
This is the authors’ version of an article presented at the 1st Workshop on Byzantine Consensus and Resilient
Blockchains (BCRB ’18), Luxembourg City, Luxembourg, 25 June 2018 and published in the Proceedings of

the 48th International Conference on Dependable Systems and Networks Workshops (DSN-W ’18).

Latency-Aware Leader Selection for
Geo-Replicated Byzantine Fault-Tolerant Systems

Michael Eischer and Tobias Distler
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Email: {eischer,distler}@cs.fau.de

Abstract—In a geo-replicated setting, the response time of a
leader-based Byzantine fault-tolerant (BFT) protocol often differs
significantly depending on which of the replicas in the system is
currently acting as leader. Identifying a single optimal leader
position in general is impossible due to workload characteristics
usually varying over the course of the day. As a consequence,
the approach used in many existing BFT replication protocols,
which assign the leader role in a static manner and only change
the leader in case of suspected or detect faulty behavior, results
in unnecessarily high latency in wide-area environments.

In this paper we address this problem with ARCHER, a latency-
aware mechanism to select the leader of a geo-replicated BFT
system based on end-to-end response times measured by clients.
To prevent faulty replicas from gaining an unfair advantage by
sending protocol messages early, ARCHER relies on a hash-chain-
based approach that enables clients to detect if a protocol phase
has been skipped. In addition, ARCHER offers means to tolerate
incorrect latency values reported by faulty clients and can also be
extended to solve other selection problems such as the placement
of active and passive replicas in resource-efficient BFT systems.

I. INTRODUCTION

Byzantine fault-tolerant (BFT) systems based on state-machine
replication [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] allocate
special responsibilities to one of their replicas, the leader. In
particular, for each incoming client request, the leader must
initiate a BFT agreement protocol by proposing the request to
the other replicas in the system, the followers. If the leader
fails to meet its responsibilities, the followers cooperate to
reassign the leader role to another replica to ensure progress.

To select the current leader, many existing BFT agreement
protocols [1], [5], [6], [7], [8], [9], [10] rely on a static scheme
that initially appoints the replica with the lowest id as leader,
and if necessary reassigns the leader role in a round-robin fash-
ion among replicas. In a local-area setting, in which all replicas
are placed in close proximity to each other, this approach is
feasible as the specific location of the leader usually does not
affect overall system response time. This is mainly due to the
fact that in such an environment all distances between a client
and each replica are essentially equal. However, the same
does not apply to wide-area settings where replicas reside at
different geographical sites, for example, to prevent them from
all being affected by a single data-center outage. Here, with
client-to-replica and replica-to-replica communication delays
differing, the latency a client observes may significantly vary
depending on which replica currently acts as leader. Conse-
quently, existing location-unaware leader selection approaches
typically result in unnecessarily high response-time overheads.

In general, there are two important reasons for why selecting
a latency-optimal leader is inherently difficult in wide-area
environments: (1) Having determined a leader that minimizes
response time for one client does not automatically mean that
the same leader is also the best choice for clients at other
locations. As a result, this makes it necessary to take the
entire client workload into account when selecting a leader.
Some BFT protocols try to mitigate this problem by contin-
uously rotating the leader role among replicas and thereby
allowing clients to always send their requests to the nearest
replica [2], [4], [7], [10], [11]. However, experiments show
that in practice this technique does not offer additional latency
benefits compared with a fixed, well-selected leader [8], which
is why in this work we focus on single-leader protocols.
(2) Due to the set of active clients typically varying over
time (e.g., as a consequence of workload shifts during the
global day/night cycle), in wide-area settings there is usually
no specific leader location that is optimal in all cases. This
means that the traditional approach of only changing a leader
if it fails to behave correctly is unsuitable to meet the demands
created by the varying workloads of a geo-replicated system.

In this paper, we address these problems with ARCHER, a
latency-aware mechanism that enables a geo-replicated BFT
system to optimize the selection of its leader replica based on
end-to-end response-time information collected and provided
by clients. To adapt to changing workload conditions, clients
periodically evaluate different leader candidates by measuring
the response times of special probe messages that pass through
the entire BFT protocol without modifying any state. By
deterministically combining the latency information of differ-
ent clients, correct replicas are then able to make consistent
decisions on which replica in the system to select as leader.

ARCHER aims at minimizing the p-th percentile of the end-
to-end latency observed by correct clients; the value for p
is configurable and its maximum depends on the fraction of
faulty clients that need to be tolerated in the worst case. Apart
from offering resilience against faulty clients, our mechanism
also mitigates the impact faulty replicas can have on the
outcome of the selection process. During response-time mea-
surements, ARCHER for example protects each probe message
with a hash chain that enables a client to verify whether the
reply to its probe message is actually the result of a complete
BFT-protocol execution. As a consequence, it is impossible for
faulty replicas to successfully skip protocol phases in an effort
to force correct clients into reporting low response times.

In particular, this paper makes the following contributions:
(1) It presents ARCHER, a latency-aware mechanism to dy-
namically select the leader in geo-replicated BFT systems.
(2) It shows the flexibility of ARCHER by explaining how to
extend the approach to also support the placement of active and
passive replicas in resource-efficient BFT systems [5], [9].
(3) It evaluates ARCHER for a key-value store whose replicas
are distributed across multiple Amazon EC2 [12] regions.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide background on leader-based BFT
systems and motivate why the state-of-the-art approach to
select a leader has drawbacks in geo-replicated environments.
Background. Agreement-based BFT systems [1], [2], [4], [5],
[8], [9] ensure consistency by establishing a global total order
on client requests before executing them. For this purpose,
such systems rely on multi-phase agreement protocols in
which, having received a request, a leader replica proposes the
request to its follower replicas. Figure 1 presents two examples
for leader-based BFT replication protocols, PBFT [1] and
RePBFT [9], which both use a total of 3f + 1 replicas to
tolerate f faults and require a client to wait for f+1 matching
replies from different replicas to accept a result as correct.
While in PBFT all replicas in the system actively participate
in the agreement process as well as the execution of requests,
in RePBFT only 2f + 1 replicas are active during normal-
case operation; to save resources, the other f replicas remain
passive and serve as standbys to be activated in case of faults.

With all replicas residing in close proximity to each other,
in a local-area environment the overall response time of a BFT
system in general does not depend on the question which of
the replicas currently serves as leader. However, as Figure 2
illustrates by the example of PBFT, the same does not apply to
wide-area environments, where latency may vary highly due
to differences in client-to-replica as well as replica-to-replica
communication delays. In such settings, for the same client
and replica locations, the position of the leader can have a
significant impact on when a replica enters the next agreement
phase (as indicated by the bold black lines in Figure 2),
and consequently on when a client is able to obtain enough
matching replies for a stable result. For resource-efficient
protocols such as RePBFT [5], [9], similar observations can
be made not only for the selection of the leader but also with
regard to the decision which of the replicas to set passive.
Existing Approaches. Not focusing on geo replication, many
BFT systems [5], [6], [7], [8], [9], [10] apply PBFT’s tech-
nique of initially selecting the leader as the replica with the
lowest id in the system. Furthermore, they only reassign the
leader role to another replica if the current leader is deemed
faulty. Using the same method in a geo-replicated setting is
very likely to result in unnecessarily high response times,
caused by non-optimal leader placement. Apart from that, this
approach also prevents a BFT system from supporting use
cases where the location from which clients predominantly
issue requests varies over the course of the day, for example,
due to access patterns being correlated to users’ office hours.

Request
Preprepare

Prepare
Commit

Reply

C

L

F

F

F

Request
Preprepare

Prepare
Commit

Reply

Update

C

L

F

F

P

C: Client L: Leader F : Follower P : Passive replica

Figure 1. PBFT (left) and RePBFT (right, normal case) in a local-area setting.

0ms 100ms 200ms 300ms

I

O

C

M

T
0ms 100ms 200ms 300ms

I

O

C

M

T

I: Ireland (Client) O: Ohio C: California M : Mumbai T : Tokyo

Figure 2. PBFT in a geo-replicated setting with different leaders.

Some BFT protocols circumvent the problem of having to
select a leader by frequently reassigning the leader role among
replicas [2], [4], [7], [10], [11]. While this approach can be
beneficial if at all times requests are issued from a variety
of geographical locations, it comes with additional overhead
when the workload primarily stems from the same location,
as replicas in such case are forced to actively skip their turns.
Furthermore, recent experiments have shown that in real-world
settings a rotating leader does not offer latency improvements
over a single leader that resides at a suitable location [8].
Problem Statement. Considering the drawbacks of existing
approaches in the context of wide-area environments, there
is a need for a latency-aware mechanism to select the leader
replica of a geo-replicated BFT system. In particular, such a
selection mechanism should provide the following properties:

• Effectiveness: The selection process should identify the
replica that, when serving as leader, offers the lowest
overall response time for the current system workload.

• Consistency: To prevent inconsistencies between correct
replicas, all correct replicas must select the same leader.

• Resilience: A faulty replica or client should not be able
to manipulate the decision process in such a way that
eventually an unsuitable replica is selected as leader.

• Adaptiveness: The selection mechanism should enable a
BFT system to dynamically reassign the leader role to an-
other replica in case a change in workload characteristics
allows the other replica to offer lower response times.

• Flexibility: The mechanism should not only provide sup-
port for leader selection, but also be able to solve related
problems such as the placement of passive replicas.

Meeting these requirements in the potential presence of unre-
liable clients and replicas is especially challenging, as some
tasks, for example measuring the response time observed by a
specific client, cannot be easily reproduced or verified from a
remote location. As a consequence, the selection mechanism
must be designed to tolerate partly inaccurate information.

III. ARCHER

In this section, we present details on our latency-aware
leader-selection technique ARCHER. Furthermore, we discuss
how the method can be extended to also select passive replicas.

A. System Model

ARCHER targets leader-based BFT systems whose clients
and replicas are distributed across different geographical lo-
cations, resulting in response times to be dominated by com-
munication delays. Our approach is not limited to a particular
BFT agreement protocol, however, for clarity in the following
we focus our discussion on ARCHER’s integration with PBFT
and RePBFT, because these are the two replication protocols
currently supported by our prototype. Both protocols require
clients and replicas to authenticate the messages they send
using MAC authenticators [1]. For this purpose, each sender
of a message shares an individual secret key with each receiver.

Up to f of the 3f + 1 replicas and a subset of clients
may be faulty, this also includes arbitrary, malicious behavior
such as trying to manipulate the selection process. For typical
ARCHER use cases, we expect the fraction of faulty clients
to be small based on the rationale that, if a large part of a
system’s clients are faulty, optimizing latency is probably not
the most important problem that needs to be solved.

B. General Approach

ARCHER enables a geo-replicated BFT system to minimize
the p-th percentile of the end-to-end response times observed
by correct clients c; p is a configurable value and also has an
impact on the fraction of faulty clients b = 1− c < c · (1− p)
the selection mechanism is able to tolerate. That is, ARCHER
for example is resilient against up to about 9% faulty clients
when it has been configured to optimize the 90th response-
time percentile for correct clients. If the fraction of faulty
clients exceeds b, a non-optimal configuration may be chosen.
However, even in such case the safety of the BFT system
remains unaffected as system safety does not depend on
ARCHER, but on the underlying BFT replication protocol.

ARCHER applies a two-step approach to make selection
decisions in a consistent and resilient manner. In the first step,
clients rely on probe messages to measure system response
times for different leaders. Similar to regular requests, probes
pass through the entire replication protocol, but unlike requests
they do not have any effect on agreement or application
state. During its way through the protocol, a probe collects
information on the duration of different protocol phases and
the involvement of replicas. To prevent faulty replicas from
being able to unfairly improve their chances of becoming
leader by skipping protocol phases, ARCHER protects probes
using a hash-chain-based approach that later allows clients to
verify whether their probes have been handled correctly.

In the second step, clients make the knowledge that they
have obtained via probes available to the system by attaching
it to their regular requests. As requests are agreed on, ARCHER
this way can ensure that all correct replicas use the same inputs
and therefore make consistent selection decisions.

C. Latency-Aware Leader Selection

Below, we present details on the two steps performed by
ARCHER to select a leader based on end-to-end latency
information measured and provided by a BFT system’s clients.
Measuring Latencies. To evaluate the impact of different
leaders on overall system response times, ARCHER clients
send probe messages to all replicas and measure for each probe
the time it takes to collect f+1 matching replies. This process
is repeated periodically to update the latency information and
thereby enable ARCHER to adapt to changing network and
workload conditions. Upon receiving a probe, a replica starts
a new BFT agreement protocol instance for the probe and acts
as leader for this instance; this is independent of whether the
replica currently is the actual leader or a follower. While the
probe passes through the protocol, it is strictly separated from
the regular requests to avoid any interference. Furthermore,
when a probe commits on a replica, the replica sends a corre-
sponding reply to the client, without modifying the application
state. Executing the entire BFT protocol for probes ensures
that the response times measured by clients closely resemble
those for regular requests in the geo-replicated BFT system,
which are dominated by communication delays between sites.

During measurements, ARCHER prevents faulty replicas
from gaining an advantage by manipulating the process in their
favor. In general, there are two main strategies a faulty replica
might pursue in an effort to affect the results: (1) A faulty
replica may increase response times by deliberately dropping
or delaying probes. For ARCHER, this does not pose a problem
as a faulty replica this way only reduces its own impact on the
agreement process, and because the effective delay is limited to
the point where the protocol progress no longer depends on the
faulty replica. To further ensure that faulty replicas are not able
to slow down the system by delaying regular requests while
properly processing probes, the underlying protocol should
monitor request-processing latency. (2) A faulty replica can try
to improve the chances of a particular leader (potentially the
replica itself) being selected by skipping protocol phases and,
for example, immediately sending a reply. ARCHER addresses
this problem by enabling clients to detect such scenarios with
the help of hash-chain-based proofs that all replicas must
include in their replies to probes, as illustrated in Figure 3.

Probe Preprepare Prepare Commit Reply

Client

Replica 1
(Leader)

Replica 2

Replica 3

Replica 4

V

V W1

W1 X2

W1 X3

W1 X4

X2

W1

X3

Y1

X2

W1

X3

Y2

X3

W1

X4

Y3

X3

W1

X4

Y4

Y2

Y1

Y3

Z2

Y3

Y2

Y4

Z4

Z2

Z4

Hash
computation

Hash
propagation

Figure 3. Example hash tree for a PBFT instance (irrelevant parts omitted);
hashes are computed using input hash(es) and respective client–replica secret.

The idea behind this approach is to force replicas to prove
that their probe reply is the result of a correct BFT-protocol
execution. For this purpose, whenever a client sends a probe it
also includes a newly-generated random hash (i.e., V in Fig-
ure 3) in the message. In every protocol phase, each replica is
then required to compute and forward a new hash (HMAC) of
its own that proves that the replica waited until it has actually
received the messages necessary to complete the current phase.
To send a commit, a replica in PBFT for example needs to have
the leader’s pre-prepare message and 2f prepare messages
from different followers. Therefore, in the scenario in Figure 3,
Replica 4 for example computes its commit HMAC Y4 over
a concatenation of the pre-prepare’s hash W1 and the hashes
X3 and X4 contained in prepares. For each HMAC computa-
tion, a replica includes the secret it shares with the client that
initiated the probe. This ensures that replicas cannot forge the
hashes of other replicas and consequently makes it impossible
for a faulty replica to produce a valid hash without first having
received enough messages from the previous protocol phase.

Apart from the determined HMAC, a replica also forwards
the replica ids that correspond to the input hashes on which
the HMAC is based (e.g., 1, 3, and 4 in the example discussed
above). This way, each probe reply not only contains the
resulting hash but also a list of replica ids representing the path
through the agreement protocol the probe has taken. Knowing
the secrets it shares with each replica, this information enables
a client to verify that a probe has been handled correctly based
on the reply’s hash. To do so, starting with the initial random
hash from the probe, a client reproduces the protocol path as
stated in the probe reply. A client only accepts a probe reply if
the reproduced hash matches the hash contained in the reply.

If a client receives less than f+1 valid probe replies within
a predefined period of time (e.g., because of X3 and thus
all subsequent hashes being incorrect in Figure 3), the client
restarts its measurement by submitting a new probe with a
new random hash. However, this time, in advance, it computes
the intermediate hashes for the protocol paths that previously
failed and includes knowledge about the intermediate hashes
in the probe, thereby allowing replicas to already detect and
drop faulty messages during protocol execution. To enable a
replica to verify intermediate hashes without revealing them,
a probe in such case contains hashes of intermediate HMACs.
Due to the potentially large number of possible protocol paths,
a client only computes intermediate hashes for the paths that
have failed so far and if necessary repeats this procedure with
additional paths until it obtains enough valid probe replies.
Selecting a Leader. Relying on ARCHER for leader selection,
replicas maintain a database with the end-to-end response
times measured by clients (see Figure 4). To consistently
update this database on all correct replicas, clients attach their
measurement results to regular requests, and replicas only
adopt a new value when the corresponding request has been
committed. Using the database, replicas periodically reevaluate
the current choice of leader every u database updates; u is
a configurable value. Furthermore, to account for varying
network and workload conditions, replicas deterministically

Leader 1 Leader 2 Leader 3 Leader 4
Client 1 297 ms 297 ms 360 ms 376 ms
Client 2 345 ms 363 ms 479 ms 402 ms
Client 3 359 ms 312 ms 398 ms 318 ms
Client 4 355 ms 366 ms 288 ms 288 ms
90th percentile 355 ms 363 ms 398 ms 376 ms

Figure 4. Example for the response-time database maintained by replicas.

discard database entries that have not been updated for a
predefined number of reevaluation intervals. In summary, by
guaranteeing that replicas operate on the same database state
and make decisions at the same logical point in time, ARCHER
ensures that all correct replicas select the same leader. The
overhead for handling the probes depends on their frequency,
the number of clients, and the amount of regular requests.

When a reevaluation is due, each replica determines a
reference response-time value for each leader candidate by
applying the c-th percentile over all client entries, with c being
the minimum fraction of correct clients; Figure 4 illustrates
this step for an example with c = 90. Using the c-th percentile
as reference for two reasons enables ARCHER to minimize
the influence faulty clients can have by reporting incorrect
latency values: (1) It ensures that faulty clients cannot force an
arbitrarily high reference value in order to prevent a particular
replica from becoming leader. (2) In cases where faulty clients
try to favor a certain replica by incorrectly reporting low
values, the approach guarantees that the reference value is still
at least as high as the targeted p-th response-time percentile
for all correct clients (see Section III-B). This is true as long
as the fraction of faulty clients suffices b = 1− c < c · (1−p);
that is, it must be smaller than the fraction of correct clients
that experience response times above the p-th percentile.

Having determined reference response times for all leader
candidates, a replica selects the candidate with the lowest
reference value as new leader, using replica ids as tie breaker.
If the new leader differs from the current leader, the replica
then advises its agreement protocol to initiate a view change
and to switch into a new view in which the selected candidate
acts as leader. Relying on the BFT protocol’s view-change
mechanism to switch the leader ensures liveness even if the
new leader later turns out to be faulty. To prevent a system
from quickly changing between different views, ARCHER
blacklists leaders whose views have been abandoned due to
suspected or detected faulty behavior. As leader changes can
only be proposed every u database updates, the number of
additional view changes triggered by ARCHER is limited, thus
maintaining the liveness guarantees of the underlying protocol.

D. Latency-Aware Selection of Passive Replicas

In the following, we describe how the mechanism presented
in Section III-C can be extended to also select passive replicas.
Measuring Latencies. When also taking passive replication
into account, the number of possible leader and passive-replica
combinations grows to a point where measuring them individ-
ually is no longer practical. As illustrated in Figure 5, to select
passive replicas ARCHER therefore applies an approach that
first measures relative protocol-message arrival times when all

I

O

C

M

T

I

O

C

M

T

Figure 5. RePBFT protocol execution for different passive replicas.

replicas are active (dotted gray lines) and then calculates the
differences that would result from specific replicas being pas-
sive (solid green lines). For this purpose, each replica creates
a local timestamp when it obtains the pre-prepare message for
an ARCHER probe, and in the following uses this timestamp
as baseline to measure and record the relative arrival times and
sender replica ids of subsequent prepare and commit messages.
When the replica has received all agreement messages from the
probe’s protocol instance (or after a timeout), the replica sends
the collected information to the client in a dedicated message.
The client then checks whether the order of the reported arrival
times matches the verified protocol path announced in the
corresponding probe reply and, if this is the case, forwards
the values to replicas, attached to one of its regular requests.
Selecting Passive Replicas. Based on the provided relative
arrival times representing a protocol execution with only active
replicas, each replica is able to assess the impact of passive
replicas. As depicted in Figure 5, a replica to this end assumes
a subset of replicas to be passive and virtually eliminates all
their agreement messages. In addition, the replica reconstructs
how the protocol execution would have progressed without
these messages, thereby virtually postponing messages of
protocol phases that in such case would have started later. By
repeating this procedure for all combinations of leaders and
passive replicas, each replica is able to extend its response-
time database (see Section III-C) by additional columns for
different system configurations. Using the same method as for
leader selection, this allows all correct replicas to compute
reference response times for each system configuration and to
consistently decide on which of the replicas to set passive.

IV. EVALUATION

In this section, we present evaluation results from our
ARCHER prototype which implements a geo-replicated key-
value store and runs on Amazon EC2 [12]. For all experi-
ments, we place the replicas in Ohio, California, Mumbai, and
Tokyo, while the locations of clients vary between Mumbai,
Ireland, Sao Paulo, and Sydney. Furthermore, we use a total
of 60 clients and configure ARCHER to optimize the 90th
percentile of the response times observed by correct clients.
Leader Selection. In our first experiment, we evaluate
ARCHER’s ability to minimize the response times of PBFT for
a given workload. To this end, we measure latencies for all
possible leader configurations and compare the results to the
configuration chosen by ARCHER. In total, we examine five
workloads: four scenarios in which all requests originate from
only one client location each, and one scenario (“Mix”) where

the clients are uniformly distributed across all client locations.
Figure 6a presents the measurement results of this experiment
and the respective configuration favored by ARCHER (). The
numbers confirm that the response times of a geo-replicated
BFT system can differ significantly depending on where its
leader replica is located. With all clients in Sao Paulo, overall
latency for example increases by as much as 39% when the
leader is in Mumbai compared with the leader being in Ohio.
Besides, our results also show that there is no single replica
that as leader provides optimal response times in each case,
thereby confirming the need for a mechanism to dynamically
select a leader. Relying on ARCHER to solve this problem
leads to optimal response times for all evaluated workloads.
Adaptation to Varying Workloads. In our second experiment,
we evaluate ARCHER in the presence of a varying workload
where the locations from which client requests are issued
change over time. For comparison, we repeat the experiment
with a fixed leader in Tokyo, which is optimal for the workload
conditions that exist at the beginning of the experiment when
all clients are located in Mumbai. As shown in Figure 6b,
as long as requests originate in the same location, both
approaches achieve similar response times. However, when
the client workload starts to gradually shift from Mumbai
to Ireland four minutes into the experiment, and especially
one minute later when the process has completed, the fixed
leader in Tokyo no longer offers the lowest response times
possible. In contrast, based on the probe-measurement results
provided by clients ARCHER at this point learns that placing
the leader in Ohio improves performance, and consequently
adapts the system by initiating a view change. As a result of
the leader switch, the 90th percentile of end-to-end response
times decreases by about 18% compared with the fixed-
leader approach. When the client workload shifts again nine
minutes into the experiment, this time from Ireland to Sao
Paulo, ARCHER identifies Ohio to still be the optimal leader
location and therefore keeps the current system configuration.

0

100

200

300

400

500

600

Mumbai Ireland Sao Paulo Sydney Mix
Client locations

R
es

po
ns

e
ti

m
e

[m
s] Ohio California Mumbai TokyoLeader location:

ARCHER’s
choice

(a) 90th percentile of response times for different client and leader locations.

Clients: Mumbai Ireland Sao Paulo

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time [min]

R
es

po
ns

e
ti

m
e

[m
s]

Fixed leader (Tokyo)
ARCHER (correct clients)
ARCHER (faulty clients)

ARCHER uses Tokyo
replica as leader

ARCHER reassigns
leader role to the

replica located in Ohio

(b) 90th percentile of response times for a dynamically varying workload.
Figure 6. Selection of a leader replica with ARCHER.

0

100

200

300

400

500

600

Ohio California Mumbai Tokyo
Leader locations

R
es

po
ns

e
ti

m
e

[m
s] Ohio California Mumbai TokyoPassive-replica location:

ARCHER’s choice

Figure 7. Selection of a combination of leader and passive replica.

Resilience Against Faulty Clients. To investigate the influ-
ence of faulty clients on ARCHER, we modify the previous
experiment and add 5 clients located in Mumbai that report
manipulated probe-measurement results to replicas in an effort
to keep the leader in Tokyo, that is, at the location that
is optimal for these clients. As depicted in Figure 6b, with
ARCHER being configured to optimize the 90th response-time
percentile, 8% of active clients are unable to force a leader
selection that would be disadvantageous for correct clients.
Passive-Replica Selection. In the final experiment, our goal
is to select a RePBFT system configuration for a scenario in
which clients are located in Ireland. ARCHER for this setting
places the leader in Ohio and the passive replica in Mumbai.
Having measured the response times for all possible combina-
tions of leader and passive-replica locations (see Figure 7), we
can confirm that the configuration selected by ARCHER indeed
minimizes response times for the targeted use-case scenario.

V. RELATED WORK

While most BFT protocols only switch their leader in case
of faults [1], [5], [6], [8], [9], [10], some protocols also reas-
sign the leader role during normal-case operation, for exam-
ple, to balance load across replicas [2], [7], [10], to improve
system resilience against slow replicas [3], or to minimize
communication delays between clients and the leader [4], [11].
Similar to ARCHER, these BFT protocols exploit the fact that
the single-leader requirement only pertains to each agreement-
protocol instance individually and that consequently the leader
role may be reassigned between instances. ARCHER builds on
this principle by dynamically switching to a new leader if,
for example as result of a change in workload conditions, the
selected replica offers lower end-to-end response times.

Apart from single-leader protocols, there are BFT protocols
that make use of multiple leader replicas at a time. RBFT [6],
for example, reduces the degrading impact a slow leader
can have on performance by executing multiple agreement-
protocol instances for the same client request in parallel; for
each instance, a different replica acts as leader. Omada [13]
partitions the agreement of client requests to balance load
across heterogeneous servers and appoints one leader for each
partition. Both of these protocols face the task of selecting
their leaders from the group of all replicas and would therefore
benefit from applying ARCHER in geo-replicated settings.

Steward [14] tolerates arbitrary faults in wide-area set-
tings by combining Byzantine fault-tolerant replica groups at
different sites with a leader-based crash-tolerant agreement
protocol. The problem of finding suitable leaders in crash-

tolerant systems has, for example, been investigated by Liu
and Vukolić [15]. They presented an approach to select and dy-
namically adapt a set of leaders based on measured round-trip
latency between replicas and an enumeration of all possible
leader sets. Although effective, this technique cannot be di-
rectly applied to BFT systems as measuring and sharing inter-
replica communication delays is not straightforward in the
presence of Byzantine faults. The same applies to leaderless
crash-tolerant system architectures in which all replicas can
propose client requests and consistency for interfering requests
is ensured by conflict-resolution sub protocols [16], [17].

VI. CONCLUSION

ARCHER optimizes end-to-end latency in geo-replicated
BFT systems by selecting a suitable leader and/or set of pas-
sive replicas. Periodically repeating this process consequently
allows a system to support use cases with varying client loca-
tions. ARCHER offers resilience against both faulty replicas as
well as faulty clients, for example, protecting probe messages
with hash chains to ensure that faulty replicas cannot force
correct clients into promoting non-optimal selection decisions.
Acknowledgments: This work was partially supported by the German
Research Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).

REFERENCES

[1] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
of OSDI ’99, 1999.

[2] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? Byzantine fault tolerance with a spinning primary,” in Proc. of
SRDS ’09, 2009.

[3] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
Byzantine fault tolerant systems tolerate Byzantine faults,” in Proc. of
NSDI ’09, 2009.

[4] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:
Efficient Byzantine agreement for wide-area networks,” in Proc. of
HASE ’10, 2010.

[5] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient
Byzantine fault tolerance,” in Proc. of EuroSys ’12, 2012.

[6] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant Byzan-
tine fault tolerance,” in Proc. of ICDCS ’13, 2013.

[7] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proc. of Middleware ’15, 2015.

[8] J. Sousa and A. Bessani, “Separating the WHEAT from the chaff:
An empirical design for geo-replicated state machines,” in Proc. of
SRDS ’15, 2015.

[9] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Trans. on Comput., vol. 65, no. 9, pp. 2807–2819, 2016.

[10] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: SGX-based
high performance BFT,” in Proc. of EuroSys ’17, 2017.

[11] Y. Mao, F. P. Junqueira, and K. Marzullo, “Towards low latency
state machine replication for uncivil wide-area networks,” in Proc. of
HotDep ’09, 2009.

[12] Amazon EC2, https://aws.amazon.com/ec2/.
[13] M. Eischer and T. Distler, “Scalable Byzantine fault tolerance on

heterogeneous servers,” in Proc. of EDCC ’17, 2017.
[14] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,

J. Olsen, and D. Zage, “Steward: Scaling Byzantine fault-tolerant
replication to wide area networks,” IEEE Trans. on Dependable and
Secure Computing, vol. 7, no. 1, pp. 80–93, 2010.

[15] S. Liu and M. Vukolić, “Leader set selection for low-latency geo-
replicated state machine,” IEEE Trans. on Parallel and Distributed
Systems, vol. 28, no. 7, pp. 1933–1946, 2017.

[16] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proc. of SOSP ’13, 2013.

[17] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran, “Speeding
up consensus by chasing fast decisions,” in Proc. of DSN ’17, 2017.

https://aws.amazon.com/ec2/

	Introduction
	Background and Problem Statement
	Archer
	System Model
	General Approach
	Latency-Aware Leader Selection
	Latency-Aware Selection of Passive Replicas

	Evaluation
	Related Work
	Conclusion
	References

