
How to Make Profit:

Exploiting Fluctuating Electricity Prices with Albatross,

A Runtime System for Heterogeneous HPC Clusters

Timo Hönig, Christopher Eibel, Adam Wagenhäuser, Maximilian Wagner,
and Wolfgang Schröder-Preikschat

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

ABSTRACT

The ongoing evolution of the power grid towards a highly dynamic
supply system poses challenges as renewables induce new grid char-
acteristics. The volatility of electricity sources leads to a fluctuating
electricity price, which even becomes negative when excess supply
occurs. Operators of high-performance–computing (HPC) clusters
therefore can consider the highly dynamic variations of electricity
prices to provide an energy-efficient and economic operation.

This paper presents Albatross, a runtime system for heteroge-
neous HPC clusters. To ensure an energy-efficient and economic
processing of HPC workloads, our system exploits heterogeneity
at the hardware level and considers dynamic electricity prices. We
have implemented Albatross and evaluate it on a heterogeneous
HPC cluster in our lab to show how the power demand of the clus-
ter decreases when electricity prices are high (i.e., excess demand
at the grid). When electricity prices are low or negative (i.e., excess
supply to the grid), Albatross purposefully increases the workload
and, thus, power demand of the HPC cluster—to make profit.

CCS CONCEPTS

• Software and its engineering→ Operating systems; • Com-

puter systems organization→Distributed architectures;Het-

erogeneous (hybrid) systems; System on a chip; Embedded sys-
tems; •Hardware→ Power and energy; •Computingmethod-

ologies → Graphics processors;

KEYWORDS

runtime and operating systems, power and price awareness, elec-
tricity prices, high-performance computing, heterogeneity, energy
demand, power management, power capping, embedded systems
ACM Reference Format:

Timo Hönig, Christopher Eibel, Adam Wagenhäuser, Maximilian Wagner,
and Wolfgang Schröder-Preikschat. 2018. How to Make Profit: Exploiting
Fluctuating Electricity Prices with Albatross, A Runtime System for Het-
erogeneousHPCClusters. In ROSS’18: 8th InternationalWorkshop on Runtime
and Operating Systems for Supercomputers, June 12, 2018, Tempe, AZ, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3217189.3217193

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS’18, June 12, 2018, Tempe, AZ, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5864-4/18/06. . . $15.00
https://doi.org/10.1145/3217189.3217193

Mo Tu We Th Fr Sa Su

20

40

60

80

Time [day of week]

P
o
w
er

[G
W

]

-100

-80

-60

-40

-20

0

20

40

60

80

100

P
rice

[E
U
R
/
M
W

h
]

negative price

0

non-renewable electricity sources

non-renewable plus renewable electricity sources

electricity price

[week 43/2017]

Figure 1: Electricity prices fluctuate strongly and depend on

the availability of renewables. The prices even become neg-

ative when excess supply meets under demand [4].

1 INTRODUCTION

The evolution of the power grid towards a highly dynamic supply
and demand system poses challenges [1, 2] to its operators and
subscribers. The dependence on renewable electricity (e.g., wind,
solar, and water) induces new grid characteristics: the volatility
of electricity sources leads to an interplay of excess supply and
demand, which results in fluctuating electricity prices. Thus, the
operation of high-performance–computing (HPC) clusters canwork
with the fluctuating electricity price to ensure cost effectiveness [3].

Operators of HPC clusters and supercomputer systems can en-
counter highly dynamic electricity prices (cf. Figure 1) due to the
increasing amount of renewable electricity that enters the power
grid [5] and the yet missing adaptation of new power-storage tech-
nologies (e.g., power-to-gas [6], power-to-liquid [7]). On the one
hand, electricity prices rise when excess demand of the grid occurs
or an under supply is detected. On the other hand, the prices are
dropping when an under demand or excess supply occurs. Based
on these constraints, electricity prices are calculated and, therefore,
subject to high fluctuation. In extreme cases, prices even become
negative [8]—grid subscribers are getting paid for consuming power.

A common cause of negative electricity prices is an excess of
renewable electricity being supplied to the grid. For example, elec-
tricity prices dropped to -91.87 EUR (-113.34USD) per megawatt
hour in Germany during week 43 of 2017 (cf. Figure 1). Currently,
negative electricity prices regularly occur in countries with strong
commitment to renewables [8] and, as a future perspective, 80 % of
the energy demand in the US is feasible to be met by renewables [9].

To large electricity customers (i.e., operators of supercomputers
and HPC clusters), negative electricity prices are both a challenge
and an opportunity. From an economic standpoint, energy-efficient
operations can be unwanted during timeswhen electricity prices are

https://doi.org/10.1145/3217189.3217193
https://doi.org/10.1145/3217189.3217193

ROSS’18, June 12, 2018, Tempe, AZ, USA T. Hönig et al.

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

2

4

6

8

Time [hours]

Po
we

r
D

em
an

d
[kW

]

With Albatross

Without Albatross

Excess Demand / Under Supply
Penalty zone I

Target zone

Under Demand / Excess Supply Penalty zone II

Figure 2: Power grids charge financial penalties according to

the dynamic demand and supply during operation.

negative. Thus, next generation supercomputers and HPC systems
need to consider operation modes that lower the power demand
when electricity prices are high, and operation modes that increase
the power demand when electricity prices become low or negative.
To achieve this, workload shifting (i.e., by means of scheduling [10]),
however, is not the only option to control the power demand of the
overall system. Instead, the increasing number of heterogeneous
processors [11] of supercomputer systems and HPC clusters opens
new ways for lowering and (purposefully) increasing the power
demand of the overall system dynamically at runtime.

Existing algorithms and HPC applications must be ported [12]
when new hardware architectures are introduced to improve per-
formance aspects. Over the last years, however, energy efficiency
of supercomputers and HPC clusters has emerged as an additional
first-class design criterion [13]. Thus, porting efforts now also focus
on improving the energy efficiency of HPC applications when new
hardware architectures are introduced. The porting of HPC appli-
cations to an increasing number of platforms motivates the use of
heterogeneous HPC clusters [14] that consist of individual systems
with distinct performance and energy-efficiency properties.

This paper presents Albatross1, a runtime system for heteroge-
neous HPC clusters. Our proposed system dynamically adjusts the
power demand of the HPC cluster in order to adapt to the current
state of the grid. For this purpose, Albatross considers hetero-
geneity at different levels, for example, at architecture level (i.e.,
x86-64, ARM) and component level (i.e., CPU, GPU), to match with
requirements of individual workloads and in coordination with the
current grid state (i.e., electricity prices). We have implemented
Albatross and evaluate it on an HPC cluster in our lab. The evalu-
ation shows how the power demand of the cluster decreases when
electricity prices are high (i.e., excess demand at the grid). When
electricity prices are low or negative (i.e., excess supply to the grid)
Albatross intentionally increases the workload, which results in a
higher power demand of the HPC cluster—to make profit.

The contribution of this paper is threefold. First, we present the
system design of Albatross, a power- and price-aware runtime
system for HPC clusters. Our system exploits different scopes of
heterogeneity to decrease the power demand of the overall system
when electricity prices are high, and increase the power demand of
the system once electricity prices are low or even negative. Second,
we discuss insights from implementing Albatross for an HPC

1Albatrosses are considered as masters of efficient flight, and feed themselves from a
variety of different, heterogeneous foods, such as squid, small fish, and crustaceans.

cluster in our lab and share evaluation results for the system with
various workloads. Third, we compareAlbatrosswith a commonly
used HPC workload manager that provides a similar feature set.

The paper is structured as follows. Section 2 motivates the need
for power-aware HPC runtime systems that go beyond the current
state of the art, and discusses current challenges in the area. The
system design of Albatross addresses outstanding challenges and
is discussed in Section 3 together with an implementation of our
system. We evaluate the implementation in Section 4 with various
HPC workloads and compare it to another HPC workload manager.
Section 5 discusses practicability, adaptability, and combinability
aspects of Albatross, Section 6 summarizes related work, and
Section 7 concludes the paper.

2 MOTIVATION AND PROBLEM STATEMENT

Supercomputing systems and HPC clusters are currently undergo-
ing fundamental structural changes. On the one hand, the structural
changes are affecting the heterogeneity of systems and, on the other
hand, renewables are currently revolutionizing the electrical grid.

Internally, today’s HPC systems and supercomputers strongly
rely on heterogeneous compute nodes [14] that are part of the
individual system architectures. For example, different processor
architectures (i.e., CISC, RISC, and application-specific integrated
circuits) ensure that workloads, which are heterogeneous at the
software level, can be processed in an efficient manner. Central pro-
cessing units are additionally supplemented with high-performance
co-processors (i.e., GPUs) that further increase the heterogene-
ity at the hardware level. With their unmatched power demand,
it is important for HPC and supercomputer systems to adapt re-
quirements of different workloads to the heterogeneous hardware
components. As such, today’s systems commonly optimize for per-
formance (i.e., increase loop throughput [15]) under consideration
of power constraints [16, 17], which eventually encourages sustain-
ability aspects—also in supercomputing environments [18].

At the same time, the electrical grid that powers supercomput-
ing systems and high-performance–computing clusters is changing
dramatically, especially in countries that spend large efforts on
exploiting renewables to the greatest extent possible [19]. With the
integration of renewable energies, the amount of available electric-
ity is subject to strong fluctuations and depends on uncontrollable
factors (i.e., weather conditions). The structural changes of the
electrical grid therefore have a direct influence on the operation of
large-scale computing systems, in particular when the economic
operation of such systems is considered.

To adapt to the changes of the power grid, it is no longer sufficient
to build systems that provide a maximum amount of processing
power while keeping power demand low [20]. Today, however, it is
necessary to operate HPC clusters and supercomputer systems with
a high degree of flexibility that ensures that electricity—which is
generated by renewables—is used whenever it is available. As soon
as the supply of renewables is high, grid operators must ensure the
stability of the grid by increasing the subscribers’ energy demand.
To do so, grid operators dynamically lower electricity prices, which
motivates subscribers to increase their demand of electricity. Prices
even become negative [4, 8] when excess supply of renewables hits
low demand of electricity.

How to Make Profit with Albatross — A Runtime System for Heterogeneous HPC Clusters ROSS’18, June 12, 2018, Tempe, AZ, USA

Job1

Job2

Jobm

.

.

.

Master node

Cluster
manager

Job
scheduler

Execution unit1
Compute

node1

Execution unit2
Compute

node2
.
.
.

Execution unitn
Compute

noden

Figure 3: Overview of the targeted HPC systems, consisting

of one master node and multiple compute nodes.

Therefore, it is necessary to redesign HPC clusters and super-
computer systems to adapt to the new external constraints in order
to operate the systems economically. To achieve this, it is common
to work with upper and lower bounds on the necessary power de-
mand that must be met by a grid subscriber [21]. Figure 2 visualizes
the target zone of power demand by a subscriber (blue area) that is
dynamically adjusted over time. The target zone is limited by two
penalty zones (red areas): the first penalty zone is activated when
excess demand is detected at the grid. Thus, subscribers are moti-
vated to reduce their power demand to increase the grid stability.
When the electrical grid experiences excess supply of renewables,
subscribers need to raise the power demand to escape the second
penalty zone and implicitly protect the grid stability. This mecha-
nism is equivalent to a minimum purchase quantity [21].

Adapting HPC clusters and supercomputers to the new grid
characteristics requires a re-engineering of the systems’ runtime
environment: the operating system and the workload managers.
With Albatross, we propose a runtime system that is capable of
exploiting heterogeneity aspects at different points of the system
design. Our system manages workloads according to the current
penalty zones, which are provided by electrical-grid operators. The
distribution of workloads is matched with available compute nodes
and the current state of the grid in order to find a balanced operation
point where required performance levels meet an economically
efficient operation of the overall system.

Albatross leverages the heterogeneity of hardware components
in two ways. On the one hand, Albatross reduces the power de-
mand of the overall system and implements a low-power operation
mode that is based on exploiting the heterogeneity characteristics of
individual system components at the hardware level. For example,
workloads are processed by different compute nodes that provide
different execution units with varying power-efficiency characteris-
tics. With the low-power mode Albatross reacts to excess demand
at the power grid (i.e., electricity prices are high). On the other
hand, Albatross deliberately increases the power demand of the
overall system and accordingly implements a high-power operation
mode, too. Our system uses the second operation mode when ex-
cess supply to the power grid occurs (i.e., due to large quantities
of renewables) and electricity prices are low (i.e., potentially neg-
ative). To implement the two operation modes, Albatross uses
data on power-demand characteristics of individual workloads and
compute nodes, and combines this information with the current
electricity price at runtime to dynamically allocate workloads to
specific hardware components.

3 SYSTEM DESIGN

This section details the system design of Albatross. We first give
an overview of design considerations with respect to the targeted
HPC systems and describe the system model of Albatross. Next,
we describe Albatross’s system modules that interact with each
other to jointly exploit the heterogeneous cluster components for
implementing the low- and high-power operation modes. Finally,
we present and discuss our implementation of Albatross.

3.1 System Model and Overview

We designed Albatross to be a system extension for existing work-
load managers that are used in traditional HPC systems.

3.1.1 HPC Workload Management. Figure 3 depicts a general
HPC system and its components. The HPC system contains a coor-
dinating master node that distributes pending work (jobs) among
several compute nodes, each having at least one execution unit (e.g.,
CPU). The cluster manager on the master node keeps track of all ma-
chines in the HPC cluster, whereas the job scheduler takes control of
1) receiving the jobs to process, 2) coordinating as well as enqueu-
ing them, and 3) distributing them to individual compute nodes.
The latter adheres to job constraints (e.g., resource demand, such
as minimum number of CPUs or minimum amount of memory).

3.1.2 System Model. Figure 4 shows a high-level overview of
Albatross’s system model and its modules that are designed to be
integrated into existing HPC systems. That is, with Albatross, we
propose to extend HPC architectures as follows: The master node’s
functionality is supplemented with a resource governor, which is
responsible for dynamic run-time decisions. It interacts with the
job scheduler to retrieve job-execution information to be aware
of the currently available free compute nodes. The resource gov-
ernor receives incoming work orders and maintains a job queue,
where pending jobs and their parameters are stored. This includes
quality-of-service (QoS) information that reflect the performance
requirements of the individual jobs. Furthermore, the resource gov-
ernor receives electricity data (i.e., electricity prices, target- and
penalty-zone limits), which it incorporates into its decision-making
process. Compute nodes with similar heterogeneity properties are
grouped into resource groups. For its job-allocation decisions, Alba-
tross takes the following scopes of heterogeneity into account:

(1) System scope: varying design and architecture of the sys-
tem (e.g., ARM, PowerPC, x86-64)

(2) Component scope: different execution units in a single sys-
tem (e.g., CPU, integrated GPU, graphics card)

(3) Configuration scope: power-management features at the
hardware level (e.g., C-states, DVFS, RAPL power capping)

Each compute node contains an additional probe, which on one side
returns power-demand data to the resource governor, and on the
other side implements power-management features (e.g., power
capping) that are enforced by the resource governor. The resource
governor runs a continuous feedback loop that matches incoming
data (i.e., energy prices, job-execution information, power demand)
with available heterogeneous compute-node resources to decide
where and when to execute the individual jobs. With this approach,
Albatross exploits the heterogeneity and diversity of multiple
hardware components to control the cluster’s power demand in

ROSS’18, June 12, 2018, Tempe, AZ, USA T. Hönig et al.

Job1

Job2

Jobm

QoS

constraints .
.
.

Electricity & price

constraints

Master node

Resource
governor

Cluster
manager

Job
scheduler

Resource group1

Resource groupl

.

.

.

Exec1 Execn1 Probe1
Compute
node1

. . .

Exec1 Execn2 Probe2
Compute
node2

. . .

.

.

.

Exec1 Execnk Probek
Compute
nodek

. . .

Power

meters

Figure 4: Overview of Albatross’s integration into an HPC system. Albatross introduces 1) a controlling resource governor

at the master node, 2) sensing as well as acting probes at each compute node, and 3) heterogeneity-aware resource groups.

dependence of the current electricity price. When electricity prices
are high, Albatross enforces its low-power operation mode, which
primarily aims for the best energy efficiency that is achievable in
adherence with current performance constraints. When electricity
prices are low (or even negative), Albatross employs its high-
power operation mode, which loosens the reins and operates the
cluster with higher power demand and performance.

In the subsequent sections, we present the individual modules
of the Albatross runtime system. We first describe data that are
the working basis for the resource governor (cf. Section 3.2), before
we explain how this data are used to make dynamic job-allocation
decisions (cf. Section 3.3) which are power and price aware.

3.2 Performance, Power, and Price Awareness

Albatross incorporates user-provided quality-of-service aspects
(e.g., job-termination deadlines), which the system brings into ac-
cordance with controlling the cluster’s power demand to reduce the
electricity costs. First, Albatross makes itself aware of the compo-
sition of the cluster, all currently running jobs, and the performance
requirements of each single job to adhere to certain termination
deadlines (cf. Section 3.2.1). Second, Albatross gathers concrete
power-demand values for all jobs to make assumptions about the
energy efficiency (cf. Section 3.2.2). Third, Albatross incorporates
the price of electricity, which dynamically changes at runtime, into
its decision process (cf. Section 3.2.3).

3.2.1 Performance and Cluster Awareness. To retrieve cluster
information and performance data, Albatross’s resource governor
uses the following interface, whose implementation is adapted to
the specific underlying workload manager:

interface Albatross_Cluster_Control {
/∗ Get cluster configuration ∗/
NodeList get_nodes();

/∗ Get all running jobs and their allocation ∗/
JobList get_jobs();

/∗ Submit job with attached job−resource info ∗/
JobResult submit_job(Job j);

}

The function get_nodes() retrieves a list of all available com-
pute nodes in the heterogeneous HPC cluster. This function makes
the resource governor aware of the number of compute nodes per

resource group as well as the exact type of available hardware com-
ponents (i.e., execution units) and their individual features. The
information is either retrieved from the cluster manager or by di-
rectly accessing the compute nodes (e.g., using tools such as lspci
or lscpu). The resource governor offers a submit_job() method,
which is called instead of the original version of the workload man-
ager when a job is submitted to the HPC cluster. A Job container
comprises the binaries to be executed, the job parameters, and
metadata (e.g., most suitable target platforms, QoS and power con-
straints). To quantify performance, the resource governor retrieves
the complete execution time of an individual job by obtaining the
value from JobResult, which is implemented as a future [22] and
may block until the job has finished its execution.

3.2.2 Power Monitoring and Control. Power awareness is one
of the key aspects of Albatross to keep the cluster’s power de-
mand in the target zone and avoid the penalty zones (cf. Figure 2).
For this purpose, the resource governor uses the probes to access
all power-metering devices and features that are available in the
cluster. Albatross supports external measuring devices and CPU-
integrated features, for example, Intel’s running average power
limit (RAPL) [23], which grants access to power-demand data of
domains such as CPU, internal GPU, and DRAM. Each compute
node contains a probe module to 1) retrieve power values and 2)
control the node’s power-management features. The probe module
is used by the resource governor via the following probe interface:

interface Albatross_Power_Control {
/∗ Triggers power measuring for an exec. unit ∗/
void start_measurement(Node n, ExecUnit u);
PowerValues stop_measurement(Node n, ExecUnit u);

/∗ Sets the value of a power−management feature ∗/
void set_pm(Node n, ExecUnit u, PowerConfig c);

}

The resource governor uses the probe methods to trigger the be-
ginning (start_measurement()) and end (stop_measurement())
of a power measurement on a specific compute node for the job
it is interested in. The call returns a list of power values, whose
granularity depends on the type of measuring methodology (e.g.,
external measuring device, CPU-integrated RAPL). The probe’s
implementation is independent of the concrete underlying work-
load manager. This is also true for the set_pm() method, which
adjusts the power-management feature of the execution unit of a

How to Make Profit with Albatross — A Runtime System for Heterogeneous HPC Clusters ROSS’18, June 12, 2018, Tempe, AZ, USA

specific compute node. PowerConfig encapsulates an identifier for
the power-management feature and the specific value to set. For
example, a power cap for an Intel CPU is set by encapsulating a
corresponding request, and is eventually enforced at the hardware
level via RAPL. The resource governor is aware of the heterogeneity
of available hardware and thus power-management features—since
it gathered the corresponding information on the cluster topology.

3.2.3 Price and Electricity Constraints. The information on elec-
tricity prices and constraints (i.e., target and penalty zones) is de-
posited at the side of the grid operator. Thus, the resource governor
receives this data from the grid operator, for example by using a
web-service API [4]. The data are populated to a local database
which the governor uses for dynamic price-aware job scheduling.
The data entries contain specific timespans for the lower and upper
power bounds as well as the prices for the target and penalty zones.

3.3 Dynamic Runtime Resource Allocation

The resource governor runs a continuous control and feedback loop
which uses the previously described interfaces to retrieve values
for power, execution time, current electricity constraints (power
bounds, electricity prices), and available nodes in the cluster. The
runtime data of the individual workloads are queried from the
cluster during operation and are stored as execution traces in a
database. The execution traces serve as a reference point for future
runtime decisions by the resource governor. Whenever a new job
is submitted, the resource governor first queries the database for
an already existing execution-trace entry and, if present, uses this
information for the pending resource-allocation decision.

The resource governor takes control of managing the jobs be-
fore actually submitting them to the job scheduler for further pro-
cessing (cf. Figure 4). By inspecting the jobs’ individual QoS con-
straints (i.e., processing deadlines) in combination with the cur-
rently running jobs on all nodes (i.e., cluster load), the resource
governor decides which jobs are ready to be scheduled on which
compute node. As not all jobs are immediately scheduled for exe-
cution, the resource governor maintains a separate queue for jobs
that can be deferred. With the available runtime information, the
resource governor of Albatross dynamically adjusts the power de-
mand of the cluster to stay in the requested target zone. Depending
on the current state of the power grid, Albatross pursues either
the low- or the high-power operation mode. The low-power oper-
ation mode is achieved by dynamically deferring workloads and
executing non-deferrable workloads on the most energy-efficient
hardware platform that is currently available. The high-power op-
eration mode, in contrast, is applied when energy prices decrease
and may even become negative. In such situations, Albatross uses
its ability to dynamically allocate as many resources as possible in
order to increase the power demand of the cluster. The following
section presents a corresponding implementation of Albatross.

3.4 Implementation

As a baseline for the implementation of our Albatross prototype
we use the HPC workload manager SLURM [24], since it offers most
of the base functionality that is required by Albatross and it is
open source. The prototype implementation embraces the original
system architecture which consists of three standalone software

components: the control daemon slurmctld, the execution daemon
slurmd, and several binaries (e.g., srun, scontrol, sinfo) that func-
tion as interfaces between the user and the daemons. In addition, a
highly modular plug-in infrastructure is offered, which enables pur-
poseful modifications of specific aspects while maintaining the base
functionality to the greatest extent possible. In order to achieve a
power- and price-aware management of the HPC cluster, the Alba-
tross prototype implements three key features: 1) constraint-aware
job-to-node–assignment strategies, 2) power-drain limitation by
execution-environment adaptation, and 3) power-drain control by
selective deferral of jobs. By adding these features to an existing
cluster-management software such as SLURM, we can control the
cluster’s power drain to avoid penalty zones and achieve a bet-
ter economic efficiency. The individual features of Albatross are
implemented as follows.

Two of Albatross’s features are implemented in a custom plug-
in. This plug-in is based on the default sched/builtin plug-in,
since it offers access to required data (i.e., job and node information)
and has the best position in SLURM’s existing internal algorithmic
hierarchy. Within the plug-in, we implement the constraint-aware
job-to-node–assignment strategy, which considers constraints (i.e.,
QoS, penalty zones, and electricity prices) and execution traces (cf.
Section 3.3) during assignment decisions. The execution traces pro-
vide data such as average power drain and total energy demand.
In addition to the assignment strategy, the plug-in also contains
the master node’s part of the power-limitation feature. Within the
plug-in, information on the cluster’s current power drain and zone
constraints is combined with power-management features (i.e.,
power capping with RAPL) to achieve a power drain that violates
electricity constraints as little as possible. Each applicable execu-
tion unit’s power drain is limited separately. This is dynamically
controlled byAlbatross’s probe modules (cf. Section 3.1.2).

To further control the HPC cluster’s power drain at runtime,
we implemented an additional front-end component where jobs
are either deferred or immediately forwarded to the job scheduler
based on the cluster’s current operation mode (i.e., low- and high-
power operation modes, cf. Section 2). The selective deferral and
forwarding of jobs help to avoid penalty zones in general, and
increase the cluster’s power drain while Albatross runs its high-
power operation mode in particular.

Albatross’s additional features reduce the costs of operating
an HPC cluster by controlling the cluster’s power drain. The im-
plementation maintains as much of SLURM’s default behavior as
possible, which makes our prototype system a convenient drop-in
replacement for HPC deployments that already use SLURM, but
lack power and price awareness, yet.

4 EVALUATION

In this section, we evaluate Albatross on a heterogeneous HPC
cluster in our lab.We first describe the evaluation setup that consists
of the evaluated soft- and hardware as well as a power-measuring
infrastructure (cf. Section 4.1). We explore the system, configura-
tion, and component heterogeneity scopes in Section 4.2 and 4.3
and show how Albatross exploits heterogeneity aspects to stay
within given power-target zones and how our prototype considers
fluctuant electricity prices (cf. Section 4.4) dynamically at runtime.

ROSS’18, June 12, 2018, Tempe, AZ, USA T. Hönig et al.

4.1 Evaluation Setup

Figure 5 shows the evaluation setup, consisting of heterogeneous
hardware components and the power-measuring infrastructure.
Cluster Setup. In alignment with the heterogeneity scopes that are
considered by Albatross, we use a diverse set of heterogeneous
hardware devices (cf. Table 1). Figure 5 (A – E) further shows the
hardware setup and its arrangement in our lab. All devices are
connected via switched 1Gbps Ethernet.
Power Measuring. For the different hardware components we em-
ploy various power-measurement devices. To measure the power
demand of individual compute nodes and the total power demand of
the cluster, we use the Microchip MCP39F511 device (1 in Figure 5).
The MCP39F511 has a sampling rate of 400Hz and a measuring
error of ≤ 0.1 % [25]. To measure the power demand of graphics
cards, we use a PCIe-lane–extending riser card (2) in combination
with a current clamp that has a signal bandwidth of 1MHz (3), and
a STEMlab Red Pitaya board [26] (4). The board retrieves current
values from the current clamp and multiplies them with the supply
voltage to determine the power demand.
Evaluation Workloads. The evaluated workloads consist of different
benchmarks from the NAS Parallel Benchmarks (NPB) suite [27].
We use two different versions of the benchmark: anOpenMP version
to showcase system- and configuration-scope heterogeneity and an
OpenCL version to showcase component-scope heterogeneity. We
focus on the five kernel benchmarks (i.e., CG, EP, FT, IS, MG) with
benchmark class A for standard test problems.

4.2 System- and Configuration-Scope

Heterogeneity Effects

In the first experiment, we show the effects of choosing a certain
system (i.e., compute node) for the execution of a job and investigate
the effect of different configurations (i.e., with and without power
cap). We vary the workload using the OpenMP version of NPB and
discuss both energy-demand and execution-time values.

1 MCP39F511

1

3 Current probe

3

2 PCIe riser card

2

4 Red Pitaya

4

C Intel Xeon

C

A / B ARM ODROID-C1+/C2

A B

D Intel HD GPU

D

E Nvidia GPU

E

Figure 5: The evaluation setup consists of heterogeneous

compute nodes and different power-measuring devices.

CGA EPA FTA ISA MGA

0

100

200

E
n
er
g
y

D
em

a
n
d
[J
]

ODROID-C1+ ODROID-C2 Xeon Xeoncap

Execution
Time 9.

1
s

8.
0
s

0.
6
s

0.
6
s

27
.9
s

12
.6
s

1.
9
s

2.
6
s

55
.1
s

22
.8
s

1.
2
s

1.
4
s

3.
4
s

1.
5
s

0.
3
s

0.
3
s

14
.8
s

7.
8
s

1.
5
s

1.
5
s

Figure 6: The energy demand and execution times of indi-

vidual benchmarks vary for heterogeneous compute nodes.

4.2.1 Energy-Demand Results. For different NPB benchmarks
and problem size A, Figure 6 shows energy-demand and execution-
time values for the two ARM-based systems (ODROID-C1+ and
ODROID-C2) and the Intel-based platform (Xeon). The fourth value
(Xeoncap) is a result of running the benchmarks with a power
cap on the Xeon platform. We chose a power cap of 20W as this
configuration shows the best trade-off between energy demand and
execution time across benchmarks.

From the energy-demand results in Figure 6, we make the fol-
lowing two observations: First, the values indicate that the plat-
forms with the lowest and highest energy demand vary with the
benchmark. For example, the ODROID-C1+ has the highest energy
demand for the FT benchmark: it is 4x higher than the lowest mea-
sured energy demand (Xeoncap). However, the same system (i.e.,
ODROID-C1+) has the lowest energy demand for the MG benchmark:
it is 0.6x lower than using the Xeon without power cap—the highest
observed energy demand. Second, applying the power cap on the
Xeon platform reduces the energy demand for all benchmarks. The
reduction varies between 7% (MG) and 35% (FT). This shows the
importance of exploiting configuration-scope heterogeneity.

4.2.2 Execution-Time Results. The evaluation results shown in
Figure 6 further reveal that the ARM-based systems (i.e., ODROID-
C1+ and ODROID-C2) need significantly longer to process the
benchmark workloads compared to the Intel-based platforms (i.e.,
Xeon and Xeoncap). Even in the best case, the execution times on the
ARM-based systems require 4.7x (IS) longer than on the Intel-based
systems, and in the worst case, 44.7x (FT) longer.

The evaluation results of our first experiment highlight the im-
portance of usingAlbatross, which considers both energy demand
and execution times. It is necessary to not only consider the pure
energy-demand values for the dynamic resource-allocation process,
as this may violate QoS constraints (i.e., performance, deadlines).

Device Processor details Mem.
A Hardkernel ODROID-C1+ Amlogic Cortex-A5 (4x 1.5GHz) 1GiB
B Hardkernel ODROID-C2 Amlogic Cortex-A53 (4x 1.5GHz) 1GiB
C Fujitsu CELSIUS W550 Intel Xeon E3-1275 v5 (8x 3.6GHz) 16GiB

D Intel HD Graphics P530 24 pipelines (1.15GHz) shared
E Nvidia Quadro P2000 1,024 CUDA cores (1.375GHz) 5 GiB

Table 1: Overview of the evaluated devices with system-

scope (A–C) and component-scope (D–E) heterogeneity.

How to Make Profit with Albatross — A Runtime System for Heterogeneous HPC Clusters ROSS’18, June 12, 2018, Tempe, AZ, USA

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz
ed

E
D
P

CGA EPA FTA ISA MGA

0

20

40

60

P
o
w
er

D
em

a
n
d

[W
]

Xeon Intel HD Nvidia

Figure 7: Comparison of the energy–delay product and av-

erage power-demand values when using different execution

units with modules of the NAS Parallel Benchmarks.

4.3 Component-Scope Heterogeneity Effects

In our second experiment, we use the OpenCL version of NPB to
show the effects of choosing different components (i.e., execution
units): we compare the execution of benchmarks on a CPU (Xeon),
an integrated GPU (Intel HD), and a graphics card (Nvidia).

Albatross considers the trade-off between energy demand and
execution time for processing workloads and, thus, uses the energy–
delay product (EDP) [20]. The EDP is defined as follows: EDP = E ·t ,
where E is a job’s energy demand and t its execution time.

Figure 7 shows the corresponding EDP values (top graph) and
average power-demand values (bottom graph). The EDP values
are normalized to those of the integrated GPU (Intel HD). In all
cases, the execution on Intel HD results in the highest EDP value,
and all but one execution on the graphics card (Nvidia) results in
the lowest. With a factor of 20.0x, the highest difference in EDP is
observed for FT between Nvidia and Intel HD. The execution of IS
results in the lowest difference—a factor of 1.8x between the Nvidia
graphics card and the Intel HD internal GPU.

Since Albatross is in charge of controlling the cluster’s power
drain, we also evaluate the average power-demand values. On the
one hand, Intel HD yields the highest EDP values, but also the
lowest average power-demand values across all of our benchmarks.
On the other hand, the Nvidia graphics card yields the lowest EDP
values across almost all experiments, but also the highest average
power-demand values across all of them. Even though Intel HD
provides comparatively poor EDP results, it is still useful to balance
the cluster’s power drain and avoid penalty zones (cf. Figure 2).

The results from Section 4.2 and 4.3 highlight that there is no
single system, component, or configuration that is first choice in all
cases. Depending on available hardware devices and the workload
to be executed, Albatross dynamically chooses the most suitable
devices and configurations in a best-effort manner, in accordance
with current power and electricity constraints.

4.4 Combining Power and Price Awareness

In the final experiment, we evaluate Albatross regarding power
and price awareness. We use a versatile workload that is a large
composition of all previously used benchmark types (i.e., OpenMP
and OpenCL versions of NPB). The workload runs for 60 minutes
during which each benchmark type receives the same amount of

0 10 20 30 40 50 60
0

40

80

120

160

Time [min]

P
o
w
er

D
ra
in

[W
]

Albatross
SLURM

upper limit
lower limit

(a) Power drain of Albatross and SLURM over 60 minutes.

-0.1

0

0.1

Time [day of week]

C
o
st

[E
U
R
]

-100

-50

0

50

100

P
ri
ce

[E
U
R
/
M
W

h
]

Th Fr Sa Su

negative price

Albatross

SLURM

price

[week 43/2017]

(b) Accumulated electricity costs for Albatross and SLURM.

Figure 8: The power drain of the cluster varies and depends

on the use of Albatross and SLURM (top graph). A compari-

son of the resulting, accumulated electricity costs shows the

advantage of Albatross over SLURM (bottom graph).

time to execute. We use SLURM (i.e., as baseline) and Albatross
in sequence to execute the workload on the same HPC cluster. The
resulting execution traces are then projected onto a longer period
of time (i.e., four days) to calculate reasonable electricity costs.

Figure 8a shows the power drain of the HPC cluster during the
experiment. The penalty zones (i.e., upper and lower limit) are
dynamically adjusted every 10 minutes, based on the price fluctua-
tion shown in Figure 8b. SLURM executes submitted jobs as fast as
possible, ignoring the penalty zones. This leads to a frequent viola-
tion of the limits, resulting in extensive penalties. To the contrary,
Albatross satisfies the limits and executes the workloads with-
out spending significant amounts of time outside the target zone.
In numbers, SLURM spends 83.1 % of the execution time within
the penalty zone, whereas Albatross reduces this to merely 2.5 %.
However, the completion time of individual jobs increases when
using Albatross due to their deferred execution.

Next, we project the execution traces of this experiment onto a
four-day time frame and merge our data with electricity prices as
obtained from a power exchange [4]. Correspondingly, Figure 8b
shows the accumulated electricity costs for running the heteroge-
neous HPC cluster over time. SLURM is unaware of the current
electricity price and, thus, can not adapt the operation of the HPC
cluster. Albatross, however, is aware of the current price and ex-
ploits the heterogeneity of the HPC cluster during operation. This
leads to a reduction of the accumulated operation costs, and, in
the concrete example, to a profit of 0.10 EUR (0.12 USD), whereas
SLURM’s operation leads to costs of 0.05 EUR (0.06 USD).

The numbers are small for the HPC cluster that operates in our
lab as it has a low average power drain. On large systems, however,
Albatrossmakes a considerable difference. For example, projecting
our results onto the current Top-500 #1 supercomputer, Sunway
TaihuLight [18], which has a power drain of 15.37 MW, would yield
a profit of 16.7 thousand EUR (20.6 thousand USD) in just four days.

ROSS’18, June 12, 2018, Tempe, AZ, USA T. Hönig et al.

5 DISCUSSION

This section discusses issues regarding the practicability, adaptabil-
ity, and combinability of Albatross.
Practicability. The workload utilization impacts the effectiveness of
Albatross, for example, on HPC clusters and supercomputers with
a sustained utilization of 100 %. Such systems leave only little room
for dynamic resource allocation. Thus, job-to-node–assignment
strategies of Albatross are limited as jobs can not be assigned to
the most suited compute node or execution unit. Price awareness of
Albatross is especially useful for large-scale systems that qualify
for receiving negative prices. However, small customers also benefit
as low prices are passed on, for example, by cheaper prices for HPC-
as-a-Service [28]. To further increase profits, Albatross can be
used for cryptocurrency-mining workloads. However, we strongly
advocate climate-friendly goals to be pursued in such cases.
Adaptability. Albatross is compatible with the design of today’s
workload managers. We have inspected the features of actively
maintained workload managers that are listed in Table 2. Our anal-
ysis has revealed that any of the listed workload managers can be
extended to provide the core features of Albatross (i.e., hetero-
geneity, power, and price awareness). Unavailable features (i.e., red
crosses in Table 2) need to be added to the individual workload
manager to provide the basic functionality that is required by Al-
batross. Thus, we base our prototype on SLURM as it provides the
majority of the necessary features.
Combinability. Computing resources that are available on spot mar-
kets [29] offer a cost-effective use of dynamically allocated comput-
ing resources. The consideration of using such compute resources
from spot markets lowers costs significantly while the performance
impact is insignificant [30]. Albatross gives the unique opportu-
nity to combine dynamic pricing of different resource types (i.e.,
energy resources and compute resources).

6 RELATEDWORK

Maximizing performance under a power limit is a common chal-
lenge for workload managers [31–36]. PTune [37] distributes power
budgets among jobs and takes performance variants into account.
Moreover, it determines the number of processors to use for each
job. READEX [38] auto-tunes HPC applications to increase per-
formance and energy efficiency. In contrast, Albatross does not
require any program-code modifications; yet, such modifications
would not be contradictory to its system design and can be seam-
lessly integrated. Wallace et al. [39] guide scheduling decisions

Feature Moab Tivoli Univa SLURM A’ross

Job pinning ✗ ✗ ✓ ✓ ✓
CPU allocation ✓ ✓ ✗ ✓ ✓
Quality of service ✓ ✗ ✓ ✓ ✓
Generic resources ✓ ✗ ✓ ✓ ✓
Cluster status ✓ ✓ ✓ ✓ ✓
Heterogeneity aware ✓ ✗ ✓ ✗ ✓
Power/price aware ✗ ✗ ✗ ✗ ✓

Table 2: Feature comparison of Albatross with several

other state-of-the-art workload managers.

towards higher power efficiency and show—at the example of a
representative supercomputer system—that most jobs are repetitive
and predictable. This further encourages the way Albatross traces
jobs regarding power and performance for its decision process.

Helal et al. [40] and Goel et al. [41] propose to use performance
and power models; however, establishing and using such models
is cumbersome and error-prone. Therefore, Albatross conducts
online measurements to work with values that best reflect the
real world. Still, as done in previous work [38], we plan to extend
Albatross with a machine-learning approach that uses profiling
data to better satisfy power and electricity constraints when faced
with unknown jobs. Electricity awareness has been addressed by
Aikema et al. [10] and Yang et al. [3]. None of these works exploit
heterogeneity to better adhere to given power-target zones.

Heterogeneity in HPC systems is affected at multiple levels. First,
the software that runs on HPC systems becomes increasingly het-
erogeneous in the future. For example, Baer et al. [42] started to run
Apache Spark applications on an HPC cluster. Such applications
have different workload patterns, which are more dynamic, requir-
ing adequate response at runtime, as is the case with Albatross.
Second, hardware components become even more heterogeneous.
For example, works such as the one from Fornaciari et al. [43] in-
corporate, besides desktop and HPC systems, embedded devices
into a multi-layer resource manager. However, the presented results
indicate an early stage of development and, in contrast to Alba-
tross, the resource manager lacks the ability to exploit multiple
heterogeneous hardware resources at the same time. Commercial
cluster managers such as Univa Grid Engine [44] and Moab [45]
are already prepared for heterogeneity support, however, in con-
trast to Albatross, they do not take power or energy demand into
consideration. Wang et al. [46] and Tang et al. [11] show that with
other GPU and CPUmodels an even more diverse behavior in terms
of energy and power is achievable. Thus, further increasing the
amount of component-scope heterogeneity with different GPUs
and CPUs is especially beneficial for Albatross when adhering to
dynamic pricing and power-target zones.

7 CONCLUSION

This paper presents Albatross, a runtime system that takes on
exploiting negative electricity prices when managing workloads
on heterogeneous HPC clusters. Our system uses heterogeneity at
the hardware level to dynamically control and adjust the power
demand according to current workloads, QoS requirements, and
external constraints (i.e., electricity price). When the amount of
renewables is high and prices become negative, Albatross makes
profit by adapting workloads. In practice, the achieved profit fur-
ther increases when the system is used for cryptocurrency mining.
However, we advocate climate-friendly goals to be pursued.

ACKNOWLEDGMENTS

We thank Heiko Janker for his help towards a precise and accu-
rate power-measuring infrastructure and we highly appreciate the
insightful feedback of the anonymous reviewers. This work was
partially supported by the German Research Council (DFG) under
grant no. SCHR 603/13-1 (“PAX”), grant no. SFB/TR 89 (“InvasIC”),
and grant no. DI 2097/1-2 (“REFIT”).

How to Make Profit with Albatross — A Runtime System for Heterogeneous HPC Clusters ROSS’18, June 12, 2018, Tempe, AZ, USA

REFERENCES

[1] Hassan Farhangi. The path of the smart grid. IEEE Power and Energy Magazine,
8(1):18–28, January 2010.

[2] Julio Romero Aguero, Erik Takayesu, Damir Novosel, and Ralph Masiello. Mod-
ernizing the grid: challenges and opportunities for a sustainable future. IEEE
Power and Energy Magazine, 15(3):74–83, May 2017.

[3] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and
Michael E Papka. Integrating dynamic pricing of electricity into energy aware
scheduling for HPC systems. In Proceedings of the 2013 International Conference
on High Performance Computing, Networking, Storage and Analysis (SC’13), pages
1–11. IEEE, 2013.

[4] Fraunhofer ISE. Electricity production and spot prices in Germany. URL:
www.energy-charts.de/price.htm.

[5] Harry Wirth and Karin Schneider. Recent facts about photovoltaics in Germany.
Technical report, Fraunhofer Institute for Solar Energy Systems, 2015.

[6] Mareike Jentsch, Tobias Trost, and Michael Sterner. Optimal use of power-to-gas
energy storage systems in an 85% renewable energy scenario. Energy Procedia,
46:254–261, December 2014.

[7] Alberto Varone and Michele Ferrari. Power-to-liquid and power-to-gas: an
option for the German Energiewende. Renewable and Sustainable Energy Reviews,
45:207–218, May 2015.

[8] Stanley Reed. Power prices go negative in Germany, a positive for consumers.
The New York Times, 167:B3, December 2017.

[9] Matthew R Shaner, Steven J Davis, Nathan S Lewis, and Ken Caldeira. Geophysical
constraints on the reliability of solar and wind power in the United States. Energy
and Environmental Science, 11:914–925, 2018.

[10] David Aikema, Cameron Kiddle, and Rob Simmonds. Energy-cost-aware sched-
uling of HPC workloads. In Proceedings of the 2011 International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM ’11), pages 1–7.
IEEE, 2011.

[11] Kun Tang, Devesh Tiwari, Saurabh Gupta, Sudharshan S Vazhkudai, and Xubin
He. Effective running of end-to-end HPC workflows on emerging heterogeneous
architectures. In Proceedings of the 2017 International Conference on Cluster
Computing (CLUSTER ’17), pages 344–348. IEEE, 2017.

[12] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann, 2013.

[13] Barry Rountree, David K Lownenthal, Bronis R De Supinski, Martin Schulz,
Vincent W Freeh, and Tyler Bletsch. Adagio: making DVS practical for com-
plex HPC applications. In Proceedings of the 2009 International Conference on
Supercomputing (ICS ’09), pages 460–469. ACM, 2009.

[14] Mohamed Zahran. Heterogeneous computing: here to stay. Commuications of
the ACM, 60(3):42–45, February 2017.

[15] Prasanna Balaprakash, Ananta Tiwari, and Stefan M Wild. Multi objective
optimization of HPC kernels for performance, power, and energy. In Proceedings
of the 2013 International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS ’13), pages 239–260.
Springer, 2013.

[16] H Peter Hofstee. Power efficient processor architecture and the cell processor. In
Proceedings of the 11th International Symposium on High-Performance Computer
Architecture (HPCA ’05), pages 258–262. IEEE, 2005.

[17] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo Valero. Optimizing job
performance under a given power constraint in HPC centers. In Proceedings of
the 2010 International Green Computing Conference (IGCC ’10), pages 257–267.
IEEE, 2010.

[18] Wu-chun Feng and Kirk Cameron. The Green500 list: encouraging sustainable
supercomputing. IEEE Computer, 40(12), December 2007.

[19] Afshin Izadian, Nathaniel Girrens, and Pardis Khayyer. Renewable energy poli-
cies: a brief review of the latest US and EU policies. IEEE Industrial Electronics
Magazine, 7(3):21–34, September 2013.

[20] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power digital
design. In Proceedings of the 1994 Symposium on Low Power Electronics, pages
8–11. IEEE, 1994.

[21] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Power vari-
ation aware configuration adviser for scalable HPC schedulers. In Proceedings
of the 2015 International Conference on High Performance Computing & Simula-
tion (HPCS ’15), pages 71–79. IEEE, 2015.

[22] Henry C Baker Jr and Carl Hewitt. The incremental garbage collection of pro-
cesses. ACM SIGPLAN Notices, 12(8):55–59, August 1977.

[23] Intel Corporation. Intel 64 and IA-32 architectures software developer’s manual:
system programming guide, part 2, 2016.

[24] Andy B Yoo, Morris A Jette, and Mark Grondona. SLURM: simple Linux utility
for resource management. In Proceedings on the 2003 Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP ’03), pages 44–60. Springer, 2003.

[25] MicrochipMCP39F511. URL: www.microchip.com/wwwproducts/en/MCP39F511.
[26] StemLabs Red Pitaya. URL: www.redpitaya.com.
[27] NAS Parallel Benchmarks. URL: www.nas.nasa.gov/publications/npb.html.
[28] High Performance Computing on Amazon AWS. URL: aws.amazon.com/hpc.
[29] Qi Zhang, Quanyan Zhu, and Raouf Boutaba. Dynamic resource allocation

for spot markets in cloud computing environments. In Proceedings of the 2011
International Conference on Utility and Cloud Computing (UCC ’11), pages 178–185.
IEEE, 2011.

[30] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant
Shenoy. SpotOn: a batch computing service for the spot market. In Proceedings of
the 2015 Symposium on Cloud Computing (SoCC ’15), pages 329–341. ACM, 2015.

[31] Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power
cap: a comparison of hardware, software, and hybrid techniques. In Proceedings
of the 2016 International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16), pages 545–559. ACM, 2016.

[32] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. Maximizing
throughput of overprovisioned HPC data centers under a strict power budget. In
Proceedings of the 2015 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’15), pages 807–818. ACM/IEEE, 2015.

[33] Peter E. Bailey, David K. Lowenthal, Vignesh Ravi, Barry Rountree, Martin
Schulz, and Bronis R. de Supinski. Adaptive configuration selection for power-
constrained heterogeneous systems. In Proceedings of the 2014 International
Conference on Parallel Processing (ICPP ’14), pages 371–380. IEEE, 2014.

[34] Allan Porterfield, Rob Fowler, Sridutt Bhalachandra, Barry Rountree, Diptorup
Deb, and Rob Lewis. Application runtime variability and power optimization for
exascale computers. In Proceedings of the 2015 International Workshop on Runtime
and Operating Systems for Supercomputers (ROSS ’15), pages 1–8. ACM, 2015.

[35] Ziming Zhang, Michael Lang, Scott Pakin, and Song Fu. Trapped capacity: sched-
uling under a power cap to maximize machine-room throughput. In Proceedings
of the 2014 Energy Efficient Supercomputing Workshop (E2SC ’14), pages 41–50.
IEEE, 2014.

[36] Deva Bodas, Justin Song, Murali Rajappa, and Andy Hoffman. Simple power-
aware scheduler to limit power consumption by HPC system within a budget. In
Proceedings of the 2014 International Workshop on Energy Efficient Supercomput-
ing (E2SC ’14), pages 21–30. IEEE, 2014.

[37] Neha Gholkar, Frank Mueller, and Barry Rountree. Power tuning HPC jobs on
power-constrained systems. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation (PACT ’16), pages 179–191. ACM, 2016.

[38] Per Gunnar Kjeldsberg, Andreas Gocht, Michael Gerndt, Riha Lubomir, Joseph
Schuchart, and Umbreen Sabir Mian. READEX: linking two ends of the com-
puting continuum to improve energy-efficiency in dynamic applications. In
Proceedings of the 2017 International Conference on Design, Automation, and Test
in Europe (DATE ’17), pages 109–114. EDAA, 2017.

[39] Sean Wallace, Xu Yang, Venkatram Vishwanath, William E. Allcock, Susan Cogh-
lan, Michael E. Papka, and Zhiling Lan. A data driven scheduling approach for
power management on HPC systems. In Proceedings of the 2016 International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC ’16),
pages 656–666. ACM/IEEE, 2016.

[40] Ahmed E. Helal, Wu-chun Feng, Changhee Jung, and Yasser Y. Hanafy. Au-
toMatch: an automated framework for relative performance estimation and
workload distribution on heterogeneous HPC systems. In Proceedings of the 2017
International Symposium on Workload Characterization (IISWC ’17), pages 32–42.
IEEE, 2017.

[41] Bhavishya Goel, Sally A McKee, Roberto Gioiosa, Karan Singh, Major Bhadauria,
and Marco Cesati. Portable, scalable, per-core power estimation for intelligent
resource management. In Proceedings of the 2010 International Conference on
Green Computing (IGCC ’10), pages 135–146. IEEE, 2010.

[42] Troy Baer, Paul Peltz, Junqi Yin, and Edmon Begoli. Integrating Apache Spark
into PBS-based HPC environments. In Proceedings of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE ’15),
pages 1–7. ACM, 2015.

[43] William Fornaciari, Gianmario Pozzi, Federico Reghenzani, AndreaMarchese, and
Mauro Belluschi. Runtime resource management for embedded and HPC systems.
In Proceedings of the 2016 Workshop on Parallel Programming and Run-Time Man-
agement Techniques for Many-core Architectures and the 2016 Workshop on Design
Tools and Architectures For Multicore Embedded Computing Platforms (PARMA-
DITAM ’16), pages 31–36. ACM, 2016.

[44] Univa Grid Engine. URL: www.univa.com/products.
[45] Moab HPC Suite. URL: adaptivecomputing.com/products/hpc-products/moab-

hpc-basic-edition/basic-edition-solution-architecture.
[46] Qiang Wang, Pengfei Xu, Yatao Zhang, and Xiaowen Chu. EPPMiner: an ex-

tended benchmark suite for energy, power and performance characterization of
heterogeneous architecture. In Proceedings of the 2017 International Conference
on Future Energy Systems (e-Energy ’17), pages 23–33. ACM, 2017.

https://www.energy-charts.de/price.htm
http://www.microchip.com/wwwproducts/en/MCP39F511
https://www.redpitaya.com
https://www.nas.nasa.gov/publications/npb.html
https://aws.amazon.com/hpc
http://www.univa.com/products/
http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/basic-edition-solution-architecture
http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/basic-edition-solution-architecture

	Abstract
	1 Introduction
	2 Motivation and Problem Statement
	3 System Design
	3.1 System Model and Overview
	3.2 Performance, Power, and Price Awareness
	3.3 Dynamic Runtime Resource Allocation
	3.4 Implementation

	4 Evaluation
	4.1 Evaluation Setup
	4.2 System- and Configuration-Scope Heterogeneity Effects
	4.3 Component-Scope Heterogeneity Effects
	4.4 Combining Power and Price Awareness

	5 Discussion
	6 Related Work
	7 Conclusion
	References

