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Abstract—Energy-efficient cloud and data-center applications
utilize just enough resources (e.g., threads, cores) to provide the
performance required at the current point in time. Unfortunately,
building such applications is inherently difficult in the face of
varying workloads and further complicated by the fact that exist-
ing programming and execution platforms are not energy aware.
Consequently, programmers are usually forced to choose between
two unfavorable options: to lose performance and/or waste energy
by relying on a static resource pool, or to significantly increase
the complexity of their applications by implementing additional
functionality to control resource usage at runtime.

In this paper we present EMPYA, an energy-aware program-
ming and execution platform that frees application programmers
from the need to take care of energy efficiency. During execution,
EMPYA constantly monitors both the performance as well as
the energy consumption of an application and dynamically
adjusts the system configuration to achieve the best energy–
performance tradeoff for the current workload. In contrast to
existing approaches, EMPYA combines techniques from different
software and hardware levels to effectively and efficiently mini-
mize the resource footprint of an application during periods of
low utilization. This allows EMPYA to enable significant energy
savings, as shown by our experimental evaluations of a key–value
store and a variety of MapReduce applications.

I. INTRODUCTION

Achieving energy efficiency means to provide an application
with just enough resources to still be able to handle the
current workload. For many cloud and data-center services,
however, solving this problem is inherently difficult due to
the workload varying over time. Examples include services for
which client-access patterns change during the day (e.g., key–
value stores [4], [6], [15]) as well as applications that process
data in different phases (e.g., MapReduce [14] or Spark [40]).

In the face of varying workloads, there is usually no single
tradeoff between performance and energy consumption that is
optimal at all times. Instead, the amount of resources that of-
fers the necessary performance at the highest energy efficiency
often depends on utilization. For example, if utilization is high,
distributing an application across a large number of threads
may be the only measure to keep latencies at an acceptable
level. In contrast, running the same application entirely in
a single thread might be sufficient for achieving the same
latencies during periods of the day when utilization is low.

Existing programming and execution platforms like
Akka [3] or Hadoop [5] free programmers from the need
to deal with issues such as parallelization and fault tol-
erance. However, they do not provide support for energy
efficiency, leaving application developers with two options:
1.) to address the problem by statically selecting the resources

to be used or 2.) to manually implement mechanisms for
dynamically managing resources. The first option incorporates
the risk of resource underprovisioning (e.g., by executing all
application components in the same thread), which leads to
poor performance at high utilization, or resource overprovi-
sioning (e.g., by executing each application component in a
separate thread), which results in energy being wasted when
utilization is low. The second option, on the other hand, is
costly and error-prone because it means that programmers can
no longer only concentrate on the application logic, but also
have to deal with the orthogonal problem of energy efficiency.

In this paper we present an overview1 on EMPYA, an energy-
aware programming and execution platform that dynamically
regulates the energy consumption of an application by exploit-
ing both software and hardware techniques at different system
levels: At the platform level, EMPYA relies on the actor pro-
gramming model [2], [24] to efficiently adjust the number of
application threads at runtime, automatically determining the
best tradeoff between performance and energy consumption
for the current workload. At the operating-system level, it
makes a similar decision with regard to the mapping of threads
to cores and furthermore deactivates cores to save energy [7],
[8], [22]. Finally, at the hardware level, EMPYA controls upper
power-consumption limits of hardware units such as CPUs to
further reduce the energy footprint of the overall system.

To find the right system configuration, EMPYA continuously
monitors performance and energy consumption and evaluates
whether the current configuration still suits the present con-
ditions. If this is not the case, usually due to the workload
having changed recently, EMPYA triggers a reconfiguration.

EMPYA’s key contribution is the integrated approach of
systematically combining a variety of different energy-saving
techniques and making them readily available to a wide
spectrum of cloud and data-center applications. In particular,
EMPYA differs from existing works by uniting three aspects:
First, as the mechanisms for controlling and implementing
energy-aware reconfigurations are integrated with the plat-
form, EMPYA does not depend on external energy-aware con-
trollers [30], [31]. Second, EMPYA puts a focus on maximizing
energy efficiency and thereby differs from approaches aimed
at optimizing resource utilization [31], as the latter possibly
results in increased energy usage. Third, while existing works
usually only consider energy-saving techniques at one or two
system levels [13], [17], [36], EMPYA’s multi-level approach

1For more details on the EMPYA approach and implementation, please refer
to the accompanying technical report [19]. This work was partially supported
by the German Research Council (DFG) under grant no. DI 2097/1-2 (REFIT).



covers the entire range from the hardware to the application.

II. PROBLEM STATEMENT

Platforms like Akka [3] or Hadoop [5] simplify application
development and execution by offering built-in mechanisms
that deal with key aspects such as parallelization (e.g., by
partitioning data or dynamically scheduling tasks) and fault
tolerance (e.g., by monitoring tasks or automatically restarting
components). Our goal behind EMPYA is to develop a platform
that provides similar support with regard to energy efficiency.

As existing platforms do not provide means to control the
energy consumption of applications, application programmers
are responsible for dealing with this problem themselves. This
approach is cumbersome because finding the right balance
between performance and energy consumption is inherently
difficult, as the following example illustrates: Figure 1 com-
pares the power consumption and maximum throughput of two
static configurations of the same application, a key–value store
further described in Section IV. While the Staticperf configura-
tion targets high performance using 24 threads, Staticenergy is
optimized to reduce energy consumption using only 2 threads,
which for example results in power savings of 21 % compared
with Staticperf at 70 kOps/s. Such savings are mainly possible
due to the CPU generally being a significant contributor to a
system’s energy consumption [9], [33]. On the downside, the
reduced energy footprint of Staticenergy comes at the cost of a
31 % lower maximum throughput compared with Staticperf.

In general, there is no optimal configuration that achieves
peak performance when utilization is high and also is always
the most energy-efficient configuration when utilization is low.
Unfortunately, this means that programmers are forced to
choose between two approaches: selecting a non-optimal static
configuration or handling dynamic reconfigurations manually.

A static configuration has the main disadvantage of making
it necessary to trade off peak performance against energy
consumption. Once the configuration is set, the decision cannot
be changed at runtime if, for example, it turns out that energy
is wasted due to the maximum throughput requirements having
been overestimated. An additional problem is that, as there
are multiple ways to influence energy usage, selecting an
acceptable static configuration in the first place is inherently
difficult. To overcome the problems associated with a static
configuration, a programmer at the moment needs to take care
of managing dynamic reconfigurations at the application level.
This is often costly and error-prone because reconfigurations
are usually orthogonal to the application functionality.

Our solution to these problems is an energy-aware platform
that monitors applications and dynamically selects the best-
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Fig. 1: Tradeoff associated with static configurations (example)
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Fig. 2: Overview of the EMPYA architecture

suited configuration for the current load, freeing programmers
from the need to provide such functionality themselves.

III. EMPYA

EMPYA is an energy-aware platform that dynamically reg-
ulates the energy consumption of an application by switching
between different configurations. For this purpose the platform
solves two particular problems: First, by exploiting both
software and hardware techniques, EMPYA creates a wide
spectrum of diverse configurations to choose from, repre-
senting different tradeoffs between performance and energy
consumption. Second, by monitoring both the level of service
utilization as well as the amount of energy consumed, the
platform collects information on the specific characteristics of
configurations to determine when to initiate a reconfiguration.

As shown in Figure 2, EMPYA combines techniques at
different system levels to create configurations with hetero-
geneous performance and energy-consumption characteristics:

• At the platform level, it varies the number of threads
assigned to an application and controls the mapping of
application components to the threads available.

• At the operating-system level, it dynamically adjusts
the number of cores executing the platform, handles the
mapping of application threads to active cores, and saves
energy by disabling unused cores.

• At the hardware level, it selects varying upper power
limits and instructs the hardware to enforce them.

All decisions in EMPYA are made by an integrated central
component, the energy regulator, which periodically gath-
ers measurement results (e.g., for throughput and energy
consumption) from different system parts. Based on such
information on the effects of the current configuration as well
as knowledge on the characteristics of other configurations,
the energy regulator is able to determine the configuration
providing the best tradeoff between performance and energy
consumption for the present circumstances. In case the energy
regulator concludes that the current configuration is not op-
timal, it triggers a reconfiguration and initiates the necessary
changes at the platform, operating-system, and hardware level.
A. Saving Energy at Multiple System Levels

Systematically combining techniques at different levels of-
fers EMPYA the flexibility to effectively and efficiently adjust a



system’s energy consumption to the current workload. Below,
we present the specific techniques used for this purpose.

1) Platform Level: Being energy-efficient at the platform
level means to distribute the components of an application
across the number of threads currently providing the best
tradeoff between performance and energy consumption. To
efficiently adapt the number of application threads at runtime,
EMPYA exploits the actor programming model [2], [24]. In an
actor-based application, all components are implemented as
isolated units that do not directly share internal state with each
other and only interact by exchanging messages. Furthermore,
actors do not comprise their own threads; instead, the threads
available are managed by an underlying runtime environ-
ment (e.g., Akka [3]). If there are incoming messages for a
component, the runtime environment decides in which thread
to execute the actor and initiates the message processing.

For EMPYA’s platform level, this decoupling of threads and
application logic offers two key benefits: 1.) By instrumenting
the runtime environment, EMPYA is able to dynamically set
the number of threads without requiring the application code
to be modified for this purpose. As a consequence, existing
actor-based applications are able to run on EMPYA without
refactoring. 2.) The decoupling of threads and application
logic enables EMPYA to change the mapping of components
to threads at runtime without disrupting the service. Therefore,
applying a new configuration at the platform level usually only
involves waiting until the processing of the current message
is complete, reassigning the component to a different thread,
and then starting the processing of another message.

In summary, actor-based applications allow EMPYA to ex-
ecute all components in a single thread during periods of
low utilization, thereby saving energy due to reducing the
synchronization overhead. Furthermore, when the load on the
system changes, EMPYA is able to efficiently vary the number
of threads by quickly reassigning components to other threads.

2) Operating-System Level: At the operating-system level,
EMPYA increases energy efficiency by only keeping cores
active that are necessary to execute the current workload. As
a major benefit of its multi-level approach, EMPYA can make
decisions about the reconfiguration of cores in accordance
with the platform level, for example, selecting the number
of enabled cores in dependence of the number of application
threads. In addition, EMPYA can adjust the assignment of a
thread to a specific core to reduce scheduling overhead.

3) Hardware Level: Increasing energy efficiency by de-
termining the best tradeoff between performance and energy
consumption in EMPYA is not limited to software but also
includes techniques taking effect at the hardware level. For
this purpose, EMPYA exploits modern hardware features that
allow the platform to specify an upper limit for the power
consumption (also known as power cap) of specific hardware
parts (e.g., CPU, DRAM, and GPU). Examples of such fea-
tures include Intel’s RAPL [25] as well as AMD’s APM [1].
By setting a power cap, EMPYA is for example able to reduce
energy consumption during periods in which the load on the
system makes it necessary to keep one or more cores active but

does not require their full processing resources. Due to the fact
that processors today are usually a significant contributor to a
system’s overall energy consumption (see Section II), power
capping constitutes an effective means to save energy at the
hardware level without impeding application performance.

B. Energy Regulator

Below, we present EMPYA’s energy regulator, the compo-
nent responsible for initiating and conducting reconfigurations.

1) Architecture: As shown in Figure 2, the energy regulator
connects all three system levels at which EMPYA operates. In-
ternally, the regulator consists of different sub-components: an
observer collecting runtime information such as performance
and energy values, a configurator executing reconfigurations,
and a control unit comprising the control and adaptation logic.

To assess the load on the system, the control unit pe-
riodically retrieves performance values from the observer.
Utilizing this information, in the next step, the control unit
then makes the decision about a possible reconfiguration based
on an energy-profile database (see Section III-B2) containing
knowledge about the performance and energy-consumption
characteristics of different configurations. In order to cus-
tomize the decision process, EMPYA furthermore allows users
to specify an energy policy defining particular performance
goals, for example, with respect to latency.

2) Energy-Profile Database: To have a basis for reconfig-
uration decisions, EMPYA conducts performance and energy
measurements and maintains the results in an energy-profile
database. As illustrated in Table I, this database holds infor-
mation about various configurations that differ in the number
of threads and cores used and the power cap applied. For
each configuration, the database provides knowledge about
the power consumption at different degrees of performance,
allowing the energy regulator to select the most suitable
configuration for a particular workload (see Section III-B3).
One option to create the energy-profile database is to have an
initial profiling phase in which EMPYA evaluates different con-
figurations. In addition, the energy regulator provides support
for updating the database at runtime, as discussed below.

3) Use of Energy Profiles: To always apply the most
energy-efficient configuration, the energy regulator runs in
a continuous feedback loop, which starts with collecting
the performance and energy-usage results for the current
configuration and workload. Knowing the system load, the
regulator can then query the energy-profile database to de-

TABLE I: Simplified example of an energy-profile database

ID Configuration Performance Power
#Threads #Cores Cap Throughput Latency usage

α 24 8 None
390.5 kOps/s 0.42ms 51.2W

70.4 kOps/s 0.37ms 19.3W

λ 12 6 22W
224.8 kOps/s 0.62ms 22.0W

50.5 kOps/s 0.25ms 15.3W

ω 1 1 10W
20.6 kOps/s 0.22ms 10.0W
15.1 kOps/s 0.21ms 9.7W



termine whether there is a configuration that achieves the
same performance while consuming less energy. If this is the
case, the regulator triggers the necessary mechanisms at the
platform, operating-system, and hardware level to implement
the new configuration.

The following example illustrates this procedure based on
the database of Table I: If the regulator detects a load of
200 kOps/s and a power consumption of 40W while the
system is in configuration α, the regulator queries the database
for alternative configurations that can handle this throughput.
As configuration λ fulfills this requirement while consum-
ing less power than the current configuration (i.e., 22W at
224.8 kOps/s), EMPYA decides to switch to configuration λ.

4) Dynamic Profiling: To improve adaptation decisions, the
regulator extends and updates its energy-profile database at
runtime by collecting further information about the perfor-
mance and energy-consumption characteristics of configura-
tions. As a key benefit, this approach allows the regulator to
gain knowledge on workloads it has not (yet) observed so far.
Furthermore, by dynamically updating profiles the regulator
can handle cases in which configuration characteristics change,
for example, as the result of a software update. For more
information on dynamic profiling, please refer to [19].

5) Energy Policies: A third way to customize EMPYA’s
decision-making process is to specify an energy policy with
which the platform can be configured to target a primary
as well as a secondary performance goal (e.g., a minimum
throughput and maximum latency, respectively). In this con-
text, the primary goal represents the performance metric the
energy regulator first takes into account when searching for
energy-efficient configurations in the energy-profile database.
If there are multiple possible configurations meeting the pri-
mary goal and a secondary goal has been specified, EMPYA
applies a configuration that fulfills both requirements, even if
this configuration is not the most energy-efficient setting for
the primary goal.

IV. CASE STUDY I: KEY–VALUE STORE

In the following, we investigate different services with
dynamically varying workload characteristics and illustrate
how they can benefit from EMPYA. For our first case study,
we implemented an essential building block of today’s cloud
data centers: a key–value store. Being a crucial part of the
infrastructure, key–value stores [20], [29], [34] must be able
to achieve high performance when the demands of their client
applications peak in order to prevent them from becoming
a bottleneck. Then again, workloads on key–value stores in
practice significantly vary over time, often following diurnal
patterns [4], [6], [15]. This means that there are opportunities
to save energy during times of the day when utilization is low.
Environment. To exploit multiple cores, the key–value store
we have built on top of the EMPYA platform is divided
into a configurable number of partitions. All partitions are
implemented as actors, which allows EMPYA to dynamically
assign them to a varying number of threads, depending on the

current workload. We implemented EMPYA using the Akka
platform [3] (version 2.4.0) as basis.

Using the key–value store, we evaluate the performance
and energy efficiency achievable with EMPYA compared to
standard Akka, which in contrast to EMPYA operates with a
statically configured thread pool and also requires application
programmers to select in advance a strategy of how actors
are mapped to the available threads. Our key–value store
experiments run on a server with an Intel Xeon E3-1245 v3
processor (8 cores with Hyper-Threading enabled, 3.40GHz).
A similar system initiates client requests and is connected to
the key–value store server via switched 1Gbps Ethernet. We
measure energy and power values with RAPL [25], which
reflects the energy usage of core and uncore components,
not including the mostly static energy consumption of other
components such as fans or disks.

1) Adaptation to Dynamic Workloads: In our first exper-
iment, we evaluate EMPYA with the key–value store under
varying workload conditions. For comparison, we repeat the
same experiment with Akka using two static configurations:
Staticperf, a configuration targeting high performance by re-
lying on 24 threads, and Staticenergy, a configuration aimed
at saving energy by comprising only 2 threads. As our main
goal is to investigate the behavior of the evaluated systems in
the face of changing conditions, in all cases we configure the
clients to generate a different workload level every 30 seconds.
Energy Efficiency. Figure 3a presents the throughput (one
sample per second) and power values (averages over 30 s) for
this experiment. During the first 30 seconds, the clients issue
about 200 kOps/s, which all three systems are able to handle.
However, while Staticperf at this load level has a power usage
of about 35 W, Staticenergy only consumes about 31 W due
to operating with fewer threads. In contrast, EMPYA for this
workload selects a configuration with 6 cores and a power cap
of 23W, and consequently saves about 27 % energy compared
with Staticenergy and about 34 % compared with Staticperf.

After a subsequent period (30 s≤ t< 60 s) with even fewer
requests, during which EMPYA temporarily switches to 2 cores
and a cap of 10W, the workload peaks at almost 400 kOps/s.
During this phase, Staticenergy can no longer process all of the
requests as its throughput is limited to about 250 kOps/s, caus-
ing some clients to abort their service invocations. EMPYA,
on the other hand, dynamically triggers a reconfiguration to
adapt to the increasing workload and can thus provide a similar
performance as Staticperf by utilizing all available cores.

The remainder of the experiment confirms the observations
from the first phases: EMPYA always achieves the same
throughput as Staticperf, even for high workloads. For low and
medium workloads, EMPYA not only matches but exceeds the
power savings of Staticenergy due to relying on a combination of
different system-level techniques. In summary, the flexibility
of dynamically switching configurations at runtime allows
EMPYA to provide high performance when necessary and to
save energy when possible.
Reconfiguration Overhead. Prior to making a reconfiguration
decision, EMPYA first analyzes the application performance
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(a) Comparison between Akka using static configurations (gray dash-dotted lines) and EMPYA dynamically performing online reconfigurations (blue solid lines).
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Fig. 3: Performance and power consumption of the key–value store under varying workloads.

required (see Section III-B3), which is why it takes a (config-
urable) period of time to react to workload changes. Once
initiated, conducting a reconfiguration is very lightweight:
Adjusting the number of threads, for example, only requires
a few Java-VM instructions, disabling cores involves writes
to a virtual file, and setting a power cap is done via a single
system call. Overall, executing the reconfiguration logic takes
less than 1 millisecond, which is negligible to the time spent
in the application; the same holds with regard to energy usage.

2) Advanced Energy Policies: By default, EMPYA saves
as much energy as possible while still meeting the primary
performance goal specified by the user (e.g., achieving a
certain minimum throughput). In addition to a primary goal,
an energy policy may also include a secondary goal, which
EMPYA tries to fulfill as long as this does not endanger the
primary goal. To evaluate this feature, we repeat the previous
experiment with an energy policy EMPYA latency suggesting a
maximum latency of 0.5ms. Figure 3b shows the results in
comparison to Staticperf and EMPYAdefault, which is EMPYA
without a secondary goal. Due to not taking latency into
account, for most of the experiment EMPYAdefault provides
response times of more than 0.5ms. In contrast, EMPYAlatency

whenever possible selects configurations that are not as energy
efficient but on average able to achieve latencies below the
specified threshold. Nevertheless, EMPYA latency still reduces
power consumption by up to 29 % compared with Staticperf.

V. CASE STUDY II: MAPREDUCE

MapReduce [14] is widely used in production to process
information, making it a key subject of research targeting
energy efficiency [10], [27], [28]. Unfortunately, finding and

selecting the static configuration with the highest energy
efficiency for a MapReduce job is not straightforward as the
execution of a job consists of two phases with significantly
different characteristics: the map phase, which transforms the
input data into intermediate results, and the reduce phase,
which combines the intermediate results into final results.
Environment. Our MapReduce implementation for EMPYA
parallelizes execution by splitting the data to process into
small tasks and distributing them across actors of different
types (i.e., mappers and reducers), depending on which phase
is currently running. In addition to these data-processing
actors, there is a master actor that coordinates the execution
of a job and, for example, is responsible for the assignment
of tasks to mappers and reducers. Both the input data of
a MapReduce job and its results are stored on disk. All
MapReduce experiments run on a server with an Intel Xeon
E3-1275 v5 (4 cores, 3.60GHz; Hyper-Threading, SpeedStep,
and Turbo Boost enabled) and 16GiB RAM.
Jobs. For our evaluation, we examine several applications that
represent typical use cases of MapReduce in cloud data cen-
ters; examples include applications for sorting a file (sort),
identifying clusters in a data set (kmeans), counting the
number of distinct words in a text (wc), determining the most
popular items in a list (topn), or joining two data sets (join).
Differences Between Configurations. To assess the impact of
different configurations, we conduct several experiments with
varying system configurations for each application. Based on
our measurement results we make two important observations:

First, as illustrated by example of a sort job in Figure 4,
the two phases (i.e., map and reduce) not only serve different



purposes in the data-processing pipeline, they also differ in
resource-usage characteristics. In particular, the reduce phase
in general consumes less CPU than the map phase due to
usually being I/O bound. For EMPYA, this difference between
phases offers the opportunity to optimize energy efficiency by
dynamically selecting a different configuration for each phase.

Second, the time and energy required to finish a job sig-
nificantly vary between system configurations. For sort, for
example, the minimum execution time of 64.9 s comes at the
cost of 1507.7 J when using 8 mappers and 8 reducers. In
contrast, with 4 mappers and 2 reducers the same job takes
82.4 s but only consumes 1236.6 J. Applying a power cap of
7.5W, it is even possible to minimize the energy consumption
to 517.5 J at a runtime of 84.3 s (not depicted). With respect
to EMPYA, this means that further energy savings are possible
in cases where higher execution times are acceptable.

Energy Policies. Drawing from these insights, we define three
energy policies EMPYA5%, EMPYA15%, and EMPYA30% whose
primary goals are to save as much energy as possible at a
runtime increase of at most 5 %, 15 %, and 30 %, respec-
tively, compared with the runtime of the high-performance
configuration Staticperf (8 threads, 8 cores, no power cap). For
comparison, we also evaluate a static configuration Staticenergy

which aims at minimizing energy consumption by applying a
power cap of 7.5W for both the map and the reduce phase.

Figure 5 presents the results for the MapReduce experi-
ments. In all cases, the Staticperf configuration achieves low
execution times, however, this comes at the cost of also
consuming significantly more energy than the other evaluated
settings. In contrast, EMPYA 5% provides only slightly higher
execution times than Staticperf, but on the other hand enables
energy savings of 22–64 % due to selecting energy-efficient
configurations with small performance overheads and dynami-
cally reconfiguring the system between the map and the reduce
phase. For example, by setting power caps of 27.5W and
12.5W for the map and reduce phase, respectively, EMPYA5%

is able to cut the energy consumption of sort in half while
increasing the job execution time by only 2 %.

Relying on EMPYA15% and EMPYA30%, further reductions of
the applications’ energy footprints are possible. For the word-
count application (wc), the energy usage of EMPYA 30%, for
example, is nearly as low as the energy usage of Staticenergy.
However, due to being runtime aware, EMPYA30% is able to
complete job execution in 35 % less time than Staticenergy.

0

1
(8,8)

0

1
(8,4)

N
or

m
a

li
ze

d
C

P
U

u
sa

g
e

0 15 30 45 60 75 90
0

1

(4,2)

Time [s]
(8,8) (8,4) (4,2)

0

0.2

0.4

0.6

0.8

1.0
1507.7J

1352.6J
1236.6J

Mapper/reducer configuration

N
or

m
a

li
ze

d
en

er
g

y
u

sa
g

e

Fig. 4: CPU and energy usage for the sort MapReduce job;
(m,r) denotes a setting with mmappers and r reducers.

0

1

E
n
er
gy

Staticperf Staticenergy Empya5% Empya15% Empya30%

0

1

2

R
u
n
ti
m
e

1
5
0
7
.7
J

5
1
7
.5
J

7
5
2
.9
J

5
9
4
.2
J

5
2
9
.6
J

2
9
8
2
.5
J

1
4
5
6
.6
J

2
1
2
4
.9
J

1
8
2
7
.7
J

1
8
1
5
.1
J

2
4
0
2
.4
J

8
8
7
.1
J

1
5
3
7
.8
J

1
3
4
6
.1
J

8
8
9
.7
J

2
5
2
7
.7
J

8
4
3
.9
J

1
2
7
1
.6
J

1
2
4
4
.3
J

9
4
7
.1
J

1
9
6
7
.3
J

7
2
4
.8
J

1
3
2
8
.0
J

9
2
3
.4
J

8
1
7
.9
J

6
4
3
.0
J

2
4
2
.4
J

4
2
3
.3
J

3
9
7
.9
J

3
6
7
.5
J

1
4
1
5
.8
J

4
3
2
.8
J

5
1
1
.4
J

4
8
1
.3
J

4
4
3
.2
J

6
4
.9
s

8
4
.3
s

6
6
.2
s

7
2
.9
s

8
3
.5
s

1
0
2
.1
s

1
9
6
.0
s

1
0
9
.8
s

1
1
7
.5
s

1
2
3
.7
s

6
2
.2
s

1
1
9
.0
s

6
3
.3
s

6
4
.3
s

7
7
.2
s

6
7
.6
s

1
1
3
.6
s

7
0
.6
s

7
4
.8
s

9
2
.8
s

6
0
.1
s

9
8
.1
s

6
1
.5
s

6
8
.4
s

7
5
.1
s

1
5
.3
s

3
2
.5
s

1
5
.9
s

1
6
.0
s

2
0
.4
s

4
1
.9
s

5
9
.1
s

4
4
.2
s

4
5
.2
s

5
1
.7
s

sort kmeans wc topn mean join overlap

Fig. 5: Normalized energy and runtime results for different
MapReduce applications and EMPYA energy policies.

VI. RELATED WORK

Hayduk et al. [23] use the actor model for heterogeneous
systems where some tasks are outsourced to the GPU to bring
the CPU to a lower power mode using DVFS. Instead of
DVFS, a technique also studied in various other works [21],
[26], [32], EMPYA’s current prototype relies on RAPL, which
enables to not only cap the CPU but the whole package,
including last-level caches and the memory controller. Fur-
thermore, the EMPYA approach is applicable to a broader field
of applications and not restricted to applications that use the
GPU to reduce energy consumption.

Disabling cores [11], [13], [17], [18], [36], [38] or entire
processors [12] is an effective means to reduce energy con-
sumption, as is varying the number of threads at runtime [12],
[18], [39]. Apart from that, pinning threads to specific cores
can improve performance [31], [35]. Unlike existing works,
EMPYA systematically combines energy-saving techniques at
multiple levels that spread across both hardware and software.

Bailey et al. [7], [8] and Rodero et al. [37] propose
models to optimize the power–performance tradeoff in high-
performance clusters. In general, applications from the HPC
domain are not as dynamic as the applications EMPYA is able
to handle. Quasar [16] and Heracles [31] increase a cluster’s
resource efficiency while adhering to certain quality-of-service
constraints. In contrast, EMPYA does not focus on increasing
resource utilization or performance but on saving energy.

VII. CONCLUSION

The EMPYA platform provides high energy efficiency for
dynamic applications with varying performance requirements.
For this purpose, EMPYA exploits both software and hardware
techniques and applies them at the platform, operating-system,
and hardware levels. Relying on the actor programming model,
EMPYA is able to seamlessly and autonomously reconfigure a
system at runtime in order to adapt to dynamically changing
workloads. Our evaluation with a key–value store and the
data-processing framework MapReduce shows that EMPYA
enables significant energy savings for latency-oriented as well
as batch-oriented cloud data-center applications.
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Empya: An Energy-Aware Middleware Platform for Dynamic Applica-
tions. Technical Report CS-2018-01, FAU Erlangen-Nürnberg, 2018.

[20] B. Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004(124):72–74, 2004.

[21] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power
allocation in server farms. In Proceedings of the 11th International Joint
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS ’09), pages 157–168, 2009.

[22] B. Goel and S. A. McKee. A methodology for modeling dynamic and
static power consumption for multicore processors. In Proceedings

of the 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’16), pages 273–282, 2016.

[23] Y. Hayduk, A. Sobe, and P. Felber. Enhanced energy efficiency with the
actor model on heterogeneous architectures. In Proceedings of the 16th
Distributed Applications and Interoperable Systems (DAIS ’16), pages
1–15, 2016.

[24] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR for-
malism for artificial intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence (IJCAI ’73), pages 235–245,
1973.

[25] Intel Corporation. Intel 64 and IA-32 architectures software developer’s
manual volume 3 (3A, 3B & 3C): System programming guide, 2015.

[26] M. Lammie, P. Brenner, and D. Thain. Scheduling grid workloads on
multicore clusters to minimize energy and maximize performance. In
Proceedings of the 10th IEEE/ACM International Conference on Grid
Computing (GRID ’09), pages 145–152, 2009.

[27] W. Lang and J. M. Patel. Energy management for MapReduce clusters.
The Proceedings of the VLDB Endowment (PVLDB), 3(1):129–139,
Sept. 2010.

[28] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of Hadoop
clusters. Operating Systems Review, 44(1):61–65, 2010.

[29] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. In Proceedings
of the 11th Symposium on Networked Systems Design and Implementa-
tion (NSDI ’14), pages 429–444, 2014.

[30] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis.
Towards energy proportionality for large-scale latency-critical work-
loads. In Proceedings of the 41st International Symposium on Computer
Architecture (ISCA ’14), pages 301–312, 2014.

[31] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In Proceedings
of the 42nd Annual International Symposium on Computer Architec-
ture (ISCA ’15), pages 450–462, 2015.

[32] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and P. Dinda. PICSEL:
Measuring user-perceived performance to control dynamic frequency
scaling. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’08), pages 70–79, 2008.

[33] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
server idle power. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’09), pages 205–216, 2009.

[34] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang. The RAMCloud storage system. ACM Transactions on
Computer Systems, 33(3):7:1–7:55, 2015.

[35] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma. Analyzing
the impact of CPU pinning and partial CPU loads on performance and
energy efficiency. Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15), pages
1–10, 2015.

[36] J. Richling, J. H. Schönherr, G. Mühl, and M. Werner. Towards energy-
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