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Abstract
Interaction with physical objects often imposes latency re-

quirements to multi-core embedded systems. One conse-

quence is the need for synchronisation algorithms that pro-

vide predictable latency, in addition to high throughput. We

present a synchronisation algorithm that needs at most 7

atomic memory operations per asynchronous critical section.
The performance is competitive, at least, to locks.
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1 Introduction
With embedded applications running on multi-core pro-

cessors, the need for predictable synchronisation emerges.

Locks, however, delay threads until an associated resource

is available, causing situation-specific waiting times. In the

worst case, a deadlock occurs and threads have to wait for-

ever. Therefore, the goal is a synchronisation algorithm that

is fast in the average case, and also in the worst case.

To avoid blocking, synchronisation requests have to be

executed asynchronously—the execution of the critical sec-

tion is possibly delayed ensuring mutual exclusion, but the

requesting thread can proceed. The critical section is thus

decoupled from its inquirer. For asynchronous requests, a

run-time system has to ensure that each submitted critical

section eventually runs. This system also enforces mutual

exclusion of all submitted critical sections.
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Listing 1. Guard sequencing loop

job_t *job = /* critical section */;
job_t *cur = vouch(guard , job);
if (NULL != cur) do {

run(cur);
} while (NULL != (cur = clear(guard)));

The contribution of this paper is a synchronisation algo-

rithm that supports asynchronous requests. It achieves better

performance and predictability than alternative algorithms.

2 Background and Related Work
For remote core locking (RCL) [2], threads delegate their criti-
cal sections to a server thread for execution. RCL is transpar-

ent to locks in functional terms and therefore forces threads

to wait for completion of each request. However, delegation-

based synchronisation can be extended for asynchronous

requests. By decoupling critical sections from the request-

ing thread, blocking becomes unnecessary. Asynchronous

requests can thus eliminate unpredictable blocking delays.

Guards [1, 3] support asynchronous requests based on

an unbounded job queue. They further use an on-demand

solution, the sequencer, instead of a dedicated server thread.

If the guard protocols decide so, every thread that submits a

critical section can become the sequencer. It is then respon-

sible to execute all pending requests. For mutual exclusion,

at most one sequencer exists at any moment in time.

The guard protocols are accompanied by a programming

convention, which is shown in Listing 1. Threads can submit

critical sections using vouch, which internally negotiates the
sequencer thread. When a thread becomes the sequencer, it

executes all pending requests. After completion of a critical

section, the sequencer calls clear. This function returns the

next pending request, if available.

Guards rely on an additional reply mechanism that pro-

vides results of critical sections in a future variable. This is
optional, to respect data dependencies. Guards thus allow

threads to wait immediately (synchronous critical section),
never (asynchronous critical section), or at any later moment.

We present an alternative guard implementation that sig-

nificantly improves performance and predictability com-

pared to previous algorithms.

3 Algorithm
Our predictable synchronisation algorithm operates on a

wait-free multiple-producer single-consumer queue. As a
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(a) Synchronisation throughput
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(b) Synchronisation worst-case latency
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Figure 1. Throughput and worst-case latency for synchronous and asynchronous critical sections

Listing 2. Guard data structures and protocols

typedef struct { chain_t *next; /* ... */ } chain_t;
typedef struct { chain_t *head; chain_t *tail; } guard_t;

void setup(guard_t *self) {
self ->head = self ->tail = NULL;

}

chain_t *vouch(guard_t *self , chain_t *item) {
item ->next = NULL;
chain_t *last = FAS(&self ->tail , item); // V1
if (last && CAS(&last ->next , NULL , item)) // V2

return NULL;
self ->head = item; // V3
return item;

}

chain_t *clear(guard_t *self) {
chain_t *item = self ->head; // C1
chain_t *next = FAS(&item ->next , DONE); // C2
if (!next) CAS(&self ->tail , item , NULL); // C3
CAS(&self ->head , item , next); // C4
return next;

}

distinctive but necessary feature, the enqueue operation de-

tects whether the queue was empty beforehand. Listing 2

summarises all guard functions. A setup function initialises

the guard data structure, vouch submits a critical section,

and clear removes a request after completion. In total, each

request requires at most 7 atomic memory operations.

The vouch function enqueues a critical section. Key mo-

ment is the V1 operation, which orders concurrent calls to

vouch, and thus, critical sections. Then, V2 detects whether

the queue was hitherto empty. If so, the vouch function de-

cides that the current thread becomes the sequencer and

returns non-NULL. Otherwise, a sequencer must already be

present because another job is enqueued.

The sequencer calls clear after completing a request, to

remove it from the queue. If another item is enqueued, clear
returns a reference to it. The sequencer is then obliged to

execute that request. If a vouch operation happens concur-

rently, the sequencer role can transition. Internally, clear
signals this situation to V2 using a unique magic value, DONE.

4 Performance Evaluation
The evaluation compares the guard algorithm to a pre-

existing variant (otherguard) [3], and ticket and mcs locks.

Both guard algorithms are also evaluated for asynchronous

requests. All experiments were conducted on a machine with

80 logical cores (4x Intel Xeon E5-4640). We refer to the ac-

companying technical report [4] for more details.

A micro-benchmark spawns 1 to 80 threads that all sub-

mit empty critical sections in a tight loop
1
. The throughput,

averaged over 10
7
requests, is shown in Figure 1. The NUMA

hardware causes performance drops at 10 cores. The guard

is between ticket and mcs locks, and guard-async outper-

forms them at high contention. Due to internal overhead, the

otherguard cannot benefit from asynchronous requests.

Figure 1 also shows the per-request latency of 10
5
criti-

cal sections. The 95% percentile represents the worst-case

latency, excluding hardware unpredictability and OS noise.

Again, the synchronous guard is between ticket and mcs

locks. The guard-async variant scales nearly perfectly and

thus achieves the best predictability.
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1
Empty critical sections are a stress test for the guard, since the avoidance

of blocking is especially beneficial when long requests are pending.
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