties and predefined complexities.
• It discusses details of the current GENE implementation.
• It uses GENE to evaluate the two state-of-the-art WCET

tools aiT and PLATIN on different hardware platforms.
The remainder of the paper is structured as follows: Sec-

tion II provides background on WCET benchmarking. Sec-
tion III identifies common problems associated with existing
benchmarks for timing analysis. Section IV and V present
details on the concept and implementation of GENE, respec-
tively. Section VI evaluates two WCET analyzers using GENE
benchmarks. Section VII discusses further usage scenarios
of GENE besides WCET-tool benchmarking. Section VIII
presents related work, and Section IX concludes.

II. BACKGROUND

Given a specific application program and hardware platform,
WCET analyzers determine an upper bound for the execution
time of the program on the targeted platform. Listing 1 illus-
trates the structure of a program consisting of different patterns
that are challenging for state-of-the-art WCET analyzers and
consequently represent typical building blocks of the programs
used to benchmark these tools, for example, in the context
of the WCET Tool Challenge [12], [13], [14]. Examples of
such patterns include input-dependent computations, differ-
ent shapes of loops, assignments, function calls, as well as
conditional branch statements, because these elements make
it more difficult to identify the worst-case path through the
program and to determine its execution time. Apart from that,
timing analysis is complicated by the fact that the WCET of
a program depends on the duration of the instructions invoked
and consequently is hardware-platform specific.

To facilitate the evaluation of WCET tools, different bench-
marks and benchmark suites for timing analysis [8], [9], [10],
[11], [15] have been created, which consist of programs struc-
turally resembling the example in Listing 1. For example, the
EMSBench [15] is modeled after a real engine-management
system and mostly comprises computations, assignments, and
conditional branches. In general, to reflect the characteristics
of many embedded real-time systems (e.g., from the auto-
motive domain [16]), WCET benchmarks rely on inputs with
predefined sizes and do not dynamically allocate memory.

Listing 1: Pseudo-code example illustrating the structure of a chal-
lenging benchmark program used for evaluating timing-analysis tools.
const int N = 1024; // bounded program structure

int main(int input){
int i, j, result = 0;

for (i = 0; i <= N; ++i) // constant loop
for (j = i; j <= N; ++j) // triangular loop

result = process(...); // process input data

if ((input > 0) && (result > 100)) // conditional
result = 100; // branch

return result;
}

Benchmarking of WCET analyzers is usually performed on
architectures that do not exhibit timing anomalies [14]. This
means that executing a program with the same input value and
an identical hardware state always takes the same amount of
time and therefore ensures deterministic results. This implies
that a benchmark’s duration does not depend on the execution
history of the processor. However, note that this does not rule
out the use of hardware features such as caches or pipelining.

III. PROBLEM STATEMENT

In this section, we investigate several open issues that have
to be addressed in order to enable comprehensive evaluations
of WCET analyzers. This discussion allows us to formulate
a set of key requirements for GENE and to outline the
approaches used by our tool to fulfill them.

A. Assessing the Accuracy of Timing Analysis
Determining the actual WCET of a program in general is an

inherently difficult problem, which is why the results reported
by WCET analyzers often represent overestimations of the
actual WCET. As a consequence, there is potential to improve
the accuracy of such tools, that is, to minimize the gap between
the reported and the actual WCET.

The common approach for evaluating WCET analyzers is
to test them with a set of programs, usually taken from one or
multiple benchmark suites. Unfortunately, with the exception
of a few trivial benchmarks, the input values that trigger the
WCET are unknown for these programs and consequently it
is not possible to obtain their actual WCETs. This means that
WCET analyzers are asked to solve a problem for which the
correct solution is unavailable. As a result, without having
a baseline it is generally impossible to confirm whether a
reported solution is in fact correct or, if this is the case, to
assess how accurate it is on an absolute scale.

Even more problematic, WCET tools on occasion require
additional knowledge about the characteristics of a program
in order to be able to complete the analysis of a benchmark
at all; typical examples of such information are bounds of
the loops contained in a program. However, similar to the
actual WCET, loop bounds and other flow facts (e.g., feasible
paths, recursion depths) often cannot be easily extracted from
existing benchmarks as this would require an enumeration
of all program paths, which is usually infeasible due to the
large number of possible paths [7]. In general, determining
all flow facts of a benchmark manually is labor-intensive and
error-prone [17], [18] and may consequently lead to false
assessments of a WCET analyzer’s accuracy.

Requirement: To enable precise assessments of the accuracy
of WCET analyzers, GENE must not only provide benchmarks
but also their respective actual WCETs and flow facts.

Approach: Instead of relying on available benchmarks with
unknown characteristics, GENE generates new benchmark
programs by combining small building blocks whose worst-
case paths and flow facts are known. Using a metaphor: Instead
of taking an already existing labyrinth and being dependent on
someone finding the path through the labyrinth, GENE defines
the path and then builds a labyrinth around it.

B. Fine-Tuning the Complexity of Benchmarks
Thorough evaluations of WCET analyzers require the ability

to control the complexity of benchmark programs at a fine
granularity. Only this way it is possible to precisely determine
the correlation between the structural characteristics of a pro-
gram and the resulting duration of the analysis, for example,
in order to find out at which complexity an analysis becomes
infeasible or too expensive. An essential means in this context
are complexity metrics [19], [20] as they allow to quantify the
complexity of programs and thus to decide which benchmarks
pose greater challenges to WCET analyzers than others.

Computing complexity measures such as the number of
loops, function calls, or linearly independent paths for an
existing benchmark program can often be automated and
therefore is usually straightforward. However, the same does
not apply to the problem of writing a program with specific
complexity properties, mainly because complexity measures
are not necessarily stable across different levels of compiler
optimizations [21]. Figure 1 illustrates this issue using a
simplified pseudo-code example, in which the number of loops
in a benchmark is intended to be increased by adding the
loop depicted on the left side of the figure to the program’s
source code. Inadvertently, the complexity of the benchmark
with regard to loops, however, remains unaffected by this
procedure, if a compiler unrolls the loop after having detected
that the loop bound is fixed. As a consequence, the number
of loops does not change at the optimized machine-code level
at which WCET tools generally perform their analyses. This
is not a problem specific to loops; similar observations of
measures being altered by compiler optimizations can also
be made with regard to other complexity metrics such as
the cyclomatic complexity [19]. Furthermore, it is a problem
actually affecting existing WCET benchmark suites [21].

Besides ensuring that the complexity of benchmark pro-
grams is actually visible to WCET analyzers, fine-tuning the
complexity of benchmarks requires another crucial prerequisite
to be fulfilled in order to prevent misleading conclusions:
analyzed programs must have input-dependent control flows.
That is, a program must comprise multiple possible paths, and
function parameters and/or external variables must have an
influence on which of these paths is taken during execution. If
this is not the case and a benchmark program consists of only
a single path, timing analysis is straightforward (i.e., running
the program once and measuring the execution time), although
some complexity measures might suggest otherwise.

Requirement: GENE must allow users to fine-tune the
complexity of benchmarks and furthermore ensure that the
generated programs have an input-dependent control flow and
are not affected by compiler optimizations.

Approach: Constructing benchmarks from scratch, GENE
is able to incrementally control the complexity of benchmarks
and to enforce an input-dependent control flow. Due to the
tool operating at a low level (i.e., the LLVM intermediate
representation [22]), GENE generates benchmarks that already
resemble optimized code, preventing compilers from deci-
sively changing the structure of programs.

Source code

const int INPUT SIZE = 3;

... // code with n loops

for (i = 0; i < INPUT SIZE; ++i){
process(i);

}
Loop count: n + 1

Optimized code

const int INPUT SIZE = 3;

... // optimized code with n loops

// unrolled loopprocess(0);

process(1);

process(2);

Loop count: n

Figure 1: Pseudo-code example for a complexity measure (i.e., the
number of loops) not being stable across compiler optimizations.

C. Identifying Individual Strengths & Weaknesses

Task programs of real-time systems usually consist of a
wide spectrum of program patterns that are challenging for
WCET analyzers, ranging from different shapes of loops over
value-dependent mutually-exclusive paths to infeasible paths.
Due to the analyses of different patterns requiring different
methods and techniques, in general it is not guaranteed that
a WCET analyzer that, for example, is able to handle rect-
angular loops at the same time also effectively copes with
triangular loops. Instead, with regard to program patterns,
WCET analyzers have individual strengths and weaknesses,
and clearly identifying them would greatly help researchers
and developers in improving the quality of these tools.

Unfortunately, obtaining such information about particular
patterns based on traditional benchmarks is cumbersome [18],
if possible at all [23]. This is mainly due to the fact that exist-
ing benchmarks are often monolithic compositions of multiple
different program patterns and consequently do not allow fine-
grained evaluations of specific patterns. As a consequence,
instead of enabling useful conclusions such as “WCET ana-
lyzer A has difficulties analyzing pattern P ”, evaluations with
traditional benchmarks mostly provide limited insights such as
“WCET analyzer A has difficulties analyzing benchmark B”,
which is not very informative if the benchmark consists of a
variety of patterns whose effects interfere with each other.

In addition to the techniques used for analyzing program
patterns, the individual quality of a WCET tool to a great
extent depends on its internal hardware model describing the
timing behavior of the target platform. If the model incorpo-
rates detailed knowledge about the platform, an analyzer is
likely to provide results that closely resemble the behavior on
the real hardware, especially for programs that do not require
complicated analyses. On the other hand, comparably simple
models that need to make conservative assumptions about a
platform’s timing behavior in general lead to inferior results.

Requirement: To provide the basis for fine-grained WCET-
tool evaluations, GENE must support the systematic evaluation
of challenging program patterns as well as means to assess the
quality of an analyzer’s hardware model.

Approach: GENE enables users to individually select the
types of patterns generated benchmarks should consist of.
Disallowing the use of all complicated patterns, for example,
causes GENE to create programs for which the analysis quality
highly depends on a WCET tool’s hardware model.

IV. GENE

In this section, we present GENE, a benchmark generator
for timing analysis, and discuss details on how the tool meets
the requirements identified in Section III.

A. Overview
GENE generates benchmarks by combining program pat-

terns (e.g., different shapes of loops, assignments, conditional
branches) that are characteristic for real-world applications
as well as WCET benchmarks. To build GENE’s pattern
library, we conducted a thorough study of both literature [24]
and existing benchmark suites [10], [11], [15] in order to
collect realistic patterns that pose challenges to state-of-the-
art WCET analyzers and therefore, for example, have appeared
in application and/or benchmark programs utilized in several
WCET Tool Challenges [12], [13], [14].

Figure 2 shows an overview of how GENE, based on
these patterns, produces benchmarks for which the flow facts
(e.g., loop bounds, value ranges, feasible paths, recursion
depths) and the actual WCET for a specified target hardware
platform are known. In a first step, GENE’s main component,
the benchmark generator, constructs the benchmark program
in such a way that a predefined input value will trigger the
worst-case path through the program. Using this worst-case
input value, in a next step GENE determines the actual WCET
by executing the benchmark on the target hardware.

Composing a benchmark in GENE is an iterative process
in which the benchmark generator incrementally builds the
program by repeating the following steps: First, the generator
randomly selects the next pattern to insert from a set of usable
patterns provided by the pattern library. Second, it weaves the
selected pattern into the emerging program, thereby ensuring
that the designated worst-case path actually leads to the WCET
on the target platform. Third, the generator updates the flow
facts of the benchmark to reflect the effects of the new pattern.

GENE provides users with different opportunities to influ-
ence the structure and complexity of the generated bench-
marks. Most importantly, users are able to specify a path
budget, that is, a unit-less value representing the length of the
resulting worst-case path, which also serves as termination
criterion for the generation process. In addition, users may
configure the types of patterns to be used allowing them to
assess the individual strengths and weaknesses of a WCET
tool. For convenience, GENE for this purpose offers a number
of built-in pattern suites, which are predefined property config-
urations that result in benchmarks with certain characteristics.

B. Generating Benchmarks with Known Properties
In the following, we present details on how GENE ensures

that the worst-case input specified by the user leads to the
WCET when the generated benchmark is executed on the
target platform. Furthermore, we elaborate on how GENE
determines the actual WCETs of benchmarks.

1) Constructing the Worst-Case Path: GENE automatically
creates benchmark programs with known properties, the most
important of which being the input value corresponding to the

Inputs Target
platform

Path
budget

Worst-case
input value

Pattern-suite
type

GenE
Benchmark
generator

Pattern
selection

Pattern
weaving

Flow-facts
tracking

1. Add pattern

2. Update flow facts

3. Next
pattern

Pattern library

Pattern filtering
Patterns

Hardware

ExecutionProgram

Outputs Benchmark Flow facts Actual
WCET

Input

Figure 2: Overview of GENE

worst-case path through the program. To construct this worst-
case path, GENE’s benchmark-generation algorithm relies on
a unit-less path budget specified by the user, which at all times
represents the length of the remaining part of the worst-case
path that still needs to be integrated into the program. At the
beginning of the benchmark-generation process, this budget is
at a maximum. Whenever GENE weaves a new statement or
pattern into the emerging benchmark, it reduces the budget to
reflect the size of the new element. The generation process
terminates once the path budget reaches zero.

As shown in Figure 3, each time GENE introduces a
conditional branch statement into the program, it first decides
which branch W of the newly introduced branches should be
part of the worst-case path and specifies the corresponding
condition in such a way that the designated worst-case input
(i.e., 42 in the example) results in the execution of branch W .
Then, GENE assigns the remaining path budget to branch W .
For all other branches, GENE creates new individual path
budgets whose sizes are smaller than the remaining budget
for the worst-case branch W to guarantee that the resulting
paths are shorter than the worst-case path.

In order to ensure that the execution time of the constructed
worst-case path is in fact higher than the execution times of
all other feasible paths, GENE relies on knowledge about
the timing behavior of the target hardware platform. Note
that in contrast to the hardware models required by WCET
analyzers, which must include absolute values of the execution
times of instructions, the information on the target platform’s
timing behavior used by GENE can be relative [25]; that
is, when constructing the worst-case path, it is for example
sufficient for GENE to know that an instruction Ia takes at
least x times longer than an instruction Ib, independent of
the absolute execution times. In the same way, GENE is able
to consider the effects of hardware features such as pipeline
stalls or cache misses: By overweighting the path budget of
the worst-case branch W compared with the path budgets of
other branches, the benchmark generator can prevent short
paths from having longer execution times than the worst-case
path. For this purpose, GENE relies on a platform-dependent
overweighting factor F , which pessimistically assumes that a
cache miss occurs on every instruction on the short path.

Benchmark program

gene main (int input):

if (input is 42)
// execute worst-case path

call worst()

else
// execute other path

call other()

Path budget

1010

10001000

40

Budget for
worst-case path

Budget for
other path

Cost of if statement

true false

Overweighting factor

F = 1000
40

= 25

Figure 3: Pseudo-code example of how GENE controls that a specific
worst-case input value (here: 42) leads to a known worst-case path.
Only the branch on the worst-case path is assigned the full remaining
path budget, while the other branch continues with a fraction of it.

For the Cortex-M4 hardware platform used in our evalua-
tion, for example, GENE applies an overweighting factor of
F = 25 at the LLVM representation level. This value is a result
of our analysis of the Cortex-M4 specification and the insight
that, at the machine-code level, a maximum distance of 10
between all instructions is sufficient to compensate for a single
instruction in the worst case. Furthermore, having compared
the number of memory accesses at both representation levels,
we can conclude that an overweighting factor of 25 is also
large enough to account for the additional overhead introduced
by potential spill code that may be generated when lowering
the LLVM intermediate representation to machine code.

2) Determining the Actual WCET: Having generated the
benchmark program, GENE in a next step determines the
actual WCET of the benchmark by executing it on the target
platform with the predefined worst-case input value. The
rationale behind this approach is the insight that the most
accurate execution-time model is the processor itself [26],
because it inherently includes all complex hardware features
such as pipelining or caching. Furthermore, measuring the
actual WCET based on a worst-case execution of the pro-
gram frees GENE from the need of having to rely on the
documentation of a processor’s timing behavior, which can be
inaccurate [27]. That said, if a cycle-accurate instruction-set
simulator is available for the target platform, GENE is also
able to use it to determine the actual WCET by tracing the
program with the worst-case input value.

In order to guarantee valid results, when generating a
benchmark program GENE also creates a section that is
executed prior to the actual workload and responsible for
putting the system in a well-defined state that does not depend
on the execution history of the processor. In particular, in
the course of this preparation process GENE voids hardware
state (e.g., by flushing caches) and initializes data structures
that are relevant for the benchmark. This way, GENE ensures
that the constructed worst-case path will in fact be executed
and that the determined actual WCET is therefore valid.

C. Composing Complex Benchmarks

Below, we describe how GENE shapes the complexity of
generated benchmark programs and discuss how this complex-
ity is protected against compiler optimizations.

1) Combining Patterns: GENE’s pattern library comprises
a wide spectrum of different challenging program patterns
including (but not limited to) assignments, computations on

registers, conditional branches, as well as different shapes of
loops. By combining these patterns, GENE is able to create
benchmarks of different varieties and complexities. As an
additional benefit, the approach to use representative structural
patterns extracted from existing code allows us to circumvent
the problem of some existing industrial benchmarks being
affected by licensing restrictions [11]. Listing 2 shows an
example of such a pattern, representing a typical method of
how real-world industrial applications perform initialization
work. Due to the execution time of the function func()
depending on the value of a global variable, this pattern poses
a challenge to state-of-the-art WCET analyzers.

To generate a complex benchmark, GENE weaves multiple
program patterns together. For this purpose, each pattern
comprises one or more insertion points, that is, code locations
at which additional patterns can be added; the pattern in List-
ing 2, for example, possesses two insertion points: one inside
and one after the body of the conditional statement. During
the weaving process, GENE relies on a pseudo-random number
generator to recursively determine which pattern to apply next.
This way, for the same user inputs and number-generator seed,
the tool will always create the same benchmark.

Having woven a new pattern into the emerging program,
GENE updates the flow facts of the benchmark to reflect
the extended control flow. This procedure is facilitated by
the fact that each pattern in the pattern library not only
contains information on its structure and insertion points but
also maintains its own flow facts in a parametric way.

As discussed in Section IV-B1, GENE controls the length
of program paths by decreasing the associated path budget
on each pattern insertion in order to account for the size
of the new pattern. For many simple patterns with constant
sizes (e.g., assignments) this is straightforward. On the other
hand, there are patterns such as the one in Listing 2, whose
effective size in part depends on the context in which the
pattern is used inside a program. In this particular case, the
first call of function func(), for example, takes more time
than all subsequent calls due to executing the body of the
conditional statement. To address this issue, when constructing
a benchmark GENE not only keeps track of the program’s
flow facts but also maintains additional context information,
which includes the values of local and global variables as well
as function parameters. As a consequence, GENE is able to
correctly attribute the lengths of program paths even in the
presence of context-sensitive patterns.

Listing 2: Code blocks that are executed only once challenge the
capability of WCET tools to track the values of variables.

1static bool initialized = false;

2void func(){
3if (!initialized){
4initialize_hardware(); // insert patterns
5initialized = true;
6}
7... // insertion point for further patterns
8}

2) Making Benchmarks Resilient Against Optimizations:
Without applying additional measures, compiler optimizations
can have a significant effect on the complexity of a benchmark
program (see Section III-B). To address this problem, GENE
generates benchmarks at a low-level, but target-independent,
representation of the program code (i.e., the LLVM interme-
diate representation [22]) and relies on program patterns that
already resemble optimized code, thereby hindering program
structures from being decisively changed by compilers. Fur-
thermore, this approach has the additional benefit of facili-
tating the tracking of flow facts, which is more difficult at a
higher level of abstraction such as C code [28].

Besides operating at a low level, GENE applies further
measures to maintain the complexity of a benchmark across
compiler optimizations in general and dead-code eliminations
in particular: First, GENE uses all variables it introduces into a
program. Second, besides returning the result of a computation
at the end of a function, GENE also writes the value to global
memory to protect the function from being removed by the
compiler. Note that this not only strengthens the resilience
of a benchmark against optimizations, but also imitates the
behavior of applications in real systems, which communicate
with external devices by writing to memory-mapped registers.

D. Selecting Patterns to Reveal Strengths & Weaknesses

GENE allows users to select the patterns that are included
in the construction of a benchmark program and consequently
offers the possibility to reveal the individual strengths and
weaknesses of WCET analyzers. For convenience, GENE
provides a number of built-in pattern suites, that is, predefined
property configurations that lead to programs with certain
characteristics. In the following, we discuss examples of such
suites aimed at assessing the quality of an analyzer’s hardware,
program flow, and value analysis, respectively.

1) Challenge of Target-Hardware Analysis: As discussed
in Section III-C, a WCET analyzer’s model of the target
hardware serves as basis for the overall timing analysis. To
assess the quality of this model, GENE offers a pattern suite
that results in the generation of benchmarks that consist of
branchless sequences of code and only comprise assignments
and computations. As a consequence of containing only a
single path, these programs are trivial for the high-level
(control-flow) part of the timing analysis, therefore shifting
the focus on the hardware model. If the hardware model of a
WCET analyzer is accurate, the results reported by the tool
for the benchmarks generated by this pattern suite will closely
match the actual WCETs determined by GENE.

2) Challenge of Value Analysis: An important property of
WCET tools is the ability to perform value analysis in order to
refine the path analysis. For example, when analyzing the code
in Listing 2, tools that are unable to perform context-sensitive
value analyses include the initialization part each time function
func() is called. Due to maintaining context information
on the data flow of variables when combining patterns (see
Section IV-C1), GENE is able to selectively insert challenging
patterns, such as infeasible paths with value constraints.

3) Challenge of Bounding Loops: Bounding the program
flow for loops is essential for WCET analyzers. To evaluate
the abilities of WCET tools in this regard, GENE offers
several pattern suites, each targeting a different challenging
loop pattern [24]. Besides the respective pattern, benchmarks
generated with these suites only contain arithmetic operations
and assignments, which are necessary for the body of the
loop. Examples of challenging loop patterns include loops,
for which the iteration variable is modified once within the
loop’s body (in addition to the loop’s header). From such
loops, no closed-form expression can be determined, which
poses a challenge to WCET tools.

V. IMPLEMENTATION

The GENE benchmark generator is implemented on top
of the LLVM compiler infrastructure [22]. The benchmarks
are generated using LLVM’s intermediate representation and
the infrastructure to insert instructions into the control-flow
graph. Using this representation has the major benefit that the
programs are closely related to machine code (i.e., the program
structure is similar in both representations), while still being
independent of concrete target architectures.

A. Maintaining Flow Facts & Control-Flow Relations

Maintaining all information about flow facts (e.g., loop
bounds, path constraints) across code representation levels is a
challenging problem, especially when compiler optimizations
decisively change the control flow. Neglecting such transfor-
mations could invalidate the flow facts gathered during the
generation stage. The larger the gap between the representation
level of generated benchmarks and machine code, the more
difficult it is to precisely transform flow facts. Our approach
requires flow facts on machine-code level where the WCET
analysis is performed. As a consequence, the generated flow
facts on LLVM representation level need to be transformed
to machine code. To solve this issue, we exploit control-
flow–relation graphs (CFRGs) [28], which are integrated into
the PLATIN WCET-analysis toolkit [2]. CFRGs provide a
formalized way to map the flow facts from intermediate
representation to machine code. With this approach, GENE
profits from generating target-independent benchmarks while
operating on a low-level code representation.

GENE stores the flow facts from the generated benchmark
using PLATIN’s Program Meta Language (PML) format. Be-
sides WCET analyses, the PLATIN toolkit is able to transform
flow facts between different formats: This feature allows
GENE to convert flow facts from the PML representation to
aiT’s flow-fact format (ais). With this setup, we are able to
support both WCET analyzers, PLATIN as well as aiT.

B. Pattern Weaving

For proper modeling of side effects in repeatedly executed
code, GENE uses an extended top-down weaving process as
presented in the following. Listing 3 exemplifies the challenges
of side effects in the generation process: The function func()
is assumed to behave differently on every execution. Listing 2

Listing 3: Pseudo-code example that illustrates the necessity of
context-sensitive flow facts due to the side effect of func()
for(i = 0; i < N; ++i) {
func(); // func() behaves differently during

// the iterations i = 0 and i > 0
}

depicts an example for such a function. This function is called
within a loop with constant bound N. The budget consumed
by this loop, however, cannot be calculated as N times the
costs of a single execution of func(), as the cost varies for
every execution of the function. To solve this problem, every
pattern not only generates code, but also provides a pattern
descriptor. The pattern descriptor is used to simulate the
pattern’s behavior, depending on the current execution context,
such as the value stored in the initialized variable for the
function func() shown in Listing 2. The context-sensitive
budget consumed by the loop’s body in Listing 3 is calculated
as the summarized costs of the N simulations of the function.

The weaving process, including the simulation of patterns,
is shown in Listing 4: A pattern is selected randomly and its
code is produced. During the production of a pattern, further
patterns can be generated by a recursive call to the function
generate(). Generating a loop pattern, for instance, will
result in generating LLVM IR for the loop itself, along with
one or more productions of further patterns into the loop’s
body. Producing a pattern yields a pattern descriptor that
describes the behavior of the pattern. Pattern descriptors are
able to hold further pattern descriptors. For instance, the
descriptor for the loop pattern contains the list of pattern
descriptors produced into the loop’s body. This descriptor is
then used to simulate the behavior and obtain the costs of
the previously generated code. The costs obtained from the
simulation are deducted from the remaining budget, these steps
are repeated until the whole path budget is depleted.

Listing 5 illustrates the simulation process of pattern de-
scriptors of the program pattern presented in Listing 2 (con-
ditional execution of initialization code). For this purpose, the
pattern descriptor stores its child pattern descriptors into logic
groups. The first group (initBlock) contains all pattern
descriptors for patterns generated into the guarded initialize
block (Listing 2, Line 4) of function func(). The second
group (bodyBlock) contains all patterns generated into
the unconditionally executed part of the function (Listing 2,
Line 7). These blocks are taken into account during the
simulation of the encapsulating pattern (Listing 5, Lines 5
and 9). In addition, the descriptor contains information about
the pattern’s context, such as the state of the initialized

Listing 4: Weaving process including pattern simulation
void generate(context, budget) {
while(budget > 0) {
pattern = select_pattern(context, budget);
descriptor = pattern->produce(context, budget);
budget -= descriptor->simulate();

}
}

Listing 5: Simulation of descriptor (InitOnceFunction)
1InitOnceFunction_PatternDescriptor::simulate() {
2int usedBudget = 0;
3

4if(theDescriptor.initialized == false) {
5usedBudget += simulate(theDescriptor.initBlock);
6theDescriptor.initialized = true;
7}
8

9usedBudget += simulate(theDescriptor.bodyBlock);
10

11return usedBudget;
12}

variable (Listing 2, Line 1). Depending on whether the initial-
ization was already executed, the patterns in the initialization
block are included in or excluded from the budget consumed
by this particular execution of func() (usedBudget). The
costs for both lists of patterns are determined by adding up
the simulation results. This simulation of descriptors allows
GENE to generate code with context-sensitive behavior.

GENE does not join unrelated pieces of code, but it gener-
ates interconnected code that consists of different challenging
program patterns. Supporting interconnecting patterns requires
knowledge about the influence of a particular pattern on the
global execution context. For this purpose, in addition to
pattern descriptors, GENE also tracks the ranges of potential
values for variables generated by each pattern. As a key bene-
fit, the information obtained from this process allows patterns
to reuse variables introduced by other patterns. For instance,
the result of an arithmetic expression can be used by a loop
pattern to calculate its upper iteration bound. Analyzing code
resulting from this approach requires WCET analysis tools
to track the potential values of variables in order to provide
accurate results. Optimized code typically does not contain
unused calculations or write operations to no longer used
memory locations. Reusing the results of previous calculations
further reduces the differences between code generated by
GENE and optimized code produced by a compiler.

C. Available Patterns

GENE provides several program patterns that can be subdi-
vided into the following three categories:

1) Loop Patterns: This category comprises different shapes
of loops. The least complex loop is the loop pattern with a
constant iteration bound, which is implemented by the pattern
ConstantLoop. GENE’s value tracking enables to generate
loops whose iteration bound depends on a value computed
on preceding execution paths (InputDependentLoop).
The pattern TriangularLoop generates two loops that
are connected by the fact that the iteration variable of the
inner loop depends on the current iteration of the outer loop.
The DownsamplingLoop is a loop containing a conditional
modification of the iteration variable in the loop’s body,
hindering the determination of a closed-form expression for
the iteration variable. If a WCET tool is not able to bound the
flow of a loop and consequently cannot continue its analysis,
GENE is able to provide the flow facts for the loop.

2) Path Patterns: GENE provides several program patterns
influencing the control flow of the generated benchmark.
The most basic of these patterns is the conditional branch
pattern (Branch) for which GENE applies overweighting,
that is, the mechanism used to construct the worst-case
path (see Section IV-B1). The mutual exclusive path pat-
tern (MutualExclusivePath) is an extension to the con-
ditional branch: Two evaluations of contradicting conditions
are used to disguise the exclusiveness of the two blocks, which
is a challenge for analyzers’ ability to perform value analyses.
In addition, GENE exploits its value tracking abilities to gener-
ate dead code by crafting a non-trivial condition that is known
to be unsatisfiable (DeadCode). Furthermore, GENE provides
the previously discussed pattern InitOnceFunction that
generates a function with a code block executed once, thereby
mimicking hardware initializations (see Listing 2).

3) Atomic Patterns: These patterns consist of arithmetic
calculations (e.g., addition, division) and bitwise operations
(e.g., and, or, exclusive or). Furthermore, assignment opera-
tions to local and global variables are part of this category.

D. Pattern Suites

For convenience, GENE provides the following pattern
suites: The simple suite only contains patterns that analyzers
are expected to handle without additional loop-bound informa-
tion. For this purpose, the only considered loop pattern in this
suite is ConstantLoop. In contrast to the simple suite, the
suite valueanalysis contains the most difficult patterns
GENE provides to examine the analyzer’s ability to conduct
value analysis. Loops with non-constant bounds or without
closed forms, such as the InputDependentLoop and the
DownsamplingLoop, are of major importance for this suite.
The suite nobranch is designed to assess the accuracy of
the analyzer’s hardware analysis without having influences
of path analysis. Only patterns without branches (e.g., cal-
culations and assignments) are part of this suite. The
four suites constantloop, inputdependentloop,
downsamplingloop, and triangularloop consist of
the respective loop shape, along with arithmetic and load-store
operations. In our experiments in Section VI-E3, we use these
types of pattern suites to identify different WCET analyzers’
strengths and weaknesses with regard to loop-bound analysis.

E. Sanitizing Generated Benchmarks

GENE has two mechanisms to internally validate that a
generated program is correct: First, the tool interprets a
benchmark’s intermediate representation while monitoring the
flow facts. During this interpretation, GENE executes the
program with the worst-case input and validates the sequence
of executed basic blocks, which has been set up during the
generation process. Second, GENE simulates the benchmark
with each bit of the input set to one and the others set to
zero, while asserting that the paths hold valid context-sensitive
value constraints. These features validate the correctness of
the generated code. After a successful validation, GENE
determines the actual WCET of a benchmark by measuring the

execution time of the path triggered by the worst-case input.
In addition, the tool executes the program with a configurable
number of randomly selected inputs. If any of these traces
were to lead to a duration longer than the execution time of
the alleged worst-case input, GENE would report an error.

VI. EVALUATION

Below, we rely on benchmark programs generated by GENE
to evaluate two state-of-the-art WCET analyzers: the commer-
cial tool aiT [1] and the open-source tool PLATIN [2].

A. Experimental Setups

For our experiments, we use two different setups, Cortex-
M4 and Patmos, which are further described in the following.

1) Cortex-M4 Setup: Our main experimental setup com-
prises an Infineon XMC4500 development board with an
ARM Cortex-M4 processor [29]. We used 20 of these boards
in parallel to speed up our evaluations. To our knowledge,
this commercial off-the-shelf board is one of few available
and predictable hardware platforms, where the instruction
timing, pipeline behavior, and memory-access latencies are
documented at a fine-grained level [30], which is essential
for performing accurate WCET analyses. Due to its modular
structure, we were able to integrate these timings into PLATIN
in order to enable a comparison with aiT. The 32-bit processor
uses a 3-stage pipeline, contains 1024 KB on-chip flash mem-
ory with 4 KB instruction cache (2-way set associative, LRU
cache-replacement policy), and runs at 120 MHz.

2) Patmos Setup: In order to evaluate PLATIN for an addi-
tional hardware platform, we rely on PASIM, a cycle-accurate
simulator for the time-predictable Patmos processor [31]. In
this setup, the processor is configured with 2kB of data cache,
2kB of instruction cache, and runs at a frequency of 80 MHz.

Both setups are comparable to the platforms used in the
context of the WCET Tool Challenge [14].

B. Validating GENE
Prior to evaluating the accuracy of WCET tools, we first

conduct an experiment to validate that the WCET value
provided by GENE in fact constitutes the actual WCET of the
corresponding benchmark. For this purpose, we give GENE
a path budget of 20,000 and instruct the tool to generate a
benchmark with a reduced input size of 20 bits (instead of
the default 32 bits). The reduction of input size is necessary
to enable us to determine all possible execution times of the
benchmark by invoking it with all the about 1 million possible
input values. Despite the input-size reduction, the experiment
takes 12 hours for Patmos on a 48-core machine.

For the two evaluated platforms, Figure 4 summarizes all
possible execution times of the generated benchmark as well
as their occurrences. The results in both cases show a wide
spectrum of execution times, indicating the existence of a
multitude of different possible paths through the program. Of
all input values, only 513 trigger the actual WCET in the
Cortex-M4 setup (Patmos: 129), which for both setups is equal
to the respective WCET value determined by GENE, thereby
confirming the validity of our approach.

Since GENE relies on accurate measurements to determine
the actual WCET, the underlying hardware platform needs to
be predictable. In order to capture potential fluctuations in
execution times caused by machine variability, we repeat the
explicit enumeration of all 220 possible paths 1000 times on
the Cortex-M4 hardware platform. Our results show that the
execution cycles are identical for the respective input values
across all experiments. As a consequence, the Cortex-M4 setup
behaves predictably in our experiments, making it a valid
platform for benchmarking WCET analyzers.

C. Assessing the Accuracy of WCET Analyzers

In contrast to existing benchmark suites (see Section III-A),
GENE not only provides benchmark programs but also their
flow facts and actual WCETs. As a result, GENE offers the
possibility to assess the accuracy of WCET tools on an abso-
lute scale, using the actual WCETs as baselines against which
to compare the upper bounds reported by WCET analyzers.
In our next experiment, we conduct such an evaluation for
aiT and PLATIN based on a benchmark with an input size of
32 bits, which therefore is more complex than the benchmark
used in Section VI-B. Consequently, it is necessary to provide
both WCET analyzers with all available flow facts in order for
them to be able to complete their timing analyses.

Figure 5 shows the actual and reported WCETs for this
experiment, as well as 10,000 execution-time samples of the
generated program to illustrate the variety of possible paths.
For the Cortex-M4 setup with enabled instruction cache, the
results show an accuracy A = reported WCET

actual WCET of 1.07 for aiT,
which is close to the optimum of 1.00. In absolute numbers,
aiT overestimates the actual WCET of 68,499 cycles by
4,940 cycles. In contrast, with a reported upper bound of
265,269 cycles PLATIN has an accuracy of 3.87. We attribute
this significant overestimation to a great extent to the fact that
PLATIN’s ARM backend currently assumes a cache miss on
every instruction. Repeating the experiment for the Cortex-M4

0 10000 20000 30000 40000 50000 60000 70000

Cycles

0

5000

10000

15000

20000

O
cc
u
rr
en
ce
s

WCET

(a) Cortex-M4

0 50000 100000 150000 200000

Cycles

0

5000

10000

15000

O
cc
u
rr
en
ce
s

WCET

(b) Patmos

Figure 4: The WCET value determined by GENE represents the
maximum of the execution times of all possible input values.

0 50000 100000 150000 200000 250000

Cycles

0

50

100

150

200

O
cc
u
rr
en
ce
s

WCET
platinaiT

(a) Cortex-M4 with enabled instruction cache

0 50000 100000 150000 200000 250000

Cycles

0

50

100

150

200

O
cc
u
rr
en
ce
s

WCET
platinaiT

(b) Cortex-M4 with disabled instruction cache

0 500000 1000000 1500000

Cycles

0

100

200

300

400

O
cc
u
rr
en
ce
s WCET

platin

(c) Patmos

Figure 5: Comparison between actual and reported WCET.

setup with disabled instruction cache confirms this hypothesis:
For this setting, the accuracy of PLATIN improves to 1.77. This
is similar to the accuracy of 1.75 PLATIN achieves for Patmos,
where both data and instruction cache are enabled, indicating
that the PLATIN WCET analyzer models the Patmos platform
more accurately than the Cortex-M4 platform. To allow a
more comprehensive assessment of the analyzers’ accuracies,
we repeated the experiment with the identical configuration
but varying seed values (1 to 2000). The geometric mean
of overestimation factors is 1.47 for PLATIN on the Patmos
platform and 1.96/4.01 with de-/activated instruction cache on
the Cortex-M4. For aiT on the Cortex-M4 setup, we observed
factors 1.23/1.36 with de-/activated instruction cache.

D. Evaluating the Complexity of Benchmarks

Existing benchmark suites contain a significant number of
benchmarks that are not resilient against compiler optimiza-
tions and/or possess an input-independent control flow [21], as
discussed in Section III-B. GENE, on the other hand, ensures
that the overall complexity of the generated programs is kept
across compiler optimizations and that benchmarks (unless
explicitly requested differently) comprise multiple paths. For
example, the benchmark used in Section VI-B, which we have
executed with all possible input values, on the Cortex-M4
platform leads to paths with 1,998 different execution times
ranging from 11,833 to 77,144 cycles with an arithmetic mean
of 49,123.85 cycles and a standard deviation of 13,505.65 cy-
cles. These numbers confirm that the inputs to the programs
generated by GENE heavily influence the execution times of
benchmarks. If necessary, users are able to widen the spectrum
of possible paths even further by increasing the probability of
conditional-branch patterns being selected and woven into the
program during the generation process.

pattern suite ha
s

in
pu

t?

lo
op

s
on

O
0

R
lo

o
p
s

O
3

/O
0

[%
]

ca
ll

ch
ai

n
on

O
0

R
c
a
ll
s

O
3

/O
0

[%
]

cy
cl

om
at

ic
co

m
pl

ex
ity

(C
C

)
on

O
0

R
C

C

O
0

/O
3

[%
]

simple 3 4 100 2 100 353 85
valueanalysis 3 156 100 2 100 822 91
constantloop 7 5 100 2 100 6 100
inputdependentloop 3 12 100 2 100 13 138
downsamplingloop 3 7 100 2 100 15 80
triangularloop 7 408 100 2 100 409 150
nobranch 7 0 – 1 100 1 100

TABLE I: GENE’s pattern suites enable the generation of resilient
benchmarks with a wide spectrum of different complexities.

To assess the resilience of GENE benchmarks against
compiler optimizations, we apply several complexity metrics
(i.e., the number of loops, the longest call chain, and the
cyclomatic complexity [19]) to a set of benchmarks gener-
ated with different pattern suites (see Section IV-D) for a
path budget of 20,000. Table I presents the results of this
analysis. For all three complexity metrics, we compute the
resilience R = measure on O3

measure on O0 of a benchmark by comparing
the corresponding measures at different optimization levels;
a resilience Rloops = 100%, for example, means that a
benchmark contains the same number of loops at level O0 as
it does at level O3. The optimized versions of the benchmarks
are created by LLVM’s optimizer opt, which as indicated by
the complexity measures has a limited influence on programs,
but not decisively changes the complexity of benchmarks.

Table I also illustrates that GENE’s pattern suites produce
benchmarks with a variety of complexities ranging, for ex-
ample, from 0 to 408 loops. One pattern suite, nobranch,
constitutes an exception as it has been specifically designed
to create simplistic benchmarks used for analyzing the hard-
ware models of WCET tools (see Section VI-E1). Comparing
the numbers of Table I with existing benchmark suites for
timing analysis shows that for a path budget of 20,000
GENE generates benchmarks that are similar in complexity to
TACLEBENCH [11] programs, but significantly more resilient
against compiler optimizations [21]. Furthermore, in contrast
to existing benchmark suites, for which the complexity of
programs is fixed, GENE offers the possibility to increase
benchmark complexity by increasing the path budget.

E. Identifying Individual Strength & Weaknesses

Pattern suites allow GENE to generate benchmarks with
specific characteristics (see Table I). Below, we use such suites
to reveal the individual strengths and weaknesses of aiT and
PLATIN with regard to different parts of the timing analysis.
In contrast to the experiments presented in previous sections,
this time we do not provide the evaluated WCET analyzers
with the flow facts of benchmarks in order to examine which
program patterns they are able to analyze without assistance.

1) Target-Hardware Analysis: To assess the quality of both
WCET analyzers’ hardware models, we generate benchmarks
with nobranch, a pattern suite that produces programs
with input-independent control flows consisting of branchless
sequences of code, which due to their simplicity put the
focus on the target-hardware part of the analysis (see Sec-

Analyzer constant
loop

input-
dependent
loop

down-
sampling
loop

triangular
loop

aiT 3 3 3 7
PLATIN 3 3 7 3

TABLE II: Ability of WCET tools to analyze loop patterns.

tion IV-D1). For the Cortex-M4 setup with enabled instruction
cache, aiT and PLATIN achieve an accuracy of 1.06 and
3.28, respectively. As in the experiment in Section VI-C, the
overestimation of the WCET by PLATIN can be attributed to
the tool’s current pessimistic instruction-cache model. When
disabling the instruction cache, the accuracy of PLATIN for
the nobranch benchmark improves to 2.42. For comparison,
for the Patmos architecture PLATIN has an accuracy of 1.08,
proving PLATIN’s ability to precisely model this platform.

2) Value Analysis: GENE provides the pattern suite
valueanalysis to examine the ability of a WCET tool
to analyze value constraints (see Section IV-D2). Benchmarks
from this suite mainly consist of arithmetic operations, infeasi-
ble paths, and mutually-exclusive paths. When analyzing this
benchmark, aiT benefits from its abstract interpretation [32]
allowing the tool to determine value constraints of variables,
which results in an accuracy of 1.28. PLATIN for the Cortex-
M4 setup achieves accuracies of 2.87 (enabled cache) and
1.85 (disabled cache), respectively; both results represent
improvements compared to the hardware-model experiment.
For Patmos, PLATIN’s value analysis has an accuracy of 1.20.

3) Loop-Bound Analysis: In the final experiment, we rely
on four different pattern suites, each producing a different
challenging loop pattern (see Section IV-D3). Table II presents
the results of this experiment. Of the four analysis scenarios,
only two are successfully completed by both evaluated WCET
analyzers: constant loops and input-dependent loops. In the
loop pattern used by the down-sampling loop benchmark, the
iteration variable is modified (i.e., decremented) in the loop’s
body. This modification causes the loop bound to no longer
being describable by a closed-form expression. aiT is able to
solve this problem with an accuracy of 1.14. PLATIN, on the
other hand, fails to bound this loop and would require a manual
annotation. In contrast, for the triangular-loop benchmark, aiT
is the WCET analyzer that is unable to report an upper bound
without assistance, while PLATIN completes the analysis with
an accuracy of 2.01. Examining the source code of PLATIN,
we found out that the tool for this purpose exploits LLVM’s
scalar-evolution analysis [33] for loops bounds.

F. Finding Bugs in WCET Analyzers

During our evaluation, most WCET values reported by the
WCET analyzers under test, as expected, were overestimations
of the corresponding actual WCETs. To our surprise, however,
the aiT tool for some GENE benchmarks provided results that
were lower than the actual WCETs. Having ruled out that the
cause for these invalid WCET values is an error on our side,
we contacted AbsInt, the company behind aiT, who confirmed
that GENE has discovered a previously unknown bug in the
tool. In addition, AbsInt announced to fix this bug as part of
a revised version of aiT for the Cortex-M4 platform.

G. Summary

Using the actual WCETs provided by GENE enables us to
assess the accuracy of WCET analyzers on an absolute scale.
Our results show that the open-source tool PLATIN accurately
models the Patmos architecture, while the commercial tool aiT
reports estimates closer to the actual WCET for the Cortex-
M4 platform. However, an evaluation with the revised version
of aiT resolving the underestimations is part of future work.
Both WCET tools need to be provided with flow facts in
order to be able to successfully analyze all evaluated program
patterns. Otherwise, aiT is unable to bound triangular loops
while PLATIN has problems with down-sampling loops.

VII. FURTHER USAGE SCENARIOS

In this section, we present two further usages of GENE that
include generating benchmarks for performance analysis and
for workloads used in scheduling analysis.

Generating Benchmarks for Performance Analysis: The
field of benchmark generation offers new possibilities to eval-
uate approaches on a fine-grained level not only for real-time
systems. Growing interest exists in generating benchmarks to
reveal specific properties [34]. GENE’s concept of weaving
selectively chosen patterns can be exploited to create bench-
marks that stress, for example, the data- or instruction-caching
behavior of systems in order to make performance analyses
targeting improvements of the average-case execution.

Generating Workloads for Scheduling Analysis: Evaluations
of scheduling analysis for real-time systems are carried out
increasingly on real hardware platforms using testbeds such as
LITMUSRT [35], [36]. For such purposes, De Bock et al. pre-
sented a task-set generator, which produces executable binaries
with predefined execution times. These binaries are assembled
from source code of the TACLEBENCH suite [11], whereas
the main workload is called several times consecutively within
the produced code to reach the predefined execution time.

Since GENE is able to generate benchmarks, whose actual
WCET is determinable, it is straightforward to generate work-
loads for scheduling-analysis evaluations. The parameters for
the task sets (e.g., WCET, utilization) can be gathered, for
example, from the generator of Emberson et al. [37]. GENE
is then able to generate benchmarks that lead to these WCET
values (e.g., 1 ms). A comprehensive evaluation of this feature
for tasks with predefined WCETs and the generation of multi-
threaded benchmarks is part of our future work.

VIII. RELATED WORK

GENE is the first benchmark generator that specifically
targets evaluating the accuracy of WCET tools by generating
benchmarks with known properties (i.e., flow facts, the actual
WCET). In addition, this approach proved to be useful for
validating the reported upper bounds of these tools.

This paper extends our existing work [38] by the following
aspects: definition of flow facts and their mapping between
LLVM intermediate representation and machine code (see
Section V-A), support to compare analyzers’ overestimation
factors using two target platforms (see Section VI), several

pattern suites (see Section IV-D), and the generation of code
with side effects requiring context-sensitive descriptors of
patterns and value tracking (see Section V-B).

Lesage et al. [39] proposed a framework for the evaluation
of measurement-based timing analyses. Their framework gen-
erates abstract-syntax trees (ASTs) comprising abstract tasks.
Costs are attributed to the nodes of the AST by running
existing application code and deducing basic-block execution
models. The generation of tasks is achieved by assembling
basic sequences of code, constant loops, and if-elseif-else
constructs. The generated AST is simulated; execution times
gathered from the simulation are compared against timing
analyses on the AST. This approach is beneficial with respect
to measurement-based timing analyses operating on an AST
level. In contrast, GENE aims at the evaluation of WCET
analyzers irrespective of their analysis technique, but with a
particular attention to static code analysis. Static code analyz-
ers typically depend on the availability of executable machine
code, a requirement their approach unfortunately cannot fulfill.
GENE satisfies this dependency by crafting benchmarks with
a specific worst-case path leading to the actual WCET, which
is used for the evaluation of aiT and PLATIN.

Several studies exist that discuss the accuracy of the aiT
timing-analysis tool [40], [41]. These evaluations suffer from
the unavailability of the actual WCET, that is required as a
proper baseline for comprehensive evaluations. As a resort,
these evaluations compare the reported execution time against
measurements gathered from execution traces through the soft-
ware under analysis. Souyris et al. evaluated aiT by running
it on an avionics program [40]. They state that the reported
WCET is usually around a factor of 1.25 higher than the
execution time gathered from the measurement of the analyzed
task. However, their measurements of execution traces are
most likely under-estimated values. As a consequence, the
comparison between the worst-observed execution time and
the reported WCET is of limited expressiveness as it depends
on the complexity of the code (e.g., number of mutual ex-
clusive paths, number of value-constrained branches) and the
amount of conducted measurements. GENE solves the issue
of unknown baselines (i.e., the actual WCET) by generating
benchmarks with known properties.

The same problem of unknown baselines exists when com-
paring timing-analysis tools in the context of the WCET
Tool Challenge [12], [13], [14]. The WCET Tool Challenge
also provides the source code of several challenging program
patterns that, for example, test the ability to determine path-
sensitive loop bounds. GENE implements many of these
program patterns, which we posed as isolated challenges for
PLATIN and aiT and identified their strengths and weak-
nesses. Besides these challenging patterns, several benchmark
suites exist that are commonly used for benchmarking timing-
analysis tools (e.g., [10], [42]). However, since the flow facts
of these programs are usually unknown, it is difficult, if not
impossible, to extract these facts manually, which are required
for determining values close to the actual WCET. GENE solves
this issue by generating benchmarks with known flow facts.

IX. CONCLUSION

The main problem when evaluating WCET tools by using
existing benchmarks is that all flow facts and thus the actual
WCET is unknown. However, these values are necessary as
baseline to determine the accuracy of upper bounds reported
by analyzers. In addition to missing baselines, the monolithic
structure of benchmarks hides patterns that pose major chal-
lenges to tools and lead to overestimations.

To solve these problems, we presented the benchmark
generator GENE. The tool builds benchmarks around worst-
case paths, which are generated to trigger the actual WCETs
under all circumstances. Since GENE operates on a low-level
abstraction, it is able to produce code that maintains its config-
urable complexity across compiler optimizations. Challenging
patterns are woven into the program in a context-sensitive way,
enabling fine-grained evaluations, for example, of the ability
of tools to perform value and loop-bound analyses.

We demonstrated the applicability of GENE on two different
hardware platforms. An evaluation of the WCET-analysis tools
aiT and PLATIN confirms that GENE is able to reveal strengths
and weaknesses of each analyzer and enabled to detect a bug
in aiT causing underestimations of the WCET.

The source code of GENE is available at:
https://gitlab.cs.fau.de/gene

Acknowledgments: This work is supported by the German Re-
search Foundation (DFG), in part by Research Grant no. SCHR 603/9-2,
no. SCHR 603/13-1, and the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89, Project C1).

REFERENCES

[1] AbsInt. aiT WCET analyzers. https://www.absint.com/ait/.
[2] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,

“The T-CREST approach of compiler and WCET-analysis integration,”
in Proc. of SEUS ’13, 2013, pp. 33–40.

[3] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing
analyzer for embedded software,” Science of Computer Programming,
vol. 69, no. 1, pp. 56–67, 2007.

[4] B. Lisper, “SWEET – A tool for WCET flow analysis,” in Proc. of
ISoLA ’14, 2014, pp. 482–485.

[5] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: An open
toolbox for adaptive WCET analysis,” in Proc. of SEUS ’10, 2010, pp.
35–46.

[6] A. Colin and I. Puaut, “A modular and retargetable framework for tree-
based WCET analysis,” in Proc. of ECRTS ’01, 2001, pp. 37–44.

[7] J. Knoop, L. Kovács, and J. Zwirchmayr, “WCET squeezing: On-
demand feasibility refinement for proven precise WCET-bounds,” in
Proc. of RTNS ’13, 2013, pp. 161–170.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. of WWC ’01, 2001, pp. 3–14.

[9] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On, “A benchmark
characterization of the EEMBC benchmark suite,” IEEE Micro, vol. 29,
no. 5, pp. 18–29, 2009.

[10] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks: Past, present and future,” in Proc. of WCET ’10,
2010, pp. 136–146.

[11] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,
C. Rochange, M. Schoeberl, R. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in Proc. of WCET ’16, 2016, pp. 1–10.

[12] N. Holsti et al., “WCET tool challenge 2008: Report,” in Proc. of WCET
’08, 2008, pp. 1–28.

[13] R. von Hanxleden et al., “WCET tool challenge 2011: Report,” in Proc.
of WCET ’11, 2011, pp. 1–38.

[14] C. Rochange, “WCET tool challenge 2014,” Talk held at WCET ’14.
[Online]. Available: https://www.irit.fr/wiki/doku.php?id=wtc:start

[15] F. Kluge and T. Ungerer, “EMSBench: Benchmark und Testumgebung
für reaktive Systeme,” in Betriebssysteme und Echtzeit. Springer, 2015,
pp. 11–20.

[16] AUTOSAR, “Specification of operating system (version 3.0.2),” Auto-
motive Open System Architecture GbR, Tech. Rep., Jun. 2008.

[17] R. Kirner, A. Kadlec, A. Prantl, M. Schordan, and J. Knoop, “Towards
a common WCET annotation language: Essential ingredients,” in Proc.
of WCET ’08, vol. 8, 2008, pp. 1–14.

[18] B. Blackham, M. Liffiton, and G. Heiser, “Trickle: Automated infeasible
path detection using all minimal unsatisfiable subsets,” in Proc. of RTAS
’14, 2014, pp. 169–178.

[19] T. J. McCabe, “A complexity measure,” IEEE Trans. on Software
Engineering, no. 4, pp. 308–320, 1976.

[20] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, 3rd ed. CRC Press, 2015.

[21] P. Wägemann, T. Distler, P. Raffeck, and W. Schröder-Preikschat,
“Towards code metrics for benchmarking timing analysis,” in Proc. of
RTSS WiP ’16, 2016, pp. 1–4.

[22] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of CGO ’04, 2004.

[23] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Trans. of the AMS, pp. 358–366, 1953.

[24] D.-H. Chu and J. Jaffar, “Symbolic simulation on complicated loops for
WCET path analysis,” in Proc. of EMSOFT ’11, 2011, pp. 319–328.

[25] P. Wägemann, T. Distler, T. Hönig, H. Janker, R. Kapitza, and
W. Schröder-Preikschat, “Worst-case energy consumption analysis for
energy-constrained embedded systems,” in Proc. of ECRTS ’15, 2015,
pp. 105–114.

[26] G. Bernat, R. Davis, N. Merriam, J. Tuffen, A. Gardner, M. Bennett,
and D. Armstrong, “Identifying opportunities for worst-case execution
time reduction in an avionics system,” Ada User Journal, vol. 28, no. 3,
pp. 189–195, 2007.

[27] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on
their trustworthiness,” in Proc. of SIES ’15, 2015, pp. 1–10.

[28] B. Huber, D. Prokesch, and P. Puschner, “Combined WCET analysis of
bitcode and machine code using control-flow relation graphs,” in Proc.
of LCTES ’13, 2013, pp. 163–172.

[29] ARM Limited, “Cortex-M4 technical reference manual,” 2010.
[30] Infineon Technologies AG, “XMC4500 reference manual,” 2012.
[31] M. Schoeberl et al., “T-CREST: Time-predictable multi-core architecture

for embedded systems,” JSA, vol. 61, no. 9, pp. 449–471, 2015.
[32] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langen-

bach, R. Wilhelm, and C. Ferdinand, “An abstract interpretation-based
timing validation of hard real-time avionics software,” in Proc. of DSN
’03, 2003, pp. 625–632.

[33] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of Recurrences –
a method to expedite the evaluation of closed-form functions,” in Proc.
of ISSAC ’94, 1994, pp. 1–8.

[34] H. Borghorst, K. Bieling, and O. Spinczyk, “Towards versatile models
for contemporary hardware platforms,” in Proc. of OSPERT ’16, 2016.

[35] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A testbed for empirically comparing real-time
multiprocessor schedulers,” in Proc. of RTSS ’06, 2006, pp. 111–126.

[36] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, UNC Chapel Hill, 2011.

[37] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proc. of WATERS ’10, 2010, pp. 6–11.

[38] P. Wägemann, T. Distler, T. Hönig, V. Sieh, and W. Schröder-Preikschat,
“GenE: A benchmark generator for WCET analysis,” in Proc. of WCET
’15, 2015, pp. 31–40.

[39] B. Lesage, D. Griffin, F. Soboczenski, I. Bate, and R. I. Davis, “A
framework for the evaluation of measurement-based timing analyses,”
in Proc. of RTNS ’15, 2015, pp. 35–44.

[40] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, and G. Borios, “Computing
the worst case execution time of an avionics program by abstract
interpretation,” in Proc. of WCET ’05, 2005, pp. 21–24.

[41] C. Ferdinand, R. Heckmann, H.-J. Wolff, C. Renz, O. Parshin, and
R. Wilhelm, “Towards model-driven development of hard real-time
systems,” in Proc. of ASWSD ’06, 2006, pp. 145–160.

[42] N. Holsti, T. Langbacka, and S. Saarinen, “Using a worst-case execution
time tool for real-time verification of the DEBIE software,” in Proc. of
DASIA ’00, 2000, pp. 1–6.

https://gitlab.cs.fau.de/gene
https://www.absint.com/ait/
https://www.irit.fr/wiki/doku.php?id=wtc:start

	Introduction
	Background
	Problem Statement
	Assessing the Accuracy of Timing Analysis
	Fine-Tuning the Complexity of Benchmarks
	Identifying Individual Strengths & Weaknesses

	GenE
	Overview
	Generating Benchmarks with Known Properties
	Constructing the Worst-Case Path
	Determining the Actual WCET

	Composing Complex Benchmarks
	Combining Patterns
	Making Benchmarks Resilient Against Optimizations

	Selecting Patterns to Reveal Strengths & Weaknesses
	Challenge of Target-Hardware Analysis
	Challenge of Value Analysis
	Challenge of Bounding Loops

	Implementation
	Maintaining Flow Facts & Control-Flow Relations
	Pattern Weaving
	Available Patterns
	Pattern Suites
	Sanitizing Generated Benchmarks

	Evaluation
	Experimental Setups
	Cortex-M4 Setup
	Patmos Setup

	Validating GenE
	Assessing the Accuracy of WCET Analyzers
	Evaluating the Complexity of Benchmarks
	Identifying Individual Strength & Weaknesses
	Target-Hardware Analysis
	Value Analysis
	Loop-Bound Analysis

	Finding Bugs in WCET Analyzers
	Summary

	Further Usage Scenarios
	Related Work
	Conclusion
	References

