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Abstract—Interrupt handling with predictably low latency is a
must for systems to respond to external events. System designers
of tiny embedded computers to large-scale distributed systems
face the challenge of ever-increasing hardware and software com-
plexity. In the absence of precise timing models, measurement-
based approaches are required to achieve predictably low latency.

In this paper, we present INTSPECT, a tool that systemati-
cally evaluates the interrupt latency, at run-time, in the Linux
operating system kernel. We apply INTSPECT on two distinct
platforms (i.e., ARM and Intel) to measure interrupt latencies,
identify jitter causes, and reveal interdependencies between
interrupt handlers and user-space workloads. Our tool thus
provides valuable insight on interrupt timings and interferences.

Index Terms—Linux, Interrupts, Latency, Measurements

I. INTRODUCTION

For operating systems, interrupt handling is a core function-
ality which needs to ensure that the processing of interrupt
requests occurs in a timely manner to react quickly to (exter-
nal) events. In particular, when systems are interacting with the
physical world (i.e., cyber-physical systems [1]) asynchronous
events (i.e., interrupts) are the fundamental signaling mecha-
nism. As interrupt latencies determine the minimum response
time of the overall system, operating systems must react to
pending interrupt requests as fast as possible. As physical
limits (i.e., signal propagation delay) cannot be overcome, it is
the responsibility of the low-level system software (i.e., inter-
rupt handling routines of the operating system) to efficiently
process interrupt requests and handle them according to their
individual needs and priorities.

Predictable and low interrupt latencies are important for
several reasons. First, the general performance and respon-
siveness of a system is bound to the execution time of
the interrupt handling routines at operating system level [2].
Thus, it is a first-level prerequisite of operating systems to
handle interrupt requests as quickly as possible in order to
implement responsive system components at higher abstraction
levels (i.e., hardware drivers and applications). Conversely,
this means that computing systems cannot operate up to their
full potential if interrupt handling at operating-system level
does not perform well for a given workload. Second, the
timely processing of pending interrupt requests reduces the
risk of overload situations (i.e., in case of contention [3]).
Thus, efficient handling of hardware interrupts is required to
mitigate effects of contending system activities that operate on
shared resources. In particular, congestion on network links or

bulk I/O operations are examples where low latency translates
into improved performance and leads to high throughput [4].

With the current technology trend [5], predictable and low
interrupt latencies become even more important as single-core
processor speed is becoming Achilles’ heel of the systems,
for example, in networked multi-core systems. While network
throughput is scaling up and higher data rates are achieved
with every new generation of network chips [6], the single-
core performance of the CPUs is stagnating [7]. This further
puts the focus on the “last mile”: interrupts caused by external
events (i.e., arrival of network packets) must be handled in the
best possible manner to improve the systems’ responsiveness.
Although the data path can be shortened by remote direct
memory access [8] and bypassing techniques at operating-
system level [9], it remains crucial to provide low latencies
for the control path which executes on the processor [10].
Low interrupt latencies are also essential for embedded devices
which operate on limited resources. In particular, battery-
powered devices must consider the duration of duty cycles
to manage power demand and maximize their sleep time [11].
The execution time of the interrupt handler becomes a critical
factor as its execution time directly effects the energy demand
of the system [12]. Therefore, programmers must consider
the implementation of interrupt handling routines that provide
sufficient performance but demand as little energy as possible.

Today, even complex control systems use commodity hard-
ware components that cannot provide hard real-time guar-
antees. For example, the SpaceX Falcon 9 rocket employs
Linux on commodity x86 processors [13]. This fact shows
that Linux provides sufficiently reliable interrupt handling on
commodity hardware, even though it is difficult to estimate
interrupt latencies for various reasons. First, the underlying
hardware components do not provide timing guarantees, for
example, as to non-deterministic activation of processors’
system management mode. Second, the multilayered interrupt
subsystem of Linux is inherently non-deterministic by itself.
Third, varying system loads induce interferences at kernel and
user level which influence interrupt latencies during run-time.

The increasing complexity of today’s processors makes
it inherently difficult to provide accurate numbers on the
expected interrupt latencies of a system. To system designers,
this poses the challenge of designing low-latency software for
potentially critical subsystems in kernel or user space without
any profound performance indicator for the run-time behavior
of their program code. Further, the unavailability of timing



specifications and reliable data sheets makes it impossible to
build precise timing models. Instead, it is necessary to apply
accurate timing measurements to identify system properties,
such as the interrupt latency, that help at dimensioning the
system for its intended use [14].

In this paper, we present INTSPECT, a tool that applies
time measurements to determine interrupt latencies of the
Linux kernel automatically, precisely, and with lowest run-
time interference. The contributions of the paper are threefold:
First, we analyze the interrupt latencies of the Linux operating
system kernel on two different hardware platforms (i.e., ARM
and Intel) to provide numbers on the base latency of Linux
with no background noise, and also for scenarios with varying
degrees of interference from user and kernel space activities.
Second, we present the implementation of INTSPECT which
analyzes interrupt latencies and reveals culprits of unwanted
delays within the Linux kernel. INTSPECT traces the timing
characteristics of individual interrupts and provides informa-
tion on the root cause for delays within the interrupt handling
routines of Linux. Third, we present an in-depth discussion of
the interrupt handling of a recent Linux kernel (Linux v4.9)
and compare it to previous research ([15], [16]).

The paper is structured as follows. Section II elaborates on
the interrupt handling of the Linux kernel. Section III dis-
cusses implementation details of the Linux kernel jointly with
considerations on design and implementation of INTSPECT.
In Section IV we present and discuss the evaluation results
for different evaluation scenarios. Related work is presented
in Section V and Section VI concludes the paper.

II. INTERRUPTS IN LINUX

Computer systems continuously need to handle all types of
synchronous and asynchronous events such as changing the
level of privilege, handling run-time errors, and processing
external hardware events. The usual mean for signaling an
event to the processor is to raise an interrupt, which suspends
the normal execution in order to react to the signaled event.

The processing of an event is done in an uninterruptible
execution context, which prevents the delivery of further in-
terrupts, until the currently served interrupt is completely pro-
cessed. This difference in execution contexts implies that code,
executed in a normal execution context, can be temporary
superseded by an interrupt at any point of execution, whereas
code running in an interrupt context has run-to-completion
semantics and delays all further execution of applications and
subsequently raised interrupts.

Interrupts are related to asynchronous events (e.g., over-
lapping data processing and input/output), which potentially
need a prompt reaction to guarantee a responsive system, for
example, signaling an incoming message in a communication
channel. Additionally, interrupts may induce significant pro-
cessing efforts depending on the causing event, for example,
for decoding and processing fetched data from a hardware
device. Running a long time in the interrupt context to handle
an event, however, delays the acceptance of further interrupts

Top Half (mandatory)
- receives data from device
- interrupts are disabled

Bottom Half
- processes data
- interrupts are enabled
- synchronizes optionally with Top Halves

can request

Fig. 1. Top and bottom half in Linux. A top half is executed immediately after
the arrival of an interrupt with interrupts disabled. A top half can request a
bottom half, which runs with interrupts enabled (except for synchronization).

and may lead to interrupts not handled in-time or not at all,
which is unacceptable in the general case.

A common approach to meet the problem of long-running
interrupt handlers is to split the handler into two sections,
which are executed at different points in time. In the first
section, actions are executed immediately upon arrival of an
interrupt in the interrupt context, whereas in the second section
actions are deferred and executed later in an interruptible
execution context. Besides the advantage of improving the
system responsiveness by minimizing the time the system is
uninterruptible, this structure allows, depending on the mech-
anisms used for the deferred sections, the usage of additional
primitives like waiting for other events. Such primitives are
often utilized by complex event handlers (e.g., device drivers).

The subdivision of interrupts into two sections is known
by different names such as the prologue/epilogue model [17],
the concept of top and bottom halves in UNIX sys-
tems (e.g., BSD [18] or Linux [19], [20]), and deferred
procedure calls in Windows [21]. OSEK has interrupt service
routines that activate tasks to defer work [22]. De facto, all
operating systems provide mechanisms to defer work from the
interrupt context into interruptible execution contexts. Because
this paper focuses on the Linux operating system kernel,
the interrupt handling mechanisms in Linux are explained in
more detail in the following. Linux calls sections executed
in the interrupt context top halves and deferred sections
bottom halves as depicted in Figure 1. A top half is executed
immediately after the arrival of an interrupt with interrupts
disabled and the top half can request a bottom half, which
runs with interrupts enabled. In case a bottom half needs to
synchronize with top halves, the bottom half can temporarily
disable interrupts.

A. Multi-level Interrupt Handling

Figure 2 summarizes the process of interrupt handling in
Linux from start to finish. Initially, an asynchronous event
triggers an interrupt, which is delivered to the processor.
Before the interrupt can be handled, additional latency po-
tentially occurs due to one of the following reasons. First, an
active interrupt (i.e., a running top half) already allocates the
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Fig. 2. General process of interrupt handling in Linux. An external event (e.g., a device) triggers an interrupt, which is delivered to the processor. The
processor selects the corresponding interrupt vector (i.e., top half) and subsequently executes potentially requested bottom halves.

processor. Second, the operating system has interrupts disabled
for synchronization purposes. Third, the hardware needs to
finish the currently executed instruction before an interrupt
can be handled ( 1©).

As soon as the hardware is able to serve an interrupt, it
saves the current execution context (e.g., registers), selects
the interrupt vector and executes the interrupt service routine.
However, the time for context saving and interrupt vector
selection introduces additional latency ( 2©). The execution of
the interrupt service routine corresponds to the execution of
the top half. The execution time of the top half depends on
the actual purpose of the top half. Usually, such tasks run for
a relatively short time, for example, they fetch data from a
hardware buffer and defer the actual processing into a bottom
half. After the termination of a top half, the operating system
resumes control over the processor and executes potentially
requested bottom halves ( 3©).

Linux provides different mechanisms to request bottom
halves from top halves, which differ in their properties (e.g., la-
tency, flexibility) and designated use cases. The mechanisms
are in particular: Softirqs, Tasklets, and Workqueues [19]. The
first bottom half mechanism that is executed directly after top
halves are Softirqs. The execution of Softirqs includes the ex-
ecution of Tasklets, since the Tasklet implementation bases on
two Softirqs. As they constitute bottom halves, the execution
of Softirqs and Tasklets can be interrupted by other interrupts,
which may additionally request further bottom halves. After
the execution of all Softirqs and Tasklets, the process scheduler
resumes control and, depending on its decision, either kernel
threads or user threads are dispatched ( 4©). This scheduling
decision includes worker pools that constitute the third bottom
half mechanism: they execute jobs from Workqueues.

B. Softirqs

Software interrupt requests (Softirqs) are the most basic
type of deferring work from a top half to a bottom half in
Linux. Softirqs must be specified at compile-time of the kernel
in an enumerator, which makes it impossible to dynamically
register additional Softirqs during run-time. Furthermore, the
specification order defines the execution order and is fixed at
compile-time. Each Softirq is associated with a function that
constitutes the event handler.

Softirqs are executed immediately after the return of a top
half, and before a switch from the kernel space to the user
space is conducted (e.g., after a system call). Although a
Softirq can not make use of wait primitives (e.g. sleeping
until an event occurs) and runs to completion, it can be
interrupted at any point by a top half and is resumed after
the top half has terminated. Thus, Softirqs are suitable for
handlers which do not need to sleep. In addition, Softirqs
may be simultaneously executed on each processor, which
allows for processor-local optimizations and fast accesses of
data through caches. The advantages, that is, deterministic
execution order and cache locality are the reasons why Softirqs
are used by the kernel to execute frequently occurring tasks,
for example, handling network traffic and input/output oper-
ations. However, the limited flexibility (e.g., specification at
compile-time, number of different Softirqs) restricts the use
cases of Softirqs (e.g. network and input/output operations).
Moreover, operations which may sleep or need to wait for
other occurring or finishing events can not be used within
a Softirq. Hence, for such operations, other mechanisms are
needed. One alternative to Softirqs are Tasklets, which pose a
mechanism to dynamically register new bottom half handlers.

C. Tasklets

The implementation of Tasklets bases on Softirqs, and
provides a more flexible way of requesting bottom halves.
New types of Tasklets can be dynamically registered at run-
time and are thus suitable for loadable kernel modules. Similar
to Softirqs, each Tasklet is associated with a function that
constitutes an event handler. New Tasklet executions can be
requested from the top half by enqueueing them to a linked
list of pending Tasklets. Two dedicated Softirqs iterate over
lists of Tasklets and invoke the respective event handlers.

The usage of a Softirq for the implementation simultane-
ously determines the point of execution of Tasklets, that is, the
execution of the Softirq as described in Section II-B. In fact,
there are two Softirqs designated for Tasklet execution, one
for high-priority Tasklets, running prior to any other Softirq,
and one for normal Tasklets, running after Softirqs designated
for network and block input/output operations. Although, the
way of registering a new type of Tasklet is more flexible and
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Fig. 3. Logical priority model of Linux interrupt handlers. A top half can interrupt the execution of applications (I1, I2) and bottom handlers (I3). After
the execution of all top halves and bottom halves with soft-interrupt priority, the execution of applications and work items is continued (I4).

thus is suitable for dynamic kernel objects, the utilization of
Softirqs prohibits the usage of sleeping and waiting primitives.

In contrast to Softirqs, the Tasklet infrastructure prevents
simultaneous execution of Tasklets on different processors,
hence implicitly synchronizes data accesses. If a processor
detects that a requested Tasklet is already running on another
processor, it re-adds the Tasklet to the list of requested Tasklets
and schedules another list iteration.

D. Workqueues

The Workqueues implementation of the Linux kernel is the
most flexible and commonly used bottom half mechanism.
An interrupt handler can enqueue a handler, encapsulated in
work items, in Workqueues, which are later executed by a
worker (i.e., a kernel thread). To this end, the kernel provides
worker pools consisting of one or more kernel threads, which
dynamically adapt their level of concurrency to the current
load. Each worker dequeues work items from the Workqueues
and executes them. When a Workqueue runs empty, the
corresponding workers enter an idle state until new work items
arrive. Although the level of concurrency (i.e., the number of
kernel threads) is dynamically adaptable, the kernel guarantees
the presence of at least one worker thread.

Similar to Tasklets, work items are classified as high or
normal priority, allowing programmers to prioritize specific
work items. In contrast to Tasklets and Softirqs, however, work
items can sleep and wait for other events, because they are
executed by kernel threads, which are scheduled like appli-
cation threads by the normal process scheduler. For example,
this allows drivers to access sophisticated features including
concurrency and synchronization. Moreover, work items that
execute for extended amounts of time may be preempted by
the scheduler, thus allowing user threads to make progress
and preventing starvation of user applications. However, the
latency from creating a work item in a top half until the
execution of the work item is in general unpredictable, due
to the dynamic character of Workqueues, that is, a dynamic
number of work items, Workqueues, and worker threads.

E. Example

Figure 3 illustrates the execution of an exemplary sequence
of tasks and interrupt handling functions. At the beginning, an
application is executed, which is interrupted at point I1. The

interrupt handling process begins with the execution of the
corresponding top half, which runs at a higher priority (hard-
interrupt level). In this example, it requests a bottom half (i.e.,
Softirq or Tasklet) on the soft-interrupt priority level1, which
is subsequently executed. After the termination of the bottom
half, the application continues. At points I2 and I3, two
additional interrupts occur. First, the top half of I2 requests
another bottom half (Softirq or Tasklet), which is interrupted
by I3. Second, the top half of I3 enqueues an item into a
Workqueue. After termination of the top half of I3, the bottom
half of I2 continues. As soon as the bottom half of I2 is
finished (at point I4), the process scheduler decides whether
the application is continued, or the worker pool dequeues work
items from the Workqueue, as the worker threads run at the
same priority level as applications.

This description of the interrupt handling process in Linux
outlines that the overall latency from an asynchronous event
to the completion of all handlers depends on multiple factors.
Therefore, we have developed INTSPECT to quantify such
latencies. Thereby, INTSPECT focuses on the analysis of
latencies that are controllable in software—that is, between
the execution of a top half and a requested bottom half.
The results provide system designers valuable information
about the latency characteristics of the different bottom half
mechanisms. More specifically, we measure the latencies T1
for Softirqs and Tasklets and T2 for Workqueues as depicted in
Figure 2. This information enables programmers to trade off
functional properties of a bottom half mechanism (e.g., the
ability to sleep) with non-functional properties (e.g., latency).

III. IMPLEMENTATION

INTSPECT, the interrupt subsystem performance evaluation
and comparison tool, is applicable for all bottom half mecha-
nisms in Linux—Softirqs, Tasklets, and Workqueues. Figure 4
summarizes the architecture of our latency evaluation and
analysis tool. It encompasses a user-land analysis framework,
and a kernel module, INTSIGHT. Thereby, the task of the
kernel component is to gather latency information with high
precision, high accuracy, low overhead, and low interference.

1Soft-interrupt denotes the priority level of Softirqs and Tasklets, whereas
Softirq is the name of the specific bottom half mechanism.
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interface to user-space applications. The user-space parts retrieves this infor-
mation and potentially generates system load for measurements (INTSPECT).

Complementary, the user-space framework controls the kernel
component and processes all acquired information.

The kernel component, INTSIGHT, aims for minimal run-
time interference and maximum portability. INTSIGHT pro-
vides a top half and a bottom half for each mechanism.
Thereby, the top half contains code to start the latency
measurement and code to request the respective bottom half
mechanism. The actual timing measurements utilize hardware
performance counters since they offer fine-grained timing
information with minimal interference. Furthermore, the mea-
surement overhead is minimal—on modern hardware archi-
tectures (in particular, ARM and x86), cycle-counter based
timestamps can be obtained in a single processor instruction
and thus additional overhead is avoided. To complete the
latency measurement, each bottom half in INTSIGHT contains
code to obtain another time-stamp, which ends the latency
measurement, and stores the data in a pre-allocated buffer.
To minimize interference, further data processing is deferred
until the completion of an experiment. Since interrupt latency
is subject to unpredictable jitter, INTSIGHT automatically
repeats the measurement for a configurable number of itera-
tions. The required buffer to store raw measurement results is
allocated prior to the start of an experiment, to minimize inter-
ference from memory management. Furthermore, INTSIGHT
ensures that a suitable buffer for the entire experiment is kept
in memory during the complete measurement run.

INTSIGHT uses the tracepoint feature of the Linux kernel to
annotate each latency measurement. This tracing mechanism
is already integrated into the Linux kernel and monitors
performance-relevant code paths. For INTSIGHT, it allows to
reconstruct the actual control-flow path for each interrupt. This
feature identifies which further interrupt requests occur during
measurements, for instance, caused by hardware devices.

In the architecture, the kernel module has the task of
gathering the latency information. It provides all acquired
information for further processing via a sysfs interface. This
modularization improves the portability of INTSPECT.

The user-space framework has three tasks: First, it sets the
system into specific system states, which enable an evaluation

of the influence of system-level parameters on the interrupt
latencies. Second, it notifies the kernel component to start
measurements. Third, it collects and analyzes all information
provided by the kernel component. The basic system state in
our evaluation is the base line state with minimal system load
and noise. This system state allows an evaluation with minimal
interference. Additionally, INTSPECT features a load genera-
tor that executes benchmark workloads. We can thus evaluate
the influence of specific workloads on interrupt latencies.

After collecting raw result data from the kernel component,
INTSPECT analyzes the interrupt latencies (e.g. the maximum
latency). Additionally, it utilizes the control-flow annotations
obtained from kernel tracepoints to correlate the interrupt
latency to other system activities. Thus, our tool can identify
root causes of interrupt handling jitter. This information is
typically unknown to system designers because it depends on
complex interaction between hardware and software compo-
nents, and is therefore vital for system designers to improve
timing predictability. We have published the source code of
INTSPECT under an open source license2.

IV. EVALUATION

We have deployed and evaluated the INTSPECT tool on two
different hardware platforms: an ARM-based embedded plat-
form and an Intel x86 platform. The implementation on these
two platforms demonstrates that our approach is applicable for
a broad range of hardware architectures, from tiny embedded
devices to powerful server computers.

A. ARM Hardware Platform

The ARM-based embedded platform consists of the Atmel
SAMA5D3 Xplained3 board hosting an ARM Cortex-A5
processor, which runs at 528MHz. The Cortex A5 provides
a cycle counter, which allows cycle-accurate measurements
with low overhead (read of the PMCCNTR register), allowing
for measurements with high accuracy and minimal overhead.

All measurement runs consist of 50 000 repetitions and the
results are presented as a histogram (bin size of 1 µs), and a
logarithmic y-axis to visualize the complete range of values.
In order to evaluate the variance, both the 5%- and 95%-
quantiles are marked with dashed red lines. Hence, 90% of
all values (i.e., 45 000) lie in between.

Figure 5 shows the latency distribution between a top half
and the corresponding bottom half for each of the three bottom
half mechanisms, on the ARM-based hardware platform. The
measurements represent a base line system state, where no
other tasks were active. Furthermore, measurements affected
by another interrupt are excluded, but shown in an extra
column labeled IRQ. Similarly, values exceeding 45 µs are also
excluded for clarity purposes, but shown in the column labeled
OOB (out-of-bounds). In this case, only three values out of
50 000 exceed 45 µs. The latencies for Softirqs and Tasklets are
similar with slightly shorter latencies for Softirqs (median for
Softirqs is 4.0 µs and for Tasklets 4.7 µs). This small difference

2https://gitlab.cs.fau.de/i4/intspect
3Part Number: ATSAMA5D3-XPLD, Microprocessor: SAMA5D36

https://gitlab.cs.fau.de/i4/intspect
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Fig. 5. Latency measurements for all three bottom half mechanisms without
system load on the ARM-based hardware platform. Measurements affected
by other interrupts are excluded, but shown in the IRQ column. Outliers are
shown in the OOB column.

corresponds to the fact that Tasklets are executed by dedicated
Softirqs. Workqueue requests have significantly higher latency
(median of 24.1 µs) and jitter, because work items are executed
after Softirqs and Tasklets. Furthermore, the process scheduler
introduces additional non-deterministic latency.

Figure 6 and Figure 7 show the measurements runs of
Softirqs and Workqueues already shown in Figure 5 in further
detail. The tracepoint feature of INTSPECT offers more insight
about the control flow leading to specific interrupt latencies.

For all three bottom half mechanisms, we have identified
the random number generator entropy pool as a source of
additional latency. Once per second, the Linux kernel uses
interrupt-related information as a source of randomness. The
procedure where a specific interrupt contributes to the kernel
entropy pool takes place immediately after the return of a top
half, hence in such cases a higher latency is measured.

Besides the entropy pool, the process scheduler is another
source of latency and jitter for Workqueues, since it manages
the worker threads of Workqueues. The rescheduling overhead
is one major reason for the higher latency of Workqueues,
compared to Softirqs and Tasklets. However, in some cases
the process scheduler additionally updates run-time statistics
of tasks and thus adds further latency and unpredictability. The
row in Figure 7 labeled with Sched. illustrates the latency, if
the scheduler additionally updates run-time statistics.

The presented examples for Softirqs and Workqueues show
that the tracepoint feature of INTSPECT is capable to identify
kernel features which influence the latency of interrupt han-
dling mechanisms. This makes INTSPECT an valuable tool for
system designers to evaluate and improve interrupt latencies.

Besides the measurements without system load, we have
conducted our measurements in additional system states with
increased system load. Therefore, we utilize the INTSPECT
load generator feature, which allows to spawn an adjustable
number of processes to increase the system load during
measurements. Figure 8 and Figure 9 show the latency distri-
butions for Softirqs and Workqueues, respectively, for varying
degrees of system load. The rows labeled Zero, One, and
Many present the base line system state without load, with
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Fig. 6. Further analysis of the values for Softirqs as shown in Figure 5.
For parts of the measurements additional latency is introduced, because the
interrupt is used to enhance the entropy pool for the random number generator.

0 10 20 30 40

1e+00
1e+01
1e+02
1e+03
1e+04

1e+00
1e+01
1e+02
1e+03
1e+04

1e+00
1e+01
1e+02
1e+03
1e+04

Delay [µs]

O
cc

ur
re

nc
es

N
on

e
En

tro
py

Sc
he

d.

IRQ OOB

Fig. 7. Further analysis of the values for Workqueues as shown in Figure 5.
For parts of the measurements additional latency is introduced, because either
the entropy pool is filled or the process scheduler updates run-time statistics.

one active process (full processor utilization), and with 256
active processes, respectively.

In summary, increasing the system load has only a mi-
nor influence on the latency distributions for Softirqs, but
a noticeable effect for Workqueues. The latencies decrease
when one process fully utilizes the processor, compared to the
measurement without system load. We suppose that the latency
reduction results from the absence of sleep state transitions and
caching effects. Due to the decreased latency the probability of
interrupts affecting our measurements is also decreased, which
results in less values shown in the IRQ column. To investigate
this hypothesis, we have repeated our measurements with
active waiting between measurements instead of sleep states.
The results show the same behavior, which supports our
assumption. However, the effect disappears if many processes
(i.e., 256 in our measurements) are running in case of Softirqs
and Tasklets and even reverses in case of Workqueues. The
increased latency for Workqueues presumably results from
the increased process scheduler latency. Due to the increased
latency values, we also observe an increased number of
outliers. In the case of one process, 44 values are greater than
45 µs, which represents less than 0.1% of all measurements.

B. Intel x86 Hardware Platform

Aside from the detailed measurements made on ARM in
an embedded environment with minimal interference, we have
also repeated our benchmarks on a server computer employing
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Fig. 8. Latencies for Softirqs with zero, one, and many active processes,
respectively. The latencies are mostly constant with slightly shorter latencies,
when one process is actively running.

a x86 processor. Implementing a completely different instruc-
tion set architecture (CISC vs. RISC), a more than six times
higher clock frequency (3.3GHz vs. 528MHz), and a different
cache model, the platform differs fundamentally from the
ARM platform. Also, both the system distribution used and the
configuration of the kernel had major differences (i.e., network
was enabled, the number of running tasks was higher). The
motivation is to examine which observations made for ARM
platform are specific to our embedded scenario, and which
carry over to a completely different environment.

Figure 10 displays the latency between a top half and
the execution of a corresponding bottom half for the x86
hardware platform, and thus corresponds to the results for
the ARM-based hardware platform shown in Figure 5. On
the faster x86 processor, the delays are much lower, although
the speedup is not 6.25, as one would deduce from the
increase in clock cycles per seconds. In numbers, the median
on x86 for Workqueues is 3.3 times lower, compared to the
ARM platform. Similarly to the ARM platform, the latency
distributions of Softirqs and Tasklets are very similar (again,
Tasklets are slightly slower). Workqueues, in comparison, are
slower in average. Throughout the evaluation, the x86 platform
shows higher jitter. For instance, Softirqs and Tasklets have a
higher worst-case delay than Workqueues in the best case.

In addition to the plain time measurements, as on ARM, we
have used the tracepoint feature of INTSPECT to identify jitter
causes. Here, both the collection of randomness for the entropy
pool and the accounting of task run-time by the scheduler also
occur on x86. For Workqueues, however, the accounting of
task run-time occurs on every sample in our test series, unlike
the ARM platform, where this event is an exception. Another
difference to ARM is that the accounting of task run-time also
occurs at Softirqs, although it has a less significant overhead,
compared to for Workqueues on x86.

V. RELATED WORK

Wilcox [23] and Rothberg [19] present general surveys
of the Linux interrupt handling subsystem, and the variety
of second-level handler mechanisms. However, both lack an
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Fig. 9. Latencies for Workqueues with zero, one, and many active processes,
respectively. Latencies are shorter if one process is running and longer if many
processes are running.

0 10 20 30 40

1e+00
1e+01
1e+02
1e+03
1e+04

1e+00
1e+01
1e+02
1e+03
1e+04

1e+00
1e+01
1e+02
1e+03
1e+04

Delay [µs]

O
cc

ur
re

nc
es

So
fti

rq
Ta

sk
le

t
W

or
kq

ue
ue

IRQ OOB

Fig. 10. Latency measurements for all three bottom half mechanisms without
system load on the Intel x86 hardware platform. The latencies are lower due
to the faster processor, but show higher jitter compared to the ARM platform.

empirical evaluation of latency and jitter associated with the
interrupt handling mechanisms.

Regnier et al. [16] compare the interrupt handling times
of two popular real-time extensions of Linux, preempt-rt
and xenomai. Their evaluation measures the two aspects of
interrupt-related latency: First, the interrupt latency is defined
as the duration between an interrupt request and the start of
the first-level interrupt handler function. Second, the activation
latency is the duration between an interrupt request and
the moment in time when an high-priority application starts
running, which has been waiting for this interrupt. This paper
extends the analysis by dissecting the latency of second-level
interrupt handler mechanisms.

Besides interrupt handling, another important factor for the
effective latency of interrupt handling is the operating system
scheduler. If a user-space application waits for events, handling
the interrupt is only the first step of information processing. In
the following steps, the application waiting for the information
has to wake up, and must be scheduled. To evaluate scheduling
latency, Calandrino et al. [24] present LITMUSRT , a testbed
to compare real-time schedulers [25].

On the operating-system level, Abeni et al. [26] identify
two further factors for the effective system latency: The timer



resolution and non-preemptable sections where control flows
are delayed due to concurrency control. INTSPECT helps
identifying such jitter causes in interrupt handlers and, thus,
selecting suitable mechanisms that tolerate concurrency.

Interrupt latency can have a significant impact on the whole-
system performance [27], [28]. Especially for large distributed
systems, the performance depends on the tail latency [29].
These systems therefore need latency hiding and tolerance
techniques [30]. This paper presents a tool to evaluate the
interrupt latency, which is crucial in networked systems [31].
In summary, the information gathered with INTSPECT assists
system designers to improve performance and predictability.

VI. CONCLUSION

Operating systems must handle interrupts with predictably
low latency in order to be responsive to (external) events. The
complexity of modern hardware and software requires system
designers to measure interrupt latencies and the interference
of system activities at run-time. To this end, this paper has
presented INTSPECT, a tool for systematic interrupt latency
measurement in Linux. We demonstrate the applicability of our
tool by a quantitative evaluation of interrupt-related latencies
of a recent Linux kernel (Linux v4.9), on an ARM and an Intel
platform. Our analysis reveals that the Workqueue latency ben-
efits from low system load, but increases at high load. In future
work, we will evaluate different Linux variants in various
load scenarios, further analyze the interdependence between
interrupt latencies and the process scheduler, and utilize this
information to optimize Linux for predictably low interrupt
latency, and consequently, improved system responsiveness.
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