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ABSTRACT
Many industrial areas are faced with a continuous increase in sys-

tem complexity, while systems need to satisfy stringent timing

requirements, which are traditionally based on the tasks’ local

deadlines. However, correct functionality is subject to high-level

timing requirements on data propagation through a set of semantic-

ally related tasks. Since distributed concurrent engineering is often

used to deal with the complexity of such systems, violations of

data propagation delay constraints are only visible at late develop-

ment stages, where changes in system design become increasingly

expensive.

In this paper, we leverage job-level dependencies (JLDs) that

can be specified at early development stages to guarantee data

propagation delay constraints. Therefore, we present an approach

that extends the Real-Time Systems Compiler to enforce the JLDs

in actual multicore schedules. This strategy enables us to perform

extensive evaluations of the effectiveness of JLDs in combination

with contemporary allocation and scheduling algorithms, where we

observed schedulability improvements of up to 42%. Additionally,

we identified the effect of the number of available cores on the data

age.
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1 INTRODUCTION
The majority of embedded applications is subject to strict timing

constraints. Here, not only the correctness of the computed res-

ult is of importance but also their availability at the correct time.

The main focus typically lies on the local deadline of individual

periodic tasks that are scheduled by an operating system. However,

many application domains require further timing guarantees on the
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propagation of data through a chain of tasks (so-called cause-effect

chains) [12, 15, 24, 41]. Challenges arise, as the different tasks are

often independently triggered, possibly at different periods, which

leads to complex over- and under-sampling situations that make

their timing analysis cumbersome.

In the automotive industry, the complexity and number of soft-

ware functions that are integrated with a modern car are steadily

increasing. As the software development process is driven by the dis-

tributed concurrent engineering paradigm [34], different functional-

ity is developed by different vendors and integrated into the system

at a later stage by the original equipment manufacturer (OEM).

This isolation means that during the software development process

detailed information about the hardware platform or other soft-

ware applications that will share the same platform are unknown.

While timing analysis methods are available at the implementation

level [12, 19, 28] (where all functionality is integrated, and complete

system information is available) vendors cannot directly verify data

propagation delay constraints during the development process as

information that is required by these timing analysis engines is

not available. Hence, if these timing constraints are violated this

is typically detected only at the implementation level, late in the

development process. These violations can increase design costs

significantly, as the cost of design changes massively increases with

each development level [26, 39]. One approach to circumvent this

challenge is proposed in [7, 8], where methods are introduced that

allow for translating the timing constraints on the data propagation

into precedence constraints of a selected task’s jobs, expressed as

job-level dependencies (JLDs). This transformation is agnostic of the

concrete hardware platform and only requires knowledge about the

tasks that are involved in a particular cause-effect chain. Though

the theoretic approach of JLDs is sound and the associated guaran-

tees can be trusted the question remains how they affect scheduling

at the end of the development cycle and how close their estimate

is to the “real” maximal data-ages of specific schedules. Here the

Real-Time Systems Compiler (RTSC) [37] comes into play as it

bridges the gap between high-level system analysis performed in

[7, 8] and concrete schedules aimed at a specific real-time operating

systems (RTOSes) and hardware platform. This process is done by

automatic application of contemporary allocation and scheduling

algorithms without further human interference. This work presents

a study of the interplay between different allocation and scheduling

algorithms on a real implementation and the generated JLDs to

meet data propagation delay constraints.

Contributions: In this work, we investigate the challenges of

integrating the data propagation delay constraints into practical

implementations by the RTSC [37]. With the RTSC, different task-

allocation and scheduling methods can be applied to generate

static schedules. In general, scheduling methods do not consider

data propagation delay constraints in their decision process. These
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delays not only depend on the tasks that are involved in the cause-

effect chain, but also on the actual execution order of the individual

task’s jobs which results from the applied scheduling algorithm, as

well as on the allocation of tasks to cores [12]. Consequently, dif-

ferent allocation and scheduling algorithms can yield various data

propagation delays and that a scheduling algorithm that performs

well under consideration of task-local deadlines may experience

degraded performance when additional data propagation delay

constraints are imposed on the system.

JLDs can be generated agnostic of the underlying hardware plat-

form and scheduling algorithm [7, 8]. However, due to this abstract

system knowledge, generated JLD sets that, in theory, always result

in data propagation delays smaller than the constraints, might not

be schedulable on a concrete platform. In this case, the applied

scheduling algorithm does not find a valid schedule under consid-

eration of the JLDs, or the number of available processing cores is

not sufficient.

An extension of the RTSC is presented that considers JLDs as ad-

ditional scheduling constraints. For this configuration, system con-

figurations can be generated that utilize a time-triggered backend

based on the Linux Testbed for Multiprocessor Scheduling in Real-

Time Systems (Litmus
rt
).

Extensive evaluations are performed that compare generated

static schedules (based on several heuristics, as well as optimal

algorithms) with and without the extension for JLDs. We show

that traditional allocation and scheduling algorithms do not in-

fluence the resulting data propagation delay constraints and that

augmenting the task-set with JLDs increases the system schedulab-

ility (task-local deadlines and data propagation delay constraints)

by up to 42%.

Outline: The rest of the paper is organized as follows. Section 2

discusses related work. In Section 3 the relevant background infor-

mation is presented. An overview of our approach is presented in

Section 4 and the investigated allocation and scheduling algorithms

are discussed in Section 5, followed by the implementation of tim-

ing analysis and schedulability test in Section 6. Section 7 presents

our evaluation results, and conclusions are drawn in Section 8.

2 RELATEDWORK
Scheduling and timing analysis of periodic multi-rate applications

is essential in many industrial domains, such as automotive [18] or

avionics [13].

Several works address the timing analysis of data propagation

delays. Feiertag et al. [12] present calculations for maximum data

propagation delays in real-time systems under register commu-

nication. They further identify different data propagation delay

semantics and highlight their respective importance for system

engineers. This analysis is subsequently implemented in several

automotive tools [20, 29]. While this work focuses on the imple-

mentation level, Becker et al. [5, 7] present a framework to compute

data propagation delays at various levels of timing information,

and Forget et al. [13] study the formal verification of data propaga-

tion delays in multi-periodic synchronous models. Frise et al. [17]

present a timing analysis approach for data propagation delays in

automotive multi-core platforms under different communication

models that are based on constraint modeling.

Mubeen et al. [27] focus on the selection of tasks period in order

to meet data propagation delay constraints. Schlatow et al. [38]

assign priorities, offsets and processor mapping to tasks such that

data propagation delay constraints are met on a multicore platform.

The Logical Execution Time (LET) model [21] is further considered

to realize deterministic data propagation delay in automotive sys-

tems as it decouples the data propagation delay from the tasks

execution [10, 18].

Alternatively to influencing data propagation on the implement-

ation level, Becker et al. [7, 8] analyze all possible data propagation

paths in a system and then generate an ordering of selected task’s

jobs such that data propagation delay constraints are met. JLD con-

straints are considered in [14] for fixed-priority scheduled systems,

and in [30] for dynamic priority scheduled systems. Both works tar-

get single processor systems. Time-triggered schedules subject to

such precedence constraints are further investigated for many-core

platforms in [9, 33, 35].

The work presented in this paper differs from related work in

that it extends the design flow of an existing compiler-based tool,

the RTSC [37], to consider JLD constraints that are generated by the

methods described in [7] such that the applications’ data propaga-

tion delay constraints are met. Integration into the RTSC leverages

the already existing flexibility of this platform, such as support for a

large number of available scheduling and allocation algorithms and

executing resulting schedules based on Litmus
rt
[11] and other plat-

forms. A systematic evaluation of a large number of applications

that are subject to data propagation delay constraints is performed

using various combinations of allocation and scheduling algorithms,

targeting a multicore platform. Evaluations focus on metrics that

are important from a theoretical as well as practical perspective.

3 BACKGROUND
This section provides the required background information, with

the system model and the data age constraint that are the main

focus of the paper. We further describe the different parts of the

Real-Time Systems Compiler and its transformation mechanisms.

3.1 System Model
This section first describes the basic application model and the data

propagation delay constraints that are typically found in automotive

systems. In order to transform these timing constraints on the data

propagation into direct scheduling constraints, JLDs are used.

3.1.1 Application Model. One application is described by the

task set Γ, where Γ contains n periodically activated tasks. A task is

described by the tuple {Ci ,Ti }. Ci describes the task’s worst case
execution time (WCET), and Ti describes the its activation period.

Each task has an implicit deadline Di = Ti . The hyperperiod of

the task set is described by the least common multiple of all task

periods, lcm(Γ). The jth job of τi is depicted as τ
j
i .

A cause-effect chain ζ is represented by a directed acyclic graph

(DAG), and contains a set of vertices V and a set of directed edges

E. Each vertex represents a task τ ∈ Γ, and each edge constitutes a

communication between the two tasks. Such a chain can have forks

and joins, but the initial task and the final task must be the same

for all paths of the chain [2]. As timing properties of each possible

data path are of interest a chain can be decomposed into several

sequential chains, in the remainder of the paper, we only focus on

sequential chains.

Communication between different tasks is realized via register
communication. This communication form utilizes shared variables

for communication, where a sender task writes to the shared vari-

able and a reader task reads from it. As there is no signaling between

tasks, the tasks can execute independently of each other. To fur-

ther increase the determinism in communication, the tasks execute

based on the read-execute-write semantics. In this execution model,

a task creates local copies of all input variables at the beginning of

its execution. During the execution phase, only those local copies
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Figure 1: Example of data age in a cause-effect chain contain-
ing two tasks.
are accessed. Finally, the output variables are written at the end

of the task’s execution. This communication model is in line with

the implicit communication paradigm of AUTOSAR, which is the

most-used communication paradigm in automotive systems [24].

3.1.2 Data Propagation Delay Constraints. In order to render

the correct functionality of the system, data propagation delay

constraints can be specified on a cause-effect chain ζ . This is for
example the case in control applications, where sensor data may

be sampled by one task, while a second task executes the control

algorithm, and finally, a third task triggers the actuator with the

updated data. As these tasks may be activated at different periods,

over- and under-sampling may occur. Because of this, the same

input value may affect the output of the chain multiple times.

Several data propagation delay constraints can be specified [12].

In this work, we focus on theMaximum Data Age constraint, as this
constraint type is most important for control applications. Our ap-

proach focuses on the integration of job-level dependencies (JLDs)

in the scheduled system in order to meet data propagation delay

constraints. Thus, the approach is applicable to other data propaga-

tion delay metrics if the JLDs are selected targeting the respective

constraint type, as shown in [8]. The data age is a metric that de-

scribes the relative age of data, from sampling by the first task in

the chain until the last corresponding output is produced by the last

task of the chain. Fig. 1 shows an example of the data age in a sys-

tem of two tasks. τA and τB . The two tasks are activated at different
periods. τA has an activation period ofTA = 4 time units and τB has

an activation period of TB = 2 time units. Hence, over-sampling

is observed as τB reads its input values more frequently than τA
produces new values. This can be seen, as the first and second job

of τB both consume the same value that has been produced by the

first job of τA. In this example, the maximum data age spans from

the start of execution of the first job of τA until this value has its

last effect on the output, when the second job of τB terminates.

3.1.3 Job-Level Dependencies. To ensure that all specified data

propagation delay constraints are met, JLDs are specified on the

task set Γ. A JLD constrains the execution order of specific jobs of

two tasks. In this way, possible data propagation between these

tasks can be influenced. For example, consider two tasks τA and

τB that are adjacent in a cause-effect chain ζ , where TB is 2 · TA.
The analysis of all possible data propagation paths of ζ [7] shows

that there exists a data propagating path in which data propagates

between the job τ 1A and the job τ 1B . For this path, the maximum

possible data age exceeds the specified data age constraint. By

specifying a precedence constraint between the task job τ 2A, and τ
1

B
it is guaranteed that τ 1B never reads the data that is produced by τ 1A,

as τ 2A overrides the data before τ 1B is executed. Consequently, the

data propagation path that violates the specified data age constraint

is avoided as long as the precedence constraint between the two

jobs is met.

A JLD is defined as τi
(k,l )
−−−−→ τj , where τi is the sender task, and

τj is the receiver task. The indices k and l relate to the specific task

jobs that are constrained, i. e., the JLD specifies that the job τki must

have finished executing before the job τ lj starts. Note that a JLD

is always specified concerning the hyperperiod of the two tasks

lcm(τi ,τj ) and repeats itself over the complete hyperperiod of the

task set. If two tasks have the same period, both tasks only execute

one job during their hyperperiod lcm(τi ,τj ). Thus, k and l are 1.
In [7], a heuristic method is shown that generates a set of job-

level dependencies such that all specified data propagation delays

are met. This has the advantage that, as long as all specified job-

level dependencies are satisfied, the data age constraints are met

as well without explicitly considering the data propagation delay

constraints during scheduling. In this work, the MECHAniSer
1

tool [6] is used to generate the JLDs based on the methods of [7].

3.2 The Real-Time Systems Compiler
The Real-Time Systems Compiler (RTSC) [16, 37] is a flexible gen-

eric real-time systems transformation tool based on the LLVM. It

operates directly on the source code of soft, firm or hard real-time

applications enriched by a real-time task database and extracts

their fine-granular OS and architecture agnostic intermediate rep-
resentation called Atomic Basic Block (ABB) graphs that captures

all relevant timing and structural characteristics. Since ABB graphs

neither depend on a particular real-time paradigm nor a specific OS,

they serve as the basis for arbitrary real-time-invariant-preserving

transformations. The ultimate goal is to decouple functional and

real-time development of a real-time application and thus to be

able to quickly deploy the same application on different hardware,

OS, and real-time paradigms and thus quickly assess their impact

on the application’s performance. Since in this paper we evaluate

the impact of different allocation and scheduling algorithms, as

well as different multi-core configurations on the worst case data

age of event chains, the subsequent presentation of RTSC internals,

will focus on generating multi-core time-triggered systems from

event-triggered input systems.

3.2.1 Atomic Basic Blocks. The ABB graph representation [36]

of real-time systems was inspired by the basic-block intermediate

representation found in compilers. While basic blocks begin and

end with instructions that are the target or source of a branch

in the function-local CFG, ABBs are started and terminated by a

branch in the global control flow of the real-time system. Such

instructions are called ABB terminations and consist of system calls

such as triggering tasks, setting and waiting for event flags, mutual

exclusion and sending data from task to task. Depending on the

ABB termination’s semantics the ABBs are connected by appropri-

ate ABB dependencies which then describe the cross-function and

cross-task relationships in the real-time system. Consequently an

ABB consists of one or more basic blocks of a function. Each ABB

has a unique entry basic block, which is the only basic block in the

ABB’s control flow that may have predecessors in the control flow

of the function that are not part of the ABB. Each ABB has at most

one exit basic block. Since the semantics of system calls are traced

by ABB dependencies the operating system calls can be removed

which allows the system to be represented in an OS and hardware

agnostic fashion. Each ABB can be executed on its own without

further interference with other parts of the system, as long as its

dependencies are fulfilled ABBs. This atomicity makes them ideal

fine-granular scheduling entities for the RTSC.

1
The tool is freely available at www.mechaniser.com
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3.2.2 Real-Time Task Database. Although ABB graphs already

capture all internal, structural properties of the real-time system,

these graphs do not yet have a connection to the environment. This

connection is established by the real-time task database. This data-
base contains events, which can either be periodic or non-periodic,

and activate a task. Tasks can be attributed with a soft, firm or hard

relative deadline d . Additionally, periodic events carry a period and

jitter, while non-periodic events only have a minimal interarrival

time. Tasks are composed of a root subtask and zero or more ad-

ditional subtasks. These subtasks are connected by directed and

undirected dependencies and become ready for execution as soon as

their parent task’s event has occurred, and all of their dependencies

are satisfied. The instantiation of a subtask’s ABBs are called jobs
and are created as soon as the subtask becomes ready. Subtasks

are decomposed into ABBs by the RTSC, a process which will be

described in detail in the next section.

3.2.3 Real-Time Systems Processing. This subsectionwill present
the steps performed by the RTSC to map a source real-time system

to the target system. Likes other compilers, the RTSC is composed

of source-system-architecture specific front ends, a middle end, and

target-system-specific backends.

Front End. The RTSC’s front end is responsible for converting

the real-time system to the intermediate representation of ABB

graphs. First, the identifiers of the subtasks stored in the real-time

task database are associated with the respective handler functions

in the real-time applications. Next, local ABB graphs are created

for individual functions. ABB terminations are identified and basic

blocks that would contain one or more terminations in the middle

are split. Terminations are found by identifying all system calls in

the function, which makes clearly defined system call semantics

and knowledge of the called function at the call site mandatory. The

resulting ABBs are connected by implicit dependencies, tracing the

CFG gleaned from the relationship of the basic blocks, resulting

in local ABB graphs. These graphs are connected to a global ABB
graph by identifying compatible ABB terminations, for example,

ones that establish a producer-consumer relationship and refer to

the same system object. After cleaning all system calls the resulting

ABB graphs are entirely OS independent and allow for arbitrary

transformations w. r. t. the structure of the real-time system.

Middle End. The goal of the middle end is to prepare the real-

time system for the code-generation step in the back end. To this

end, an allocation of ABBs to processors and a schedule table for

each processor is calculated. Once the RTSC enters the middle end,

all transformations take place in the context of the target system.

This is important since properties like the WCET of individual

ABBs, which is necessary for scheduling and allocation, can only

be determined for the target architecture, and not in a generic

fashion.

The first step in the middle end is to calculate the hyperperiod

of the real-time system as the least common multiple of the periods

of all events. To fill the hyperperiod, ABBs and connecting ABB

dependencies are cloned accordingly, which is necessary since in

scheduling and allocation ABBs serve as jobs, and each job can only

be scheduled precisely once per hyperperiod. Next, the global ABB

graph is linearized. This prevents control-flow-graph structures

like separate branches that can never be executed within the same

hyperperiod from being scheduled without need. Dependencies are

moved out of loops and branches and logical guards are inserted

that retain their semantic. After that mutually exclusive branches

are merged into one ABB, creating a linearized ABB graph. This is
needed to facilitate the WCET analysis of each ABB, which is done

by the external tools aiT from Absint
2
or platin [22], depending

on the target architecture. Additionally WCET annotations can be

used to skip this computational expensive task in the case that

WCETs are already known.

Now all information necessary for allocating and scheduling the

ABB graph is available. The RTSC offers multiple heuristics and op-

timal approaches for solving the allocation and scheduling problem

and generating a time-triggered schedule for each of the available

processing nodes. Since the impact of allocation and scheduling

algorithms on the data age of event chains is the subject of this

paper we will go into greater detail on this topic in Section 5 and

assume for now that we found a feasible assignment and schedule.

To generate an executable real-time system, the RTSC’s ABB

graphs still have to be post-processed. Not every ABB can be ex-

ecuted directly since not every ABB constitutes the beginning of

a function. Wrapping every ABBs in functions, comes with a run-

time cost as additional code is inserted and function state has to be

transferred. Therefore during scheduling measures are taken that

make it unlikely that functions are scheduled in an interleaving

manner. In post-processing time intervals that have been assigned

to individual ABBs are merged wherever this is advantageous. This

way, whenever two neighboring ABBs are connected by control

flow already present in the basic blocks, a combined busy interval

is created that contains both ABBs, effectively removing one entry

from the schedule table. In some cases, however, despite all the steps

the RTSC takes to avoid this kind of situation, an ABB that is not a

function entry ends up at the start of an interval. Since the timer

interrupt handler has to enter this ABB by executing a function

call, a function wrapper for the interval is generated that takes the

necessary state for continuing the control flow as a parameter. Like-

wise, whenever an interval ends with an ABB that is not a function

exit, the RTSC generates code that stores the necessary state for

continuing execution. The result of all performed processing steps

allows the RTSC’s backends to generate executable code.

Back End. In the backend, the RTSC generates configuration

files and an application scaffolding for the real-time application.

The configuration files contain the schedule tables. In a final step

before generating the executable code for the target system all

remaining annotations are removed, and, after that, assembly code

is generated. Besides OSEKTime the RTSC’s backend is capable of

generating time-triggered systems aiming Litmus
rt
which was the

target platform for the evaluation performed in this paper.

4 APPROACH
In order to satisfy data propagation delay constraints in real-time

systems, specifying JLDs is one proposed method that augments a

traditional task model such that data propagation delay constraints

are met [6–8]. This approach has the benefit of being agnostic of the

underlying hardware platform or scheduling algorithm. If specified

JLDs are met by any scheduler on any platform, the specified data

propagation delay constraints are implicitly met as well. Though

this is beneficial if such design decisions are not yet decided, the

question arises what happens to data propagation delays on the

actual hardware and real-time operating system (RTOS).

To incorporate the generated JLDs into a complete development

chain, the RTSC is chosen as a shortcut from high-level system ana-

lysis to the evaluation of concrete systems design. As the generated

JLDs, the ABB graph itself is agnostic of a concrete hardware plat-

form and scheduling algorithm [16, 37] but automatically applies

2
https://www.absint.com/ait/

https://www.absint.com/ait/
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the complete development chain including allocation and schedul-

ing algorithms as well as adaption to hardware platforms to the

real-time application in question. Thus, the combination of JLDs

and RTSC has the potential to address a broad spectrum of hard-

ware platforms and scheduling strategies and thus analyze and

compare them for the same systems.

In order to assess the effect of different allocation and schedul-

ing algorithms on systems that are subject to data propagation

delay constraints, the design flow of the RTSC is augmented to

incorporate the JLDs that are generated. This is done using the

MECHAniSer tool [6] which implements the approach of [7] to

generate JLDs. Fig. 2 shows the traditional workflow of the RTSC

(below the dashed line) and the workflow that integrates the JLDs

as an additional input to the RTSC. In order to obtain the actual

data age values of the generated systems, an additional timing ana-

lysis engine is implemented as part of the RTSC (a more detailed

discussion follows in Sec. 6.1).

From Fig. 2, it can also be seen that this approach does not change

the original workflow of the RTSC if no JLDs are generated, and all

RTSC benefits (such as system generation and timing analysis of

the generated systems) are retained.

5 ALLOCATION AND SCHEDULING
To put the Multi-rate Effect CHains ANaliSER (MECHAniSer)’s

guarantees and the effect of JLDs to the test with real schedules a

variety of combinations of allocation and scheduling algorithm has

been evaluated.

5.1 Allocation
Allocation by Peng and Shin’s optimal algorithm (PS). For optimal

(if an allocation and a schedule exists that is valid and feasible, it

will be found) allocation of ABBs to the available processing cores

the RTSC uses a specialized branch and bound algorithm based on

the one due to Peng et al. [32]. Branch and bound creates an initial

solution from which refined solutions are derived successively,

potentially exploring the complete solution space. This property

ensures the algorithm’s optimality but also means that its worst-

case runtime is exceptionally high. However, on average, branch

and bound finds an acceptable solution quite quickly.

In Peng et al.’s algorithm two kinds of solutions exist: Incomplete

ones in which only some jobs have been assigned to processors,

and complete ones in which all jobs have been assigned. Incom-

plete solutions have to be refined further while complete ones are

candidates for a feasible assignment.

Peng et al.’s algorithm calculates refined solutions from an in-

complete one by assigning the next unassigned job to each pro-

cessor in turn, i. e., for a real-time system that is to be mapped to a

four-processor machine, from each incomplete solution four refined

solutions are derived. For each incomplete solution a lower bound

of the cost is calculated by generating a local schedule for each

processor and estimating a regular measure3 of its cost from the

completion time, deadline and release time of each job. The lower

bound of the cost of a solution is calculated as the maximum of the

cost of all its jobs. The cost of an incomplete solution is only a lower

bound of the cost since the cost of unassigned jobs is taken into

account under optimistic assumptions, and a job’s predecessor’s

release time is used as a lower bound for its completion time if the

predecessor runs on a different processor than the successor. Even

for complete solutions, the resulting schedule may, therefore, be

invalid since successors may start before their predecessor’s result

is available.

An upper bound of the cost is calculated for complete solutions.

If an incomplete solution has a lower bound of the cost that is

higher than the current best complete solution’s upper bound, it

is discarded immediately. This is justified since the cost of a re-

fined solution can only be the same or higher than its parent’s cost.

Furthermore, discarding solutions means that large parts of the

solution space do not have to be explored since all children of a

discarded solution are eliminated from the search space as well.

Peng et al.’s algorithm terminates once a complete solution has

been found and no incomplete solution remains that can result in

better cost than the current best complete solution. The result of

Peng et al.’s algorithm minimizes the maximum cost of the assign-

ment, and, given an appropriate measure of cost, the probability

of missing a deadline at runtime, even if timing parameters like

the estimated WCET are violated [31]. A regular cost often used

for real-time systems and thus also in the RTSC is the Normalized

Task Response Time (NRT). Thus Allocation by Peng and Shin (PS)

allocation minimizes maximal NRT of the allocation. Due to its

general approach, additional optimization subject can be specified.

The default implementation, for example, is also parametrized to

minimize the usage of cores and thus leaves cores unused if not

necessary for schedulability. In contrast, the modified PS/maxCore

is parametrized to use as many cores as possible.

Heuristic Approach. In addition to this complex and resource-

consuming near-optimal solution, several well-known heuristic

algorithms for allocation have been implemented. Each of these

heuristics computes the utilizationuABB as the fraction of itsWCET

CABB and its relative deadline dABB (uABB =
CABB
dABB

) of each ABB.

An ABB fits on a processing node if the sum of the already allocated

ABBs on this node adding that of the current node is less than one

(

∑
ualloc + uABBcurr ≦ 1). The FirstFit algorithm always starts at

the first processing node and places the current ABB at the first

core that has enough capacity left [23]. A slight variation of this

approach is the NextFit algorithm [23]. Here the core that the last

ABB has been allocated to is saved and serves as a starting point for

the allocation of the next ABB, which is again placed on the first

suitable core. Instead of allocation to the first fitting processor, the

BestFit and WorstFit algorithms iterate over each node for every

ABB and compare the resulting load on each node. The BestFit

algorithm then allocates the ABB to the core that would have the

highest resulting computational load i. e., the core’s slack fits best to
UABB . In contrast, WorstFit locates the current ABB to the core with

the lowest resulting load and thus distributes the computational

load evenly to the available cores. A more naïve heuristic allocation

is RoundRobin. It iterates over all cores and evenly distributes

ABBs on cores. As long as the ABB fits, no further qualification is

performed.

3
A measure of the cost of a job is regular if increasing completion time means non-

decreasing cost. [4] This is a precondition for the correctness of the branch and bound

scheme.
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It is worth noting that in contrast to the PS allocation algorithm

none of the heuristics consider dependencies and thus also neglect

the JLDs.

5.2 Scheduling
After an allocation has been found a feasible and valid schedule

for the ABBs on each core has to be determined. Again we com-

pared two different algorithms for scheduling data-age constrained

systems.

Earliest-Deadline First Scheduling. The first and most generic

scheduling algorithm used in the RTSC is based on the well-known

Earliest Deadline First [25] scheduling algorithm and the principle

of branch and bound [1]. For each moment in time, the algorithm

prioritizes the next ABB that is runnable, and that has the most

urgent deadline. The EDF-implementation in the RTSC supports

processor-local as well as cross processor dependencies and the

generation of preemptive schedules. Cross-processor dependencies

are repaired in a way similar to the optimal allocation algorithm. It,

therefore, is optimal in the sense that if no dependencies exist, it

finds feasible schedules for core allocations whose computational

load is below one [1].

minimax Scheduling. The second approach to scheduling uses

the cost-optimal schedule calculate during optimal processor alloc-

ation [3, 32] as a basis. However in contrast to Peng et al.’s original

algorithm the version implemented in the RTSC attempts to repair

violated cross-processor dependencies similar to the approach of

Abdelzaher et al.: It generates new child solutions from violating

complete solutions by shifting the deadline of the predecessor into

the past and the release time of the successor into the future where

necessary. It ensures that the job that causes the least cost, i. e.,

has the least NRT finishes last, while at the same time satisfying

all directed dependencies. Since this scheduling algorithm is fully

integrated with the optimal branch-and-bound algorithm used for

processor allocation, it can currently not be combined with the

simple heuristic allocation approaches.

6 TIMING ANALYSIS AND SCHEDULABILITY
TEST

This section discusses the integration of a timing analysis engine

for the data age within the RTSC and a necessary schedulability

test that detects JLD settings that lead to unschedulable systems

caused by cyclic dependencies.

6.1 Timing Analysis and Implementation
As the RTSC was extended to account for data propagation delay

constraints, the RTSC-internal analysis engines need to be extended

as well. In the RTSC the goal is to analyze the data age of these

systems in a generated schedule.

As a result of the schedule generation using the RTSC, a sched-

ule table is produced. This table includes the start and completion
time of each ABB, as well as its core-mapping. For a job τ

j
i , the

start time is denoted as s(τ
j
i ) , and the finish time as c(τ

j
i ). With

the specified JLDs, the RTSC guarantees that for jobs of tasks that

are constrained by a JLD the earliest start time of the successor

job is always larger or equal than the latest finishing time of the

predecessor job. This means, due to the properties of the JLD gen-

eration, a schedule that satisfies all JLDs also automatically meets

all specified data propagation delay constraints [7]. As it is often

essential how significant the actual worst-case data propagation

delay in a system is, timing analysis of the generated system needs

to be performed [5, 12].

To extend the timing-analysis engines of the RTSC to analyze

the maximum data age, the cause-effect chain semantics and their

timing constraints are integrated with the RTSC. This information

is needed when analyzing the schedule table.

A new component within the RTSC is responsible for the timing

analysis of a cause-effect chains’ data age. The maximum data age

of the generated systems is computed by traversing backward from

each job τki of the last task τi of a cause-effect chain ζl . The imple-

mented algorithm recursively selects the first job of its respective

predecessor task (in the cause-effect chain ζl ) that is finishing be-
fore the start time of the current job. Once a job of the first task of

the chain is reached (let’s say τ
p
j ), the data age can be computed

as: c(τ
j
i ) − s(τ

p
j ). Note that only the first and last job of such a data

path is required to compute the data age [12]. The maximum data

age of a cause-effect chain ζl is the maximum value of all data age

values that are computed for each job of τi .

6.2 Cyclic Job-Level Dependencies
As the heuristic algorithm [7] that is used to generate the JLDs se-

quentially assigns dependencies to the different cause-effect chains

of the system, cases have been observed in which cyclic dependen-

cies were generated.

Since tasks can be part of multiple cause-effect chains, it is pos-

sible that cycles in the graph of all chains’ data paths exist. In such

cases, the heuristic can specify circular dependencies in the system.

While cycles in the graph of all data propagation paths are allowed,

cycles in the specified JLDs are not, as no valid schedule is possible

that can fulfill such JLDs.

Testing the JLDs that are generated for the system for cycles

represents a necessary condition for schedulability. I.e., if a cycle

exists, no schedule exists that can satisfy all JLDs. This check for

schedulability can be efficiently implemented in order to detect

unschedulable systems before the complete system generation with

the RTSC is triggered.

7 EVALUATION
In this section the evaluation results are presented. First, the sys-

tem generation process is discussed, and the basic properties of the

process are shown. We then evaluate a large number of randomly

generated systems using the proposed approach. Here different

schedulability criteria are of interest, as well as the resulting re-

sponse time and data age measures. Finally, the effect of additional

cores on the resulting data age is evaluated.

7.1 System Generator
For the experiments, random systems are generated based on char-

acteristics of automotive applications that are reported in [24]. Each

system contains randomly generated task sets. Task periods are

selected out of the set {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms, and

WCETs are selected out of the range [50, 150] µs.
Each generated cause-effect chain can have 1–3 different in-

volved periods, where 20% or the chains contain only tasks of the

same period, 40% contain tasks of two different periods, and 40% of

the cause-effect chains contain tasks of three different periods. For

each period value selected for a chain, 2–5 tasks are involved with

a probability of 30%, 40%, 20%, or 10% respectively. The data age

constraint for a chain is generated by multiplying a random factor

with the chains hyperperiod (i.e., the hyperperiod of all tasks that

are part of the chain), in the range [1.8, 2.5]. Note that tasks of the
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same period always appear sequentially in the cause-effect chain

and the same task can be part of multiple cause-effect chains [24].

If the same subset of tasks is part of multiple cause-effect chains,

these tasks always appear in the same ordering in both chains.

The system generation is performed based on the following steps:

• Generate the blueprint for each cause-effect chain. This includes

the number of activation patterns, and the number of tasks as

well as the assigned period for each activation pattern.

• Generate random tasks such that each chain can be filled. I.e.,

for each activation period, generate the number of tasks that are

maximally assigned to any of the cause-effect chain blueprints.

• Generate random tasks until the task set utilization is reached.

• For each cause-effect chain, randomly pick tasks from the task set

that have the activation period which is defined by the respective

activation patterns of the cause-effect chain.

• Finally, assign a data age factor is selected with uniform dis-

tribution in the range of [ageMin, ageMax]. This factor is then

multiplied with the hyperperiod of the cause-effect chain to set

the data age constraint.

Generating the systems in this manner allows controlling the

cause-effect chain characteristics in a precise way.

For each system the JLDs are generated using the methods of [6,

7].

7.1.1 Success-Rate JLD Generation and Cyclic Dependencies. In
this section, the JLD schedulability (i.e., the algorithm of [7] finds a

valid setting for JLDs) is compared in a version with and without a

check for cyclic dependencies. The generated systems include task

sets of an average utilization of 1.9. 300 random systems generated

with a varying number of chains, while all other system parameters

are kept constant.

This means, the more cause-effect chains are part of the system,

the more interleaved the system gets. I.e., tasks can be part of more

than one cause-effect chain. For this experiment, the distribution of

how many chains a task is a part of is shown in Fig. 3b in respect

to the number of chains in the system.

Fig. 3a shows the relation of systems where the heuristic of [7]

reports a JLD configuration, compared against the systems that do

not experience cyclic dependencies (as discussed in Sec. 6.2). It can

be seen that the systems that are subject to cyclic dependencies are

increasing with the number of cause-effect chains in the system.

The more entangled the system is, the more likely it becomes that

no valid setting for JLDs is found.

As the focus of this work is to analyze the influence of JLDs

on the system properties, in the remainder, only systems where

(a) Impact of cyclic dependencies on
schedulability.

(b) Average number of tasks that are
part of varying numbers of cause-effect
chains.

Figure 3: Success rate in generating JLDs, and the distribu-
tion of tasks to chains in the experiment.

dependencies are generated successfully are further considered, as

the primary objective is to evaluate the performance of systems

with and withoutJLDs in different target systems.

7.1.2 Generated Task-Sets for the Main Evaluation. To compare

the MECHAniSer’s analysis with concrete schedules and examine

the effect of the heuristic JLD creation we generated 433 systems

using the described system generation process. The systems are

generated with utilization between 0.6 and 2.0 and an average of

1.2. Each generated system has between 59 and 1000 jobs with

an average of 458 and comprises 1 − 3 event chains. For all these

systems corresponding C code as well as the real-time database

needed for the RTSC have been generated. The C code mostly

consists of dummy loops that retain the timing properties of the

task and enforces data propagation and if necessary JLDs. Then

all systems have been analyzed by the RTSC for maximum data

age with all available combinations of allocation and scheduling as

explained in Section 5 for up to four cores each with and without

JLDs. This sums up to a total of 27712 RTSC runs and leads to about

570 CPU-hours on our experiment cluster
4
.

7.2 Task-local Deadlines and Maximal
Response Times

To compare the schedulability ratio
5
, with and without generated

JLDs, different allocation and scheduling algorithms have been eval-

uated on a varying number of available cores. Figure 4a shows the

schedulability ratio of systems without JLDs whereas Figure 4b

depicts the same with JLDs in effect. In both experiments, the trend

looks similar. While fewer than 50% of the systems are schedulable

on one core, the schedulability ratio increases to almost 100% for

systems with three cores. It can further be seen that the addition of

JLDs does not strongly impact the schedulability ratio. The max-

imum reduction in schedulability (on average over all cores), when

adding JLDs can be observed for BestFit with 5%.

Since the utilization of the systems is below two FirstFit, NextFit

and BestFit by design, do not utilize more than two of the available

cores and therefore do not improve as more cores become avail-

able. In contrast, the WorstFit heuristic which uses as many cores

as available is surprisingly competitive to the optimal allocation

algorithms when more than two cores are available. Due to the sys-

tems’ utilization, the most laborious task for allocation algorithms

is the case where the additional effort put in the optimal allocation

pays of: PS finds for all three scheduler configurations the most

schedulable systems.

The same holds true for the maximal normalized response times

(max NRT) depicted in Figure 5: Even for one core the optimal

scheduling algorithms produce less maximum normalized response

times in themean, but as soon asmore possibilities for the allocation

exist, the optimal allocation algorithms result in smaller response

times, while the difference between EDF and optimal cost-based

scheduling is not as strong but exists.

From this experiment, we can see that augmenting the task set

with JLDs in order to meet data propagation delay constraints does

not strongly impact the schedulability ratio under consideration of

task local deadlines only.

4
In the remainder, selected evaluation results are shown. The complete set of obtained

figures is available at www4.cs.fau.de/Research/RTSC/experiments/mechaniserstatic

5
Here, schedulability ratio refers to the traditional schedulability ratio of task sets that

meet all task-local deadlines compared to the ones that do not.
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(a) Task-local schedulability without JLDs
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(b) Task-local schedulability with JLDs

Figure 4: Impact of JLDs on task-local schedulability
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(a) Max normalized response time without JLDs
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(b) Max normalized response time with JLDs

Figure 5: Impact of JLDs on max normalized response time
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(a) Combined task-local and data-age schedulability without JLDs
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(b) Combined task-local and data-age schedulability with JLDs

Figure 6: Impact of JLDs on combined task-local and data-age schedulability
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(a) Data-age schedulability without JLDs
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(b) Data-age schedulability with JLDs

Figure 7: Impact of JLDs on data-age schedulability
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Figure 8: Comparison of data ages as guaranteed by the MECHAniSer and the data ages achieved by the various allocation and
scheduling algorithms for one core
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Figure 9: Comparison of data ages as guaranteed by the MECHAniSer and the data ages achieved by the various allocation and
scheduling algorithms for four cores

7.3 Data-Age as Schedulability Criterion
For many industrial domains [13, 18] it is equally important to meet

task-local deadlines as well as all specified data propagation delay

constraints in order to deem a task set schedulable. While the pre-

vious section only focused on task-local deadlines as schedulability

criterion, this section takes data propagation delay constraints into

account.

We first consider systems that meet all task-local deadlines and
where all data-age constraints are considered for the schedulability

criterion (Figure 6). After, all systems that meet their data-age con-

straints regardless of the task-local deadlines are seen as schedulable

(Figure 7). This is important for systems where a bounded num-

ber of task-local deadlines can be missed without affecting the

performance (for example control applications [40]).

7.3.1 Task-local Deadline and Data Age Schedulability. As the
MECHAniSer guarantees that systems that impose JLDs and meet

all task-local deadlines also meet all data-age constraints, the task-

local schedulability with JLDs in Figure 4b is identical to the com-

bined schedulability in Figure 6b. In comparison to the schedulabil-

ity of systems where no JLDs are considered (Fig. 6a) the addition

of JLDs has a maximum improvement (average over all cores) of

42% for RoundRobin.

Looking at Figure 6a, where no JLDs are considered, there is

only a slight increase in combined schedulability by increasing the

number of cores for systems that are RoundRobin, WorstFit or PS-

allocated. For one and two cores the combined schedulable systems

are approximately half of the task-local schedulable systems but do

not increase with three or four cores.

7.3.2 Data Age Schedulability. To further identify the source

of this observation we look at the schedulability ratio of systems

where only data propagation delay constraints are of importance

and task local deadlines may be violated. In Figure 7a it can be seen

that the percentage of systems that meet their data age constraints

is not affected by the selected allocation and scheduling algorithm.

It can also be seen that the number of available cores also does not

affect the schedulability.

In contrast Figure 7b shows that introducing JLDs boosts meeting

data-age constraints even for systems that do not meet all task-local

deadlines, since even with one core most data-age constraints are

met (some systems are overloaded when only one core is available).

For two and more cores RoundRobin, WorstFit or PS-allocated

systems reach 100% data-age schedulability and even the heuristics

that never accomplishmore than 50% task-local schedulability reach

more than 95% data-age schedulability with JLDs.

Thus, it can be observed that traditional allocation and schedul-

ing algorithms do not have a direct effect on meeting data propaga-

tion delay constraints. The addition of JLDs as scheduling con-

straints can improve the total system schedulability while its impact

on task-local schedulability is minimal (as shown in Section 7.2).

7.3.3 Resulting Maximum Data Age. To put this effect further

into perspective Figure 8 and Figure 9 depict the effect of adding

JLDs to the systems’ cause-effect chains’ maximum data age relative

to the event-chains data-age requirements (i.e., a value larger than

1 indicates a violated data age constraint). While Figure 8 considers

systems that have been allocated and scheduled to one core Fig-

ure 9 depicts the same systems and event-chains allocated to four

cores. The (a) subfigures comprise only schedules that meet all task-
local deadlines and therefore comply with the assumptions that the
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(b) RoundRobin heuristic allocation combined with EDF scheduling

Figure 10: impact of using up to 512 cores on data age

MECHAniSer uses to compute its data-age guarantees while the

(b) subfigures consist of all 433 systems. In addition to the resulting

data age values based on allocation and scheduling algorithm, here

also upper bounds given by MECHAniSer are shown.

Again it can be observed that adding more cores but no JLDs does

not have a substantial effect and the mean maximum data-age. On

the other hand, enforcing JLDs as suggested by the MECHAniSer

drastically improves the timeliness of event-chains, even for sys-

tems that do not meet their assumptions. However, especially PS +

minimax generate massive outliers, and no guarantees can be given

without meeting all task-local deadlines as these results are only

statistical. It can be seen that the upper bounds that are provided

by the MECHAniSer also no longer hold for systems where task-

local deadlines can be missed, as the underlying assumptions for

the timing analysis have been violated. Additionally, one can note

that allocation + scheduling does not affect the distribution of the

cause-effect chains’ maximum relative data-age.

7.4 Do many cores improve data age?
As platforms with an increasing number of cores become available,

this experiment investigates the effect of the number of cores on

the data age properties.

Since optimal allocation of hundreds of jobs for many cores is

resource consuming and the solution space grows exponentially

with the numbers of cores three of the 433 systems were selected.

The selected systems comprise 99, 305, 361 jobs respectively and

have utilizations of 1.2, 1.6, 1.8 and 1, 2, 2 event-chains. This gives
a total of 43 data age values since in this experiment we do not

only analyze the maximum data-ages of each chain as before but

consider all data-propagation paths within the hyperperiod. Again

we used all combinations available to allocate and schedule these

systems but chose to depict those allocations that use as many

cores as possible. Therefore, Figure 10a shows PS maxCore modific-

ations and Figure 10b the RoundRobin heuristics. Please note that

PS/maxCore could only be executed for up to 128 cores due to the

resource requirements of the algorithm (more than 500GB of RAM

for allocations with more than 128 cores).

Both graphs show that instead of improving i. e., lowering data

age values, adding additional cores had mostly the contrary effect.

The addition of the second core improves the data-ages for the

optimal allocations since the second core is needed to meet all task-

local deadlines. For the systems without JLDs, the average data age

is at its minimum value when the system becomes schedulable at

two cores. After that, the addition of cores increases the average

data age. This is the case for the optimal allocation as well as for

the RoundRobin allocation.

Similar effects can be observed for systems where JLD are con-

sidered. However, the maximum data age values do not increase

over the data age constraint (except for the optimal allocation on

one core, which is a result of an unschedulable system). In Fig-

ure 10a systems with JLDs still decrease data ages up to four cores

but with more than four cores all allocation algorithms cease to

improve on data age and start to increase data ages.

For both settings, once the system becomes schedulable, with

the addition of cores, it becomes likely that two tasks that are con-

secutive in a cause-effect chain do no longer execute in sequence.

This holds true for all other graphs not included in the paper due

to space limitations. By adding more cores, the parallelization of

previously sequentially executed communicating tasks becomes

more likely which increases the likelihood that a task has to wait

for an additional hyperperiod to consume the value of its prede-

cessor task. The JLDs do not prevent this increase in data age but

guarantee that the increase is bounded by the specified constraint.

Thus, in system design with data propagation delay constraints,

over-provisioning the system negatively affects the data age.

8 CONCLUSION AND OUTLOOK
In this paper, we extended the MECHAniSer and the RTSC to work

closely together and thus bring data-age analysis closer to real

systems and real executions. This collaboration enabled us to gain

detailed insights into the behavior of contemporary allocation and

scheduling algorithms in respect to data age constraints. Moreover,

we could examine how additional computational resources influ-

ence the data-ages of concrete systems.

The most important insight is, that traditional allocation and

scheduling approaches that focus on task-local deadlines are un-

suitable for optimizing the data age of cause-effect chains, as long

as these are not modeled correctly by dependencies. Moreover, we

have shown that the same holds true when the systems compu-

tational capabilities are increased by adding additional cores to

the hardware platform. One of the critical observations is that the

resulting data age values increase when additional compute cores

become available. This is contrary to common conceptions and

must be carefully taken into consideration during system design.

On the other hand, this shows how important it is to model depend-

encies from the beginning and if this is not possible how useful

tools like the MECHAniSer are.

Future work will focus on runtime experiments of the systems

in order to measure the resulting runtime data age values as well

as the OS overheads introduced by the JLDs. Also, the extension

of the existing optimal PS allocation and the minimax scheduler to

directly minimize data propagation delays.
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